Skip to main content

Applications in Astrophysics Problems

  • Chapter
  • First Online:
The H-Function

Abstract

There are many areas in astrophysics where Meijer’s G-function and H-function appear naturally. Some of these areas are analytic solar and stellar models, nuclear reaction rate theory and energy generation in stars, gravitational instability problems, nonextensive statistical mechanics, pathway analysis, input-output models and reaction-diffusion problems. Brief introductions to these areas will be given here so that the readers can develop the areas further and tackle more general and more complex situations.

There are many areas in astrophysics where Meijer’s G-function and H-function appear naturally. Some of these areas are analytic solar and stellar models, nuclear reaction rate theory and energy generation in stars, gravitational instability problems, nonextensive statistical mechanics, pathway analysis, input-output models and reaction-diffusion problems. Brief introductions to these areas will be given here so that the readers can develop the areas further and tackle more general and more complex situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barkai E (2001) Fractional Fokker-Planck equation, solution and application. Phys Rev E 63:046118–17

    Article  ADS  Google Scholar 

  • Brychkov YA, Prudnikov AP (1989) Integral Transforms of Generalized Functions translated and revised from the second Russian edition. Gordon and Breach Science, New York

    Google Scholar 

  • Caputo M (1969) Elasticitá e Dissipazione. Zanichelli, Bologna

    Google Scholar 

  • Del-Castillo-Negrete D, Carreras BA, Lynch VE (2003) Front dynamics in reaction-diffusion systems with Lévy flights: A fractional diffusion approach. Physical Review Letters 91:018302

    Article  ADS  Google Scholar 

  • Del-Castillo-Negrete D, Carreras BA, Lynch VE (2002) Front propagation and segregation in a reaction-diffusion model with cross-diffusion. Physica D 168:45–60

    Article  MathSciNet  ADS  Google Scholar 

  • Feller W (1952) On a generalization of Marcel Riesz’ potentials and the semi-groups generated by them. Meddeladen Lund Universitets Matematisca Seminarium (Comm. Sém. Mathém. Université de Lund), Tome Supple. dédié a M. Riesz, Lund 73–81

    Google Scholar 

  • Fisher RA (1937) The wave of advances of advantageous genes. Annals of Eugenics 7:353–369

    Google Scholar 

  • Frank TD (2005) Nonlinear Fokker-Planck Equations: Fundamentals and Applications. Springer, New York

    MATH  Google Scholar 

  • Gelfand IM, Shilov GF (1964) Generalized functions, Vol I. Academic, London

    Google Scholar 

  • Haken H (2004) Synergetics introduction and advanced topics. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  • Haubold HJ (1998) Wavelet analysis of the new solar neutrino capture rate data for the Homestake experiment. Astrophysics & Space Science 258:201–218

    Article  ADS  Google Scholar 

  • Haubold HJ, Mathai AM (2000) The fractional kinetic equation and thermonuclear functions. Astrophysics & Space Science 273:53–63

    Article  ADS  MATH  Google Scholar 

  • Haubold HJ, Mathai AM, Saxena RK (2007b) Solution of fractional reaction-diffusion equations in terms of the H-function. Bull Astro Soc India 35(4):681–689

    ADS  Google Scholar 

  • Henry BI, Wearne SL (2000) Fractional reaction diffusion. Physica A 276:448–455

    Article  MathSciNet  ADS  Google Scholar 

  • Henry BI, Langlands TAM, Wearne SL (2005) Turing pattern formation in fractional activator-inhibitor systems. Physical Review E 72:026101

    Article  MathSciNet  ADS  Google Scholar 

  • Hilfer R (ed) (2000) Applications of fractional calculus in physics. World Scientific, Singapore

    MATH  Google Scholar 

  • Hille E, Tamarkin TD (1930) On the theory of linear integral equations Ann Math 31:479–528

    MathSciNet  MATH  Google Scholar 

  • Jespersen S, Metzler R, Fogedby HC (1999) Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Physical Review E 59:2736–2745

    Article  ADS  Google Scholar 

  • Jorgenson J, Lang S (2001) The ubiquitous beat kernel. In: Engquist B, Schmid W (eds) Mathematics Unlimited – 2001 and Beyond. Springer-Verlag, Berlin, pp 655–683

    Chapter  Google Scholar 

  • Kilbas AA, Repin OA, Saigo M (2002) Generalized fractional integral transform with Gauss function kernels as G-transform. Integral Transform Spec Funct 13:285–307

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Saigo M, Saxena RK (2004) Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform Spec Funct 15:31–49

    Article  MathSciNet  MATH  Google Scholar 

  • Kilbas AA, Saxena RK, Trujillo JJ (2006) Krätzel function as a function of hypergeometric type. Fract Calc Appl Anal 9:109–131

    MathSciNet  MATH  Google Scholar 

  • Kochubei AN (1990) Diffusion of fractional order. Differential Equations 26:485–492

    MathSciNet  MATH  Google Scholar 

  • Mainardi F, Luchko Yu, Pagnini G (2001) The fundamental solution of the space-time fractional diffusion equation. Frac Calc Appl Anal 4:153–192

    MathSciNet  MATH  Google Scholar 

  • Mainardi F, Pagnini G, Saxena RK (2005) Fox H-functions in fractional diffusion. J Comput Appl Math 178:321–331

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Mathai AM (1993a) Appell’s and Humbert’s functions of matrix argument. Linear Algebra and Its Applications 183:201–221

    Article  MathSciNet  MATH  Google Scholar 

  • Mathai AM, Haubold HJ (1988) Modern problems in nuclear and neutrino astrophysics. Akademie-Verlag, Berlin

    Google Scholar 

  • Mathai AM, Saxena RK (1978) The H-function with applications in statistics and other disciplines. Wiley Eastern, New Delhi and Wiley Halsted, New York

    MATH  Google Scholar 

  • Mathai AM, Haubold HJ Mücket JP, Gottlöber S, Müller V (1988) Gravitational instability in a multicomponent cosmological medium. Journal of Mathematical Physics 29(9):2069–2077

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Metzler R, Klafter J (2000) The random walk a guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Nicolis G, Prigogine I (1977) Self-organization in nonequilibrium systems: from dissipative structures to order through fluctuations. Wily, New York

    MATH  Google Scholar 

  • Nigmatullin RR (1986) The realization of the generalized transfer equation in a medium with fractal geometry. Phys Sta Sol(b) 133:425–430

    Google Scholar 

  • Oldham KB, Spanier J (1974) The fractional calculus: theory and applications of differentiation and integration to arbitrary order. Academic, New York

    MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic, San Diego

    MATH  Google Scholar 

  • Saichev A, Zaslavsky GM (1997) Fractional kinetic equations: solution and applications. Chaos 7(4):753–764

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Saxena RK, Kalla SL (2003) On a fractional generalization of the free electron laser equation. Appl Math Comput 143:89–97

    Article  MathSciNet  MATH  Google Scholar 

  • Saxena RK, Kalla SL (2008) On the solutions of certain fractional kinetic equations. Appl Math Comput 199:504–511

    Article  MathSciNet  MATH  Google Scholar 

  • Saxena RK, Mathai AM, Haubold HJ (2006) Solutions of certain fractional kinetic equations and a fractional diffusion equation. J Scientific Res 15:1–17

    MATH  Google Scholar 

  • Saxena RK, Mathai AM, Haubold HJ (2002) On fractional kinetic equations. Astrophysics & Space Science 282:281–287

    Article  ADS  Google Scholar 

  • Saxena RK, Mathai AM, Haubold HJ (2004a) Unified fractional kinetic equation and a fractional diffusion equation. Astrophysics & Space Science 290:299–310

    Article  ADS  Google Scholar 

  • Schneider WR (1986) Stable distributions, Fox function representation and generalization. In: Albeverio S, Casati G, Merilini D (eds) Stochastic processes in classical and quantum systems, Lecture Notes in Physics, Vol 262. Springer, Berlin, pp 497–511

    Chapter  Google Scholar 

  • Schneider WR, Wyss W (1989) Fractional diffusion and wave equations. J Math Phys 30:134–144

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sear (1964) Astrophys J 140:477

    Google Scholar 

  • Srivastava HM, Karlsson PW (1985) Multiple Gaussian Hypergeometric Series. Wiley Halsted, New York and Ellis Horwood, Chichester

    MATH  Google Scholar 

  • Wilhelmsson H, Lazzaro E (2001) Reaction-diffusion problems in the physics and hot plasmas. Institute of Physics, Bristol and Philadelphia

    Book  Google Scholar 

  • Zaslavsky GM (1994) Fractional kinetic equation for Hamiltonian chaos. Physica D 76(1-3): 110–122

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Haubold .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mathai, A.M., Saxena, R.K., Haubold, H.J. (2010). Applications in Astrophysics Problems. In: The H-Function. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0916-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0916-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0915-2

  • Online ISBN: 978-1-4419-0916-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics