Skip to main content

Radiopharmaceuticals

  • Chapter
  • First Online:

Abstract

Several imaging modalities including computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, optical imaging, and gamma scintigraphy have been used to diagnose cancer. Although CT and MRI provide considerable anatomic information about the location and the extent of tumors, they do not adequately differentiate residual or recurrent tumors from edema, radiation necrosis, or gliosis. Ultrasound images provide information about local and regional morphology with blood flow. Although optical imaging showed promising results, its ability to detect deep tissue penetration was not well demonstrated. Radionuclide imaging modalities such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled compounds (Bar-Shalom et al. Semin Nucl Med 30:150–185, 2000; Plowman et al. Br J Neurosurg 11:525–532, 1997; Weber et al. Strahlenther Onkol 175:356, 1999). Beyond showing precisely where a tumor is and its size, shape, and viability, PET and SPECT are making it possible to “see” the molecular makeup of the tumor and its metabolic activity. Whereas PET and SPECT can provide a very accurate picture of metabolically active areas, their ability to show anatomic features is limited. As a result, new imaging modalities have begun to combine PET and SPECT images with CT scans for treatment planning. PET/CT and SPECT/CT scanners combine anatomic and functional images taken during a single procedure without having to reposition the patient between scans. To improve the diagnosis, prognosis, planning, and monitoring of cancer treatment, characterization of tumor tissue is extensively determined by development of more tumor-specific pharmaceuticals. Radiolabeled ligands as well as radiolabeled antibodies have opened a new era in scintigraphic detection of tumors and have undergone extensive preclinical development and evaluation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bar-Shalom R, Valdivia AY, Blaufox MD. PET imaging in oncology. Semin Nucl Med. 2000;30:150–85.

    Article  PubMed  CAS  Google Scholar 

  2. Plowman PN, Saunders CA, Maisey M. On the usefulness of brain PET scanning to the paediatric neuro-oncologist. Br J Neurosurg. 1997;11:525–32.

    Article  PubMed  CAS  Google Scholar 

  3. Weber WA, Avril N, Schwaiger M. Relevance of positron emission tomography (PET) in oncology. Strahlenther Onkol. 1999;175:356.

    Article  PubMed  CAS  Google Scholar 

  4. Lau CL, Harpole DH, Patz E. Staging techniques for lung cancer. Chest Surg Clin North Am. 2000;10(4): 781–801.

    CAS  Google Scholar 

  5. Schulte M, Brecht-Krauss D, Heymer B, et al. Grading of tumors and tumor like lesions of bone: evaluation by FDG PET. J Nucl Med. 2000;41(10):1695–701.

    PubMed  CAS  Google Scholar 

  6. Yutani K, Shiba E, Kusuoka H, et al. Comparison of FDG-PET with MIBI-SPECT in the detection of breast cancer and axillary lymph node metastasis. J Comput Assist Tomogr. 2000;24(2):274–80.

    Article  PubMed  CAS  Google Scholar 

  7. Franzius C, Sciuk J, Daldrup-Link HE, et al. FDG-PET for detection of osseous metastases from malignant primary bone tumors: comparison with bone scintigraphy. Eur J Nucl Med. 2000;27(9):1305–11.

    Article  PubMed  CAS  Google Scholar 

  8. Folpe AL, Lyles RH, Sprouse JT, et al. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res. 2000;6(4):1279–87.

    PubMed  CAS  Google Scholar 

  9. Meyer PT, Spetzger U, Mueller HD, et al. High F-18 FDG uptake in a low-grade supratentorial ganglioma: a positron emission tomography case report. Clin Nucl Med. 2000;25(9):694–7.

    Article  PubMed  CAS  Google Scholar 

  10. Franzius C, Sciuk J, Brinkschmidt C, et al. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med. 2000;25(11):874–81.

    Article  PubMed  CAS  Google Scholar 

  11. Carretta A, Landoni C, Melloni G, et al. 18-FDG positron emission tomography in the evaluation of malignant pleural diseases – a pilot study. Eur J Cardiothorac Surg. 2000;17(4):377–83.

    Article  PubMed  CAS  Google Scholar 

  12. Torre W, Garcia-Velloso MJ, Galbis J, et al. FDG-PET detection of primary lung cancer in a patient with an isolated cerebral metastasis. J Cardiovasc Surg. 2000;41(3):503–5.

    CAS  Google Scholar 

  13. Brunelle F. Noninvasive diagnosis of brain tumors in children. Childs Nerv Syst. 2000;16(10–11):731–4.

    Article  PubMed  CAS  Google Scholar 

  14. Mankoff DA, Dehdashti F, Shields AF. Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia. 2000;2:71.

    Article  PubMed  CAS  Google Scholar 

  15. Fitzgerald J, Parker JA, Danias PG. F-18 fluorodeoxyglucose SPECT for assessment of myocardial viability. J Nucl Cardiol. 2000;7(4):382–7.

    Article  PubMed  CAS  Google Scholar 

  16. Schwarz A, Kuwert T. Nuclear medicine diagnosis in diseases of the central nervous system. Radiology. 2000;40(10):858–62.

    Article  CAS  Google Scholar 

  17. Roelcke U, Leenders KL. PET in neuro-oncology. J Cancer Res Clin Oncol. 2001;127(1):2–8.

    Article  PubMed  CAS  Google Scholar 

  18. Brock CS, Meikle SR, Price P. Does 18F-fluorodeoxyglucose metabolic imaging of tumors benefit oncology? Eur J Nucl Med. 1997;24:691–705.

    PubMed  CAS  Google Scholar 

  19. Syrota A, Comar D, Cerf M, et al. [11]C-methionine pancreatic scanning with positron emission computed tomography. J Nucl Med. 1979;20:778–81.

    PubMed  CAS  Google Scholar 

  20. Syrota A, Duquesnoy N, Dasaf A, et al. The role of positron emission tomography in the detection of pancreatic disease. Radiology. 1982;143:249–53.

    PubMed  CAS  Google Scholar 

  21. Kubota K, Yamada K, Fukuda H, et al. Tumor detection with carbon-11 labeled amino acid. Eur J Nucl Med. 1984;9:136–40.

    Article  PubMed  CAS  Google Scholar 

  22. Hagenfeldt L, Venizelos N, Bjerkenstedt L, et al. Decreased tyrosine transport in fibroblasts from schizophrenic patients. Life Sci. 1987;41:2749–57.

    Article  PubMed  CAS  Google Scholar 

  23. Tisljar U, Kloster G, Stocklin G. Accumulation of radioiodinated L-alpha-methyltyrosine in pancreas of mice: concise communication. J Nucl Med. 1979;20:973–6.

    PubMed  CAS  Google Scholar 

  24. Kloss G, Leven M. Accumulation of radioiodinated tyrosine derivatives in the adrenal medulla and in melanomas. Eur J Nucl Med. 1979;4:179–86.

    Article  PubMed  CAS  Google Scholar 

  25. Langen KJ, Coenen HH, Roosen N, et al. SPECT studies of brain tumors with L-3-[123I]-Iodo-alpha-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J Nucl Med. 1990;31:281–6.

    PubMed  CAS  Google Scholar 

  26. Tomiyoshi K, Hirano T, Inoue T, et al. Positron emission tomography for evaluation of dopaminergic function using a neurotransmitter analog L-18F-m-tyrosine in monkey brain. Bioimages. 1996;4(1):1–7.

    Article  CAS  Google Scholar 

  27. Wienhard K, Herholz K, Coenen HH, et al. Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine. J Nucl Med. 1991;32:1338–46.

    PubMed  CAS  Google Scholar 

  28. Coenen HH, Kling P, Stocklin G, et al. Metabolism of L2-18F-fluorotyrosine, new PET tracer for protein synthesis. J Nucl Med. 1989;301:367–1372.

    Google Scholar 

  29. Ishiwata K, Valvurg W, Elsigna PH, et al. Metabolic studies with L-11C-tyrosine for the investigation of a kinetic model of measuring protein synthesis rate with PET. J Nucl Med. 1988;29:524–9.

    PubMed  CAS  Google Scholar 

  30. Bolster JM, Valburg W, Paans AMJ, et al. Carbon-11 labeled tyrosine to study tumor metabolism by positron emission tomography (PET). Eur J Nucl Med. 1986;12:321–4.

    Article  PubMed  CAS  Google Scholar 

  31. Dejesus OT, Sunderland JJ, Nicles R, et al. Synthesis of radiofluorinated analogs of m-tyrosine as potential l-dopa tracers via direct reaction with acetylhypofluorite. Appl Radiat Isot. 1990;41(5):433–7.

    Article  CAS  Google Scholar 

  32. Tang G, Wang M, Tang X, et al. Pharmacokinetics and radiation dosimetry estimation of O-(2-[18 F]fluoroethyl)-l-tyrosine as oncologic PET tracer. Appl Radiat Isot. 2003;58(2):219–25.

    Article  PubMed  CAS  Google Scholar 

  33. Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-l-tyrosine. Appl Radiat Isot. 2002;57(6):853–6.

    Article  PubMed  CAS  Google Scholar 

  34. Rau FC, Weber WA, Wester HJ, et al. O-(2-[(18)F]Fluoroethyl)-l-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. Eur J Nucl Med Mol Imaging. 2002;29(8):1039–46.

    Article  PubMed  CAS  Google Scholar 

  35. Fernandez MD, Burn JI, Sauven PD, et al. Activated estrogen receptors in breast cancer and response to endocrine therapy. Eur J Cancer Clin Oncol. 1984;20:41–6.

    Article  PubMed  CAS  Google Scholar 

  36. McGuire AH, Dehdashti F, Siegel BA, et al. Positron tomographic assessment of 16-alpha-[18F]fluoro-17-beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med. 1991;32:1526–31.

    PubMed  CAS  Google Scholar 

  37. McManaway ME, Jagoda EM, Kasid A, et al. [125I]17-beta-iodovinyl-11-beta-methoxyestradiol: interaction in vivo with ERS in hormone independent MCF-7 human breast cancer transfected with V-ras H oncogene. Cancer Res. 1987;47:2945–8.

    PubMed  CAS  Google Scholar 

  38. Jagoda EM, Gibson RE, Goodgold H, et al. [125I]17-Iodovinyl-11-beta-methoxyestradiol: in vivo and in vitro properties of a high affinity estrogen-receptor radiopharmaceutical. J Nucl Med. 1984;25:472–7.

    PubMed  CAS  Google Scholar 

  39. Hamm JT, Allegra JC. Hormonal therapy for cancer. In: Witts RE, editor. Manual of oncologic therapeutics. New York: Lippincott; 1991. p. 122–6.

    Google Scholar 

  40. Wittliff JL. Steroid-hormone receptor in breast cancer. Cancer Res. 1984;53:630–43.

    CAS  Google Scholar 

  41. Rasey JS, Nelson NJ, Chin L, et al. Characterization of the binding of labeled fluoromisonidazole in cells in vitro. Radiat Res. 1990;122:301–8.

    Article  PubMed  CAS  Google Scholar 

  42. Cherif A, Yang DJ, Tansey W, et al. Synthesis of [18F]fluoromisonidazole. Pharm Res. 1994;11:466–9.

    Article  PubMed  CAS  Google Scholar 

  43. Hwang DR, Dence CS, Bonasera TA, et al. No-carrier-added synthesis of 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol. A potential PET agent for detecting hypoxic but viable tissues. Int J Radiat Appl Instrum A. 1989;40:117–26.

    Article  CAS  Google Scholar 

  44. Jerabeck PA, Patrick TB, Kilbourn D, et al. Synthesis and biodistribution of 18F-labeled fluoronitroimidazoles: potential in vivo markers of hypoxic tissue. Appl Radiat Isot. 1986;37:599–605.

    Article  Google Scholar 

  45. Parliament MB, Chapman JD, Urtasun RC, et al. Noninvasive assessment of tumor hypoxia with 123I-iodoazomycin arabinoside: preliminary report of a clinical study. Br J Cancer. 1992;65:90–5.

    Article  PubMed  CAS  Google Scholar 

  46. Valk PET, Mathis CA, Prados MD, et al. Hypoxia in human gliomas: demonstration by PET with [18F]fluoromisonidazole. J Nucl Med. 1992;33:2133–7.

    PubMed  CAS  Google Scholar 

  47. Martin GV, Caldwell JH, Rasey JS, et al. Enhanced binding of the hypoxic cell marker [18F]fluoromisonidazole in ischemic myocardium. Nucl Med. 1989;30:194–201.

    CAS  Google Scholar 

  48. Martin GV, Cardwell JH, Graham MM, et al. Nonivasive detection of hypoxic myocardium using [18F]fluoromisonidazole and PET. J Nucl Med. 1992;33:2202–8.

    PubMed  CAS  Google Scholar 

  49. Yeh SH, Liu RS, Hu HH, et al. Ischemic penumbra in acute stroke: demonstration by PET with fluorine-18 fluoromisonidazole. J Nucl Med. 1994;35(5):205. abst.

    CAS  Google Scholar 

  50. Yeh SH, Liu RS, Wu LC, et al. Fluorine-18 fluoromisonidazole tumour to muscle retention ratio for the detection of hypoxia in nasopharyngeal carcinoma. Eur J Nucl Med. 1996;23(10):1378–83.

    Article  PubMed  CAS  Google Scholar 

  51. Liu RS, Yeh SH, Chang CP, et al. Detection of odontogenic infections by [F-18]fluoromisonidazole. J Nucl Med. 1994;35(5):113. abst.

    Google Scholar 

  52. Yang DJ, Wallace S, Cherif A, et al. Development of F-18-labeled fluoroerythronitroimidazole as a PET agent for imaging tumor hypoxia. Radiology. 1995;194:795–800.

    PubMed  CAS  Google Scholar 

  53. Cherif A, Wallace S, Yang DJ, et al. Development of new markers for hypoxic cells: [131I]iodomisonidazole and [131I]iodoerythronitroimidazole. J Drug Target. 1996;4(1):31–9.

    Article  PubMed  CAS  Google Scholar 

  54. Inoue T, Yang DJ, Wallace S, et al. Evaluation of [131I]iodoerythronitroimidazole as a predictor for the ­radiosensitizing effect. Anticancer Drugs. 1996;7(8):858–65.

    Article  PubMed  CAS  Google Scholar 

  55. Podo F. Tumor phospholipid metabolism. NMR Biomed. 1999;12:413–39.

    Article  PubMed  CAS  Google Scholar 

  56. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med. 1998;39:990–5.

    PubMed  CAS  Google Scholar 

  57. Hara T, Kosaka N, Shinoura N, et al. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med. 1997;38:842–7.

    PubMed  CAS  Google Scholar 

  58. Hara T, Kosaka N, Kishi H, et al. Imaging of brain tumor, lung cancer, esophagus cancer, colon cancer, prostate cancer, and bladder cancer with [C-11]choline. J Nucl Med. 1997;38:250P.

    Google Scholar 

  59. Kotzerke J, Prang J, Neumaier B, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med. 2000;27:1415–9.

    Article  PubMed  CAS  Google Scholar 

  60. DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42(12):1805–14.

    PubMed  CAS  Google Scholar 

  61. Price DT, Coleman RE, Liao RP, et al. Comparison of [18F]fluorocholine and [18F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol. 2002;168(1):273–80.

    Article  PubMed  Google Scholar 

  62. DeGrado TR, Reiman RE, Price DT, et al. Pharmacokinetics and radiation dosimetry of 18 F-fluorocholine. J Nucl Med. 2002;43(1):92–6.

    PubMed  CAS  Google Scholar 

  63. Haberkorn U, Khazaie K, Morr I, et al. Ganciclovir uptake in human mammary carcinoma cells expressing herpes simplex virus thymidine kinase. Nucl Med Biol. 1998;25:367–73.

    Article  PubMed  CAS  Google Scholar 

  64. Gambhir SS, Barrio JR, Wu L, et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med. 1998;39:2003–11.

    PubMed  CAS  Google Scholar 

  65. Gambhir SS, Barrio JR, Phelps ME, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci USA. 1999;96:2333–8.

    Article  PubMed  CAS  Google Scholar 

  66. Namavari M, Barrio JR, Toyokuni T, et al. Synthesis of 8-[18F]fluoroguanine derivatives: in vivo probes for imaging gene expression with positron emission tomography. Nucl Med Biol. 2000;27:157–62.

    Article  PubMed  CAS  Google Scholar 

  67. Gambhir SS, Bauer E, Black ME, et al. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA. 2000;97:2785–90.

    Article  PubMed  CAS  Google Scholar 

  68. Iyer M, Barrio JR, Namavari M, et al. 8-[18F]Fluoropenciclovir: an improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using PET. J Nucl Med. 2001;42:96–105.

    PubMed  CAS  Google Scholar 

  69. Alauddin MM, Conti PS, Mazza SM, et al. 9-[(3-[18F]-Fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG): a potential imaging agent of viral infection and gene therapy using PET. Nucl Med Biol. 1996;23:787–92.

    Article  PubMed  CAS  Google Scholar 

  70. Alauddin MM, Shahinian A, Kundu RK, et al. Evaluation of 9-[(3-18F- fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors. Nucl Med Biol. 1999;26:371–6.

    Article  PubMed  CAS  Google Scholar 

  71. Alauddin MM, Conti PS. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3-hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol. 1998;25:175–80.

    Article  PubMed  CAS  Google Scholar 

  72. Yaghoubi S, Barrio JR, Dahlbom M, et al. Human pharmacokinetic and dosimetry studies of [18F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med. 2001;42:1225–34.

    PubMed  CAS  Google Scholar 

  73. Yang DJ, Cherif A, Tansey W, et al. N, N-diethylfluoromethyltamoxifen: synthesis assignment of 1H and 13C spectra and receptor assay. Eur J Med Chem. 1992;27:919–24.

    Article  CAS  Google Scholar 

  74. Yang D, Tewson T, Tansey W, et al. Halogenated ­analogs of tamoxifen: synthesis, receptor assay and inhibition of MCF7 cells. J Pharm Sci. 1992;81: 622–5.

    Article  PubMed  CAS  Google Scholar 

  75. Kim CG, Yang DJ, Kim EE, et al. Assessment of tumor cell proliferation using [18F]fluorode-oxyadenosine and [18F]fluoroethyluracil. J Pharm Sci. 1996;85(3):339–44.

    Article  PubMed  CAS  Google Scholar 

  76. Cherif A, Yang DJ, Tansey W, et al. Radiosynthesis and biodistribution studies of [F-18]fluoroadenosine and [I-131]-5-iodo-2′-O-methyl-uridine for the assessment of tumor proliferation rate. Pharm Res. 1995;12(9):128.

    Google Scholar 

  77. Yang D, Wallace S. High affinity tamoxifen derivatives and uses thereof. U.S. Patent no 5,192,525; 1993.

    Google Scholar 

  78. Yang D, Wallace S, Wright KC, et al. Imaging of estrogen receptors with PET using 18F-fluoro analogue of tamoxifen. Radiology. 1992;182:185–6.

    Google Scholar 

  79. Yang DJ, Kuang L-R, Cherif A, et al. Synthesis of 18F-alanine and 18F-tamoxifen for breast tumor imaging. J Drug Target. 1993;1:259–67.

    Article  PubMed  CAS  Google Scholar 

  80. Yang DJ, Li C, Kuang L-R, et al. Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues. Life Sci. 1994;55(1):53–67.

    Article  PubMed  CAS  Google Scholar 

  81. Yang DJ, Wallace S. High affinity halogenated tamoxifen derivatives and uses thereof. U.S. Patent no 5,219,548; 1993.

    Google Scholar 

  82. Inoue T, Kim EE, Wallace S, et al. Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study. Cancer Biother Radiopharm. 1996;11(4):235–45.

    Article  PubMed  CAS  Google Scholar 

  83. Inoue T, Kim EE, Wallace S, et al. Preliminary study of cardiac accumulation of F-18 fluorotamoxifen in patients with breast cancer. Clin Imaging. 1997;21(5):332–6.

    Article  PubMed  CAS  Google Scholar 

  84. Hanson RN, Seitz DE. Tissue distribution of the radiolabeled antiestrogen [125I]iodotamoxifen. Int J Nucl Med Biol. 1982;9:105–7.

    Article  PubMed  CAS  Google Scholar 

  85. Ram S, Spicer LD. Radioiodination of tamoxifen. J Label Compd Radiopharm. 1989;27:661–8.

    Article  CAS  Google Scholar 

  86. Kangas L, Nieminen A-L, Blanco G, et al. A new triphenylethylene, FC-1157a, antitumor effects. Cancer Chemother Pharmacol. 1986;17:109–13.

    Article  PubMed  CAS  Google Scholar 

  87. Kallio S, Kangas L, Blanco G, et al. A new triphenylethylene, FC-1157a, hormonal effects. Cancer Chemother Pharmacol. 1986;17:103–8.

    Article  PubMed  CAS  Google Scholar 

  88. Kawai G, Yamamoto Y, Kamimura T, et al. Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2′-hydroxyl group. Biochemistry. 1992;31:1040–5.

    Article  PubMed  CAS  Google Scholar 

  89. Uesugi S, Kaneyasu T, Ikehara M. Synthesis and properties of ApU analogues containing 2′-halo-2′-deoxyadenosine. Effect of 2′ substituents on oligonucleotide conformation. Biochemistry. 1982;21: 5870–7.

    Article  PubMed  CAS  Google Scholar 

  90. Ikehara M, Miki H. Studies of nucleosides and nucleotides. Cyclonucleosides. Synthesis and properties of 2′-halogeno-2′-deoxyadenosines. Chem Pharm Bull. 1978;26:2449–53.

    Article  CAS  Google Scholar 

  91. Inubushi M, Wu JC, Gambhir SS, et al. Positron-emission tomography reporter gene expression imaging in rat myocardium. Circulation. 2003;107(2):326–32.

    Article  PubMed  CAS  Google Scholar 

  92. Tjuvajev JG, Doubrovin M, Akhurst T, et al. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med. 2002;43(8): 1072–83.

    PubMed  Google Scholar 

Download references

Acknowledgments

The animal research reported here is supported by a Cancer Center Core grant, NIH-NCI CA-16672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Yang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, D.J., Inoue, T., Kim, E.E. (2013). Radiopharmaceuticals. In: Kim, E., Lee, MC., Inoue, T., Wong, WH. (eds) Clinical PET and PET/CT. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0802-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0802-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0801-8

  • Online ISBN: 978-1-4419-0802-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics