Skip to main content

Animal Models of Schizophrenia: Focus on Hippocampal Disruption of Dopamine System Regulation

  • Chapter
  • First Online:
Advances in Schizophrenia Research 2009
  • 1522 Accesses

Abstract

For the past 40 years, the dominant hypothesis of schizophrenia has centered on a disruption of dopamine (DA) signaling. This is based on a variety of evidence, including the finding that drugs that release DA will cause psychosis in normal individuals and exacerbate the positive symptoms of schizophrenia in patients (Angrist et al., 1974, 1980), and drugs that are effective antipsychotic drugs block DA receptors (Carlsson and Lindqvist, 1963) and are given at doses that are selective for D2 receptor blockade (Seeman et al., 1976; Kapur and Remington, 2001). However, a careful analysis of this information suggests that a simple hyperdopaminergic state may not adequately explain schizophrenia pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie ED, Jacobs BL (1987) Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. Journal of Neuroscience 7:2837–2843.

    CAS  PubMed  Google Scholar 

  • Abercrombie ED, Keller RW, Jr, Zigmond MJ (1988) Characterization of hippocampal norepinephrine release as measured by microdialysis perfusion: pharmacological and behavioral studies. Neuroscience 27:897–904.

    CAS  PubMed  Google Scholar 

  • Amat J, Paul E, Zarza C, Watkins LR, Maier SF (2006) Previous experience with behavioral control over stress blocks the behavioral and dorsal raphe nucleus activating effects of later uncontrollable stress: role of the ventral medial prefrontal cortex. Journal of Neuroscience 26:13264–13272.

    CAS  PubMed  Google Scholar 

  • Angrist B, Rotrosen J, Gershon S (1980) Differential effects of amphetamine and neuroleptics on negative vs. positive symptoms in schizophrenia. Psychopharmacology 72:17–19.

    CAS  PubMed  Google Scholar 

  • Angrist B, Sathananthan G, Wilk S, Gershon S (1974) Amphetamine psychosis: behavioral and biochemical aspects. Journal of Psychiatric Research 11:13–23.

    CAS  PubMed  Google Scholar 

  • Arnold SE (1997) The medial temporal lobe in schizophrenia. Journal of Neuropsychiatry & Clinical Neurosciences 9:460–470.

    CAS  Google Scholar 

  • Badiani A, Oates MM, Fraioli S, Browman KE, Ostrander MM, Xue CJ, Wolf ME, Robinson TE (2000) Environmental modulation of the response to amphetamine: dissociation between changes in behavior and changes in dopamine and glutamate overflow in the rat striatal complex. Psychopharmacology (Berl) 151:166–174.

    CAS  Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience 8:45–56.

    CAS  PubMed  Google Scholar 

  • Basar-Eroglu C, Brand A, Hildebrandt H, Karolina Kedzior K, Mathes B, Schmiedt C (2007) Working memory related gamma oscillations in schizophrenia patients. International Journal of Psychophysiology 64:39–45.

    PubMed  Google Scholar 

  • Benes FM (1997) The role of stress and dopamine–GABA interactions in the vulnerability for schizophrenia. Journal of Psychiatric Research 31:257–275.

    CAS  PubMed  Google Scholar 

  • Berger PA, Faull KF, Kilkowski J, Anderson PJ, Kraemer H, Davis KL, Barchas JD (1980) CSF monoamine metabolites in depression and schizophrenia. American Journal of Psychiatry 137:174–180.

    CAS  PubMed  Google Scholar 

  • Berman KF, Ostrem JL, Randolph C, Gold J, Goldberg TE, Coppola R, Carson RE, Herscovitch P, Weinberger DR (1995) Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: a positron emission tomography study. Neuropsychologia 33:1027–1046.

    CAS  PubMed  Google Scholar 

  • Bertolino A, Knable MB, Saunders RC, Callicot JH, Kolachana B, Mattay VS, Bachevalier J, Frank JA, Egan M, Weinberger DR (1999) The relationship between dorsolateral prefrontal N-acetylaspartate measures and striatal dopamine activity in schizophrenia. Biological Psychiatry 45:660–667.

    CAS  PubMed  Google Scholar 

  • Bowers MB (1974) Central dopamine turnover in schizophrenic syndromes. Archives of General Psychiatry 31:50–54.

    PubMed  Google Scholar 

  • Bremner JD, Staib LH, Kaloupek D, Southwick SM, Soufer R, Charney DS (1999) Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study. Biological Psychiatry 45:806–816.

    CAS  PubMed  Google Scholar 

  • Bunney BS, Grace AA (1978) Acute and chronic haloperidol treatment: comparison of effects on nigral dopaminergic cell activity. Life Sciences 23:1715–1727.

    CAS  PubMed  Google Scholar 

  • Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929.

    CAS  PubMed  Google Scholar 

  • Carboni E, Imperato A, Perezzani L, Di Chiara G (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28:653–661.

    CAS  PubMed  Google Scholar 

  • Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacologica et Toxicologica 20:140–144.

    CAS  PubMed  Google Scholar 

  • Chiodo LA, Bunney BS (1983) Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. Journal of Neuroscience 3:1607–1619.

    CAS  PubMed  Google Scholar 

  • Cho RY, Konecky RO, Carter CS (2005) Impairments in gamma band syncrhonization and context processing in schizophrenia. Schizophrenia Bulletin 31:450–451.

    Google Scholar 

  • Chung YS, Kang DH, Shin NY, Yoo SY, Kwon JS (2008) Deficit of theory of mind in individuals at ultra-high-risk for schizophrenia. Schizophrenia Research 99:111–118.

    PubMed  Google Scholar 

  • Conrad CD, LeDoux JE, Magarinos AM, McEwen BS (1999) Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behavioral Neuroscience 113:902–913.

    CAS  PubMed  Google Scholar 

  • Crombag HS, Badiani A, Maren S, Robinson TE (2000) The role of contextual versus discrete drug-associated cues in promoting the induction of psychomotor sensitization to intravenous amphetamine. Behavioural Brain Research 116:1–22.

    CAS  PubMed  Google Scholar 

  • Del Rio J, Fuentes JA (1969) Further studies on the antagonism of stereotyped behaviour induced by amphetamine. European Journal of Pharmacology 8:73–78.

    CAS  PubMed  Google Scholar 

  • Drevets WC (2003) Neuroimaging abnormalities in the amygdala in mood disorders. Annals of the New York Academy of Sciences 985:420–444.

    PubMed  Google Scholar 

  • Fanselow MS (2000) Contextual fear, gestalt memories, and the hippocampus. Behavioural Brain Research 110:73–81.

    CAS  PubMed  Google Scholar 

  • Flagstad P, Mork A, Glenthoj BY, van Beek J, Michael-Titus AT, Didriksen M (2004) Disruption of neurogenesis on gestational day 17 in the rat causes behavioral changes relevant to positive and negative schizophrenia symptoms and alters amphetamine-induced dopamine release in nucleus accumbens. Neuropsychopharmacology 29:2052–2064.

    CAS  PubMed  Google Scholar 

  • Floresco SB, Todd CL, Grace AA (2001) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. Journal of Neuroscience 21:4915–4922.

    CAS  PubMed  Google Scholar 

  • Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nature Neuroscience 6:968–973.

    CAS  PubMed  Google Scholar 

  • Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, Lebeau FE, Bannerman DM, Rozov A, Whittington MA, Traub RD, Rawlins JN, Monyer H (2007) Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53:591–604.

    CAS  PubMed  Google Scholar 

  • Gallinat J, Winterer G, Herrmann CS, Senkowski D (2004) Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clinical Neurophysiology 115:1863–1874.

    PubMed  Google Scholar 

  • Garner B, Pariante CM, Wood SJ, Velakoulis D, Phillips L, Soulsby B, Brewer WJ, Smith DJ, Dazzan P, Berger GE, Yung AR, van den Buuse M, Murray R, McGorry PD, Pantelis C (2005) Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis. Biological Psychiatry 58:417–423.

    PubMed  Google Scholar 

  • Goldberg TE, Torrey EF, Berman KF, Weinberger DR (1994) Relations between neuropsychological performance and brain morphological and physiological measures in monozygotic twins discordant for schizophrenia. Psychiatry Research 55:51–61.

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1999) The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biological Psychiatry 46:650–661.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Hernandez JA, Cedeno I, Pita-Alcorta C, Galan L, Aubert E, Figueredo-Rodriguez P (2003) Induced oscillations and the distributed cortical sources during the Wisconsin card sorting test performance in schizophrenic patients: new clues to neural connectivity. International Journal of Psychophysiology 48:11–24.

    CAS  PubMed  Google Scholar 

  • Gourevitch R, Rocher C, Le Pen G, Krebs MO, Jay TM (2004) Working memory deficits in adult rats after prenatal disruption of neurogenesis. Behavioral Pharmacology 15:287–292.

    CAS  Google Scholar 

  • Grace AA (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24.

    CAS  PubMed  Google Scholar 

  • Grace AA (2000) Gating of information flow within the limbic system and the pathophysiology of schizophrenia. Brain Research – Brain Research Reviews 31:330–341.

    CAS  PubMed  Google Scholar 

  • Grace AA (2004) Developmental dysregulation of the dopamine system and the pathophysiology of schizophrenia. In: Keshavan MS, Kennedy, JL, Murray, RM, (eds) Neurodevelopment and Schizophrenia, pp 273–294. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Grace AA, Bunney BS, Moore H, Todd CL (1997) Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends in Neurosciences 20:31–37.

    CAS  PubMed  Google Scholar 

  • Grace AA, Moore H (1998) Regulation of information flow in the nucleus accumbens: a model for the pathophysiology of schizophrenia. In: Lenzenweger MF, Dworkin RH, (eds) Origins and Development of Schizophrenia: Advances in Experimental Psychopathology, pp 123–157. Washington, DC: American Psychological Association Press.

    Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122(Pt 4):593–624.

    PubMed  Google Scholar 

  • Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. Journal of Neuroscience 23:6315–6326.

    CAS  PubMed  Google Scholar 

  • Heckers S, Heinsen H, Geiger B, Beckmann H (1991) Hippocampal neuron number in schizophrenia. A stereological study. Archives of General Psychiatry 48:1002–1008.

    CAS  PubMed  Google Scholar 

  • Heckers S, Rauch SL, Goff D, Savage CR, Schacter DL, Fischman AJ, Alpert NM (1998) Impaired recruitment of the hippocampus during conscious recollection in schizophrenia. Nature Neuroscience 1:318–323.

    CAS  PubMed  Google Scholar 

  • Janssen PA, Niemegeers CJ, Schellekens KH (1965) Is it possible to predict the clinical effects of neuroleptic drugs (Major Tranquillizers) from animal data? I. “Neuroleptic Activity Spectra” for rats. Arzneimittelforschung 15:104–117.

    CAS  PubMed  Google Scholar 

  • Jarrard LE (1995) What does the hippocampus really do? Behavioural Brain Research 71:1–10.

    CAS  PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. American Journal of Psychiatry 148:1301–1308.

    CAS  PubMed  Google Scholar 

  • Johnston MV, Carman AB, Coyle JT (1981) Effects of fetal treatment with methylazoxymethanol acetate at various gestational dates on the neurochemistry of the adult neocortex of the rat. Journal of Neurochemistry 36:124–128.

    CAS  PubMed  Google Scholar 

  • Johnstone EC, Crow TJ, Frith CD, Carney MWP, Price JS (1978) Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet April 22:848–851.

    Google Scholar 

  • Johnstone EC, Lawrie SM, Cosway R (2002) What does the Edinburgh High-Risk Study tell us about schizophrenia? American Journal of Medical Genetics (Neuropsychiatric Genetics) 114:906–912.

    Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Research Brain Research Reviews 16:223–244.

    CAS  PubMed  Google Scholar 

  • Kapur S, Remington G (2001) Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biological Psychiatry 50:873–883.

    CAS  PubMed  Google Scholar 

  • Kegeles LS, Shungu DC, Anjilvel S, Chan S, Ellis SP, Xanthopoulos E, Malaspina D, Gorman JM, Mann JJ, Laruelle M, Kaufmann CA (2000) Hippocampal pathology in schizophrenia: magnetic resonance imaging and spectroscopy studies. Psychiatry Research 98:163–175.

    CAS  PubMed  Google Scholar 

  • Krieckhaus EE, Donahoe JW, Morgan MA (1992) Paranoid schizophrenia may be caused by dopamine hyperactivity of CA1 hippocampus. Biological Psychiatry 31:560–570.

    CAS  PubMed  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6:869–872.

    CAS  PubMed  Google Scholar 

  • Lahti AC, Weiler MA, Holcomb HH, Tamminga CA, Carpenter WT, McMahon R (2006) Correlations between rCBF and symptoms in two independent cohorts of drug-free patients with schizophrenia. Neuropsychopharmacology 31:221–230.

    PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, Van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proceedings of the National Academy of Science 93:9235–9240.

    Google Scholar 

  • Laviolette SR, Grace AA, Laviolette SR, Grace AA (2006) Cannabinoids potentiate emotional learning plasticity in neurons of the medial prefrontal cortex through basolateral amygdala inputs. Journal of Neuroscience 26:6458–6468.

    CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annual Review of Neuroscience 23:155–184.

    CAS  PubMed  Google Scholar 

  • Lencz T, Smith CW, McLaughlin D, Auther A, Nakayama E, Hovey L, Cornblatt BA (2006) Generalized and specific neurocognitive deficits in prodromal schizophrenia. Biological Psychiatry 59:863–871.

    PubMed  Google Scholar 

  • Lewis DA, Cruz DA, Melchitzky DS, Pierri JN (2001) Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: evidence for fewer projections from the thalamus. American Journal of Psychiatry 158:1411–1422.

    CAS  PubMed  Google Scholar 

  • Lewis DA, Volk DW, Hashimoto T (2004) Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction. Psychopharmacology (Berl) 174:143–150.

    CAS  Google Scholar 

  • Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75.

    CAS  PubMed  Google Scholar 

  • Lipski WJ, Grace AA (2008) Neurons in the ventral subiculum are activated by noxious stimuli and are modulated by noradrenergic afferents. Program No 1951, 2008 Neuroscience Meeting Planner Washington, DC; Society for Neuroscience, 2008 Online.

    Google Scholar 

  • Lodge DJ, Behrens MM, Grace AA (2009) A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. Journal of Neuroscience (Online) 29:2344–2354.

    CAS  Google Scholar 

  • Lodge DJ, Grace AA (2006) The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuopsychopharmacology 31:1356–1361.

    CAS  Google Scholar 

  • Lodge DJ, Grace AA (2008) Amphetamine activation of hippocampal drive of mesolimbic dopamine neurons: a mechanism of behavioral sensitization. Journal of Neuroscience 28:7876–7882.

    CAS  PubMed  Google Scholar 

  • Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69:89–98.

    CAS  PubMed  Google Scholar 

  • Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophrenia Research 60:285–298.

    PubMed  Google Scholar 

  • Maren S (1999) Neurotoxic or electrolytic lesions of the ventral subiculum produce deficits in the acquisition and expression of Pavlovian fear conditioning in rats. Behavioural Neuroscience 113:283–290.

    CAS  Google Scholar 

  • Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nature Reviews in Neuroscience 5:844–852.

    CAS  Google Scholar 

  • McDonald C, Murray RM (2000) Early and late environmental risk factors for schizophrenia. Brain Research Brain Research Reviews 31:130–137.

    CAS  PubMed  Google Scholar 

  • Medoff DR, Holcomb HH, Lahti AC, Tamminga CA (2001) Probing the human hippocampus using rCBF: contrasts in schizophrenia. Hippocampus 11:543–550.

    CAS  PubMed  Google Scholar 

  • Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF, Weinberger DR, Berman KF (2005) Regionally specific disturbance of dorsolateral prefrontal–hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry 62:379–386.

    PubMed  Google Scholar 

  • Moore H, Grace AA (1997) Anatomical changes in limbic structures produced by methylazoxymethanol acetate (MAM) during brain development are associated with changes in physiological interactions among afferents to the nucleus accumbens. Society for Neuroscience Abstracts 23:2378.

    Google Scholar 

  • Moore H, Jentsch JD, Ghajarnia M, Geyer MA, Grace AA (2006) A neurobehavioral systems analysis of adult rats exposed to methylazoxymethanol acetate on E17: implications for the neuropathology of schizophrenia. Biological Psychiatry 60:253–264.

    CAS  PubMed  Google Scholar 

  • Morey RA, Inan S, Mitchell TV, Perkins DO, Lieberman JA, Belger A (2005) Imaging frontostriatal function in ultra-high-risk, early, and chronic schizophrenia during executive processing. Archives of General Psychiatry 62:254–262.

    PubMed  Google Scholar 

  • Nordahl TE, Kusubov N, Carter C, Salamat S, Cummings AM, O’Shora-Celaya L, Eberling J, Robertson L, Huesman RH, Jagust W, Budinger TF (1996) Temporal lobe metabolic differences in medication-free outpatients with schizophrenia via the PET-600. Neuropsychopharmacology 15:541–554.

    CAS  PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1995) Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. Journal of Neuroscience 15:3622–3639.

    PubMed  Google Scholar 

  • O’Donnell P, Grace AA (1998) Phencyclidine interferes with the hippocampal gating of nucleus accumbens neuronal activity in vivo. Neuroscience 87:823–830.

    PubMed  Google Scholar 

  • Pacchioni AM, Gioino G, Assis A, Cancela LM (2002) A single exposure to restraint stress induces behavioral and neurochemical sensitization to stimulating effects of amphetamine: involvement of NMDA receptors. Annals of the New York Academy of Sciences 965:233–246.

    CAS  PubMed  Google Scholar 

  • Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, McGuire PK (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288.

    PubMed  Google Scholar 

  • Phillips LJ, Velakoulis D, Pantelis C, Wood S, Yuen HP, Yung AR, Desmond P, Brewer W, McGorry PD (2002) Non-reduction in hippocampal volume is associated with higher risk of psychosis. Schizophrenia Research 58:145–158.

    PubMed  Google Scholar 

  • Pickar D, Labarca R, Doran AR, Wolkowitz OM, Roy A, Breier A, Linnoila M, Paul SM (1986) Longitudinal measurement of plasma homovanillic acid levels in schizophrenic patients. Archives of General Psychiatry 43:669–676.

    CAS  PubMed  Google Scholar 

  • Pickar D, Labarca R, Linnoila M, Roy A, Hommer D, Everett D, Paul SM (1984) Neuroleptic-induced decrease in plasma homovanillic acid and antipsychotic activity in schizophrenic patients. Science 225:954–957.

    CAS  PubMed  Google Scholar 

  • Pierce RC, Kalivas PW (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Research Brain Research Reviews 25:192–216.

    CAS  PubMed  Google Scholar 

  • Pilowsky LS, Kerwin RW, Murray RM (1993) Schizophrenia: a neurodevelopmental perspective. Neuropsychopharmacology 9:83–91.

    CAS  PubMed  Google Scholar 

  • Post RM, Fink E, Carpenter WT, Jr, Goodwin FK (1975) Cerebrospinal fluid amine metabolites in acute schizophrenia. Archives of General Psychiatry 32:1063–1069.

    CAS  PubMed  Google Scholar 

  • Post RM, Rose H (1976) Increasing effects of repetitive cocaine administration in the rat. Nature 260:731–732.

    CAS  PubMed  Google Scholar 

  • Pukrop R, Schultze-Lutter F, Ruhrmann S, Brockhaus-Dumke A, Tendolkar I, Bechdolf A, Matuschek E, Klosterkotter J (2006) Neurocognitive functioning in subjects at risk for a first episode of psychosis compared with first- and multiple-episode schizophrenia. Journal of Clinical and Experimental Neuropsychology 28:1388–1407.

    PubMed  Google Scholar 

  • Randrup A, Munkvad I (1965) Special antagonism of amphetamine-induced abnormal behaviour. Inhibition of stereotyped activity with increase of some normal activities. Psychopharmacologia 7:416–422.

    CAS  PubMed  Google Scholar 

  • Rauch SL, Whalen PJ, Shin LM, McInerney SC, Macklin ML, Lasko NB, Orr SP, Pitman RK (2000) Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biological Psychiatry 47:769–776.

    CAS  PubMed  Google Scholar 

  • Rosenkranz JA, Grace AA (2002) Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature 417:282–287.

    CAS  PubMed  Google Scholar 

  • Rosenkranz JA, Grace AA (2003) Affective conditioning in the basolateral amygdala of anesthetized rats is modulated by dopamine and prefrontal cortical inputs. Annals of the New York Academy of Sciences 985:488–491.

    PubMed  Google Scholar 

  • Rosenkranz JA, Moore H, Grace AA (2003) The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. Journal of Neuroscience 23:11054–11064.

    CAS  PubMed  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of General Psychiatry 57:925–935.

    CAS  PubMed  Google Scholar 

  • Sapolsky RM, Uno H, Rebert CS, Finch CE (1990) Hippocampal damage associated with prolonged glucocorticoid exposure in primates. Journal of Neuroscience 10:2897–2902.

    CAS  PubMed  Google Scholar 

  • Schultz W (1998) The phasic reward signal of primate dopamine neurons. Advances in Pharmacology 42:686–690.

    CAS  PubMed  Google Scholar 

  • Seeman P (2002) Atypical antipsychotics: mechanism of action. Canadian Journal of Psychiatry 47:27–38.

    Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/ dopamine receptors. Nature 261:717–719.

    CAS  PubMed  Google Scholar 

  • Segal DS, Mandell AJ (1974) Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacology Biochemistry and Behavior 2:249–255.

    CAS  Google Scholar 

  • Serova LI, Nankova BB, Feng Z, Hong JS, Hutt M, Sabban EL (1999) Heightened transcription for enzymes involved in norepinephrine biosynthesis in the rat locus coeruleus by immobilization stress. Biological Psychiatry 45:853–862.

    CAS  PubMed  Google Scholar 

  • Shanks N, Zalcman S, Zacharko RM, Anisman H (1991) Alterations of central norepinephrine, dopamine and serotonin in several strains of mice following acute stressor exposure. Pharmacology, Biochemistry & Behavior 38:69–75.

    CAS  Google Scholar 

  • Sharp PE (1999) Complimentary roles for hippocampal versus subicular/entorhinal place cells in coding place, context, and events. Hippocampus 9:432–443.

    CAS  PubMed  Google Scholar 

  • Shenton ME, Kikinis R, Jolesz FA, Pollak SD, LeMay M, Wible CG, Hokama H, Martin J, Metcalf D, Coleman M, et al. (1992) Abnormalities of the left temporal lobe and thought disorder in schizophrenia. A quantitative magnetic resonance imaging study. New Engl Journal of Medicine 327:604–612.

    CAS  Google Scholar 

  • Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S, Seaward J, McKenna P, Chua SE, Schnorr L, et al. (1995) A functional neuroanatomy of hallucinations in schizophrenia. Nature 378:176–179.

    CAS  PubMed  Google Scholar 

  • Talamini LM, Ellenbroek B, Koch T, Korf J (2000) Impaired sensory gating and attention in rats with developmental abnormalities of the mesocortex. Implications for schizophrenia. Annals of the New York Academy of Sciences 911:486–494.

    CAS  PubMed  Google Scholar 

  • Talamini LM, Koch T, Luiten PG, Koolhaas JM, Korf J (1999) Interruptions of early cortical development affect limbic association areas and social behaviour in rats; possible relevance for neurodevelopmental disorders. Brain Research 847:105–120.

    CAS  PubMed  Google Scholar 

  • Thierry AM, Javoy F, Glowinski J, Kety SS (1968) Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I. Modifications of norepinephrine turnover. Journal of Pharmacology & Experimental Therapeutics 163:163–171.

    CAS  Google Scholar 

  • Thompson JL, Pogue-Geile MF, Grace AA (2004) The interactions among developmental pathology, dopamine, and stress as a model for the age of onset of schizophrenia symptomatology. Schizophrenia Bulletin 30:875–900.

    PubMed  Google Scholar 

  • Tsuang M (2000) Schizophrenia: genes and environment. Biological Psychiatry 47:210–220.

    CAS  PubMed  Google Scholar 

  • Tukker JJ, Fuentealba P, Hartwich K, Somogyi P, Klausberger T (2007) Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. Journal of Neuroscience 27:8184–8189.

    CAS  PubMed  Google Scholar 

  • Venables PH (1992) Hippocampal function and schizophrenia. Experimental psychological evidence. Annals of the New York Academy of Sciences 658:111–127.

    CAS  PubMed  Google Scholar 

  • Vezina P, Giovino AA, Wise RA, Stewart J (1989) Environment-specific cross-sensitization between the locomotor activating effects of morphine and amphetamine. Pharmacology Biochemistry and Behaviour 32:581–584.

    CAS  Google Scholar 

  • Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117.

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Berman KF (1996) Prefrontal function in schizophrenia: confounds and controversies. Philosophical Transactions of the Royal Society of London – Series B: Biological Sciences 351:1495–1503.

    CAS  PubMed  Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biological Psychiatry 50:825–844.

    CAS  PubMed  Google Scholar 

  • Weiss AP, Goff D, Schacter DL, Ditman T, Freudenreich O, Henderson D, Heckers S (2006) Fronto-hippocampal function during temporal context monitoring in schizophrenia. Biological Psychiatry 60:1268–1277.

    PubMed  Google Scholar 

  • West AR, Moore H, Grace AA (2002) Direct examination of local regulation of membrane activity in striatal and prefrontal cortical neurons in vivo using simultaneous intracellular recording and microdialysis. Journal of Pharmacology & Experimental Therapeutics 301:867–877.

    CAS  Google Scholar 

  • White FJ, Wang RY (1983) Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 221:1054–1057.

    CAS  PubMed  Google Scholar 

  • Zhang ZJ, Reynolds GP (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophrenia Research 55:1–10.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Grace .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Grace, A.A. (2010). Animal Models of Schizophrenia: Focus on Hippocampal Disruption of Dopamine System Regulation. In: Gattaz, W., Busatto, G. (eds) Advances in Schizophrenia Research 2009. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0913-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0913-8_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0912-1

  • Online ISBN: 978-1-4419-0913-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics