Skip to main content

TGFβ Signaling in Head and Neck Cancer Development and Metastases

  • Chapter
  • First Online:
Oral Cancer Metastasis

Abstract

Transforming growth factor beta (TGFβ) signaling impacts the HSNCC development and metastases by affecting many critical processes including cell growth, proliferation, apoptosis, epithelial-to-mesenchymal transition, invasion, angiogenesis, and immune surveillance. Typically, TGFβ functions as a tumor suppressor in epithelial cells by inhibiting cell growth, promoting apoptosis, stimulating epithelial differentiation, enhancing genetic stability, and promoting cellular senescence, hence, reduced expression of TGFβ signaling components is observed in many malignancies, including HNSCC. Through a combination of genetic and epigenetic changes, TGFβ type II receptor expression is frequently reduced in HNSCC and is reduced TGFβRII expression is associated with more aggressive tumor behavior. Similarly, Smad4 expression is also commonly reduced in HNSCC and is associated with increased genomic instability. Tumor epithelial cells with TGFβ signaling defects increase TGFβ1 ligand production, which paradoxically promotes tumor growth and metastases by activating tumor-associated fibroblasts, increasing matrix degradation and angiogenesis, suppressing immune surveillance, and inducing inflammation; accordingly elevated local TGFb1 expression correlates with numerous negative clinical parameters. Given its broad role in tumor development and progression, TGFβ signaling remains an attractive therapeutic target, though the multifaceted roles of TGFβ in normal tissue homeostasis and the biphasic role of TGFβ in tumor development and progression have ­complicated attempts to modulate TGFβ signaling in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alazzouzi H, Alhopuro P, Salovaara R, Sammalkorpi H, Jarvinen H, Mecklin JP, Hemminki A, Schwartz S Jr, Aaltonen LA, Arango D (2005) SMAD4 as a prognostic markeNoar in colorectal cancer. Clin Cancer Res 11:2606–2611

    CAS  PubMed  Google Scholar 

  • Alvi A, Johnson JT (1997) Development of distant metastasis after treatment of advanced-stage head and neck cancer. Head Neck 19:500–505

    CAS  PubMed  Google Scholar 

  • Bacman D, Merkel S, Croner R, Papadopoulos T, Brueckl W, Dimmler A (2007) TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer 7:156

    PubMed  Google Scholar 

  • Balkwill F, Coussens LM (2004) Cancer: an inflammatory link. Nature 431:405–406

    CAS  PubMed  Google Scholar 

  • Barthelemy-Brichant N, David JL, Bosquee L, Bury T, Seidel L, Albert A, Bartsch P, Baugnet-Mahieu L, Deneufbourg JM (2002) Increased TGFbeta1 plasma level in patients with lung cancer: potential mechanisms. Eur J Clin Invest 32:193–198

    CAS  PubMed  Google Scholar 

  • Beer KT, Greiner RH, Aebersold DM, Zbaren P (2000) Carcinoma of the oropharynx: local failure as the decisive parameter for distant metastases and survival. Strahlenther Onkol 176:16–21

    CAS  PubMed  Google Scholar 

  • Bertolino P, Deckers M, Lebrin F, ten Dijke P (2005) Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest 128:585S–590S

    CAS  PubMed  Google Scholar 

  • Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    CAS  PubMed  Google Scholar 

  • Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    CAS  PubMed  Google Scholar 

  • Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, Freeman ML, Arteaga CL (2007) Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 117:1305–1313

    CAS  PubMed  Google Scholar 

  • Chen CR, Kang Y, Massague J (2001a) Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proc Natl Acad Sci U S A 98:992–999

    Google Scholar 

  • Chen T, Yan W, Wells RG, Rimm DL, McNiff J, Leffell D, Reiss M (2001b) Novel inactivating mutations of transforming growth factor-beta type I receptor gene in head-and-neck cancer metastases. Int J Cancer 93:653–661

    CAS  PubMed  Google Scholar 

  • Chen HW, Chang YC, Lai YL, Chen YJ, Huang MJ, Leu YS, Fu YK, Wang LW, Hwang JJ (2005) Change of plasma transforming growth factor-beta1 levels in nasopharyngeal carcinoma patients treated with concurrent chemo-radiotherapy. Jpn J Clin Oncol Vol 35:427–432

    Google Scholar 

  • Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24:5053–5068

    CAS  PubMed  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    CAS  PubMed  Google Scholar 

  • Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A, Akhurst RJ (1996) TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531–542

    CAS  PubMed  Google Scholar 

  • Dasgupta S, Bhattacharya-Chatterjee M, O’Malley BW Jr, Chatterjee SK (2006) Tumor metastasis in an orthotopic murine model of head and neck cancer: possible role of TGF-beta 1 secreted by the tumor cells. J Cell Biochem 97:1036–1051

    CAS  PubMed  Google Scholar 

  • Dennler S, Andre J, Alexaki I, Li A, Magnaldo T, ten Dijke P, Wang XJ, Verrecchia F, Mauviel A (2007) Induction of sonic hedgehog mediators by transforming growth factor-beta: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res 67:6981–6986

    CAS  PubMed  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    CAS  PubMed  Google Scholar 

  • Derynck R, Lindquist PB, Lee A, Wen D, Tamm J, Graycar JL, Rhee L, Mason AJ, Miller DA, Coffey, RJ et al (1988) A new type of transforming growth factor-beta, TGF-beta 3. Embo J 7:3737–3743

    Google Scholar 

  • Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem 276:12477–12480

    CAS  PubMed  Google Scholar 

  • Ewan KB, Henshall-Powell RL, Ravani SA, Pajares MJ, Arteaga C, Warters R, Akhurst RJ, Barcellos-Hoff MH (2002) Transforming growth factor-beta1 mediates cellular response to DNA damage in situ. Cancer Res 62:5627–5631

    CAS  PubMed  Google Scholar 

  • Feng XH, Derynck R (1996) Ligand-independent activation of transforming growth factor (TGF) beta signaling pathways by heteromeric cytoplasmic domains of TGF-beta receptors. J Biol Chem 271:13123–13129

    CAS  PubMed  Google Scholar 

  • Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    CAS  PubMed  Google Scholar 

  • Fukai Y, Fukuchi M, Masuda N, Osawa H, Kato H, Nakajima T, Kuwano H (2003) Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer 104:161–166

    CAS  PubMed  Google Scholar 

  • Fukuchi M, Fukai Y, Masuda N, Miyazaki T, Nakajima M, Sohda M, Manda R, Tsukada K, Kato H, Kuwano H (2002a) High-level expression of the Smad ubiquitin ligase Smurf2 correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Res 62:7162–7165

    CAS  PubMed  Google Scholar 

  • Fukuchi M, Masuda N, Miyazaki T, Nakajima M, Osawa H, Kato H, Kuwano H (2002b) Decreased Smad4 expression in the transforming growth factor-beta signaling pathway during progression of esophageal squamous cell carcinoma. Cancer 95:737–743

    CAS  PubMed  Google Scholar 

  • Fukuchi M, Miyazaki T, Fukai Y, Nakajima M, Sohda M, Masuda N, Manda R, Tsukada K, Kato H, Kuwano H (2004a) Plasma level of transforming growth factor beta1 measured from the azygos vein predicts prognosis in patients with esophageal cancer. Clin Cancer Res 10:2738–2741

    CAS  PubMed  Google Scholar 

  • Fukuchi M, Nakajima M, Fukai Y, Miyazaki T, Masuda N, Sohda M, Manda R, Tsukada K, Kato H, Kuwano H (2004b) Increased expression of c-Ski as a co-repressor in transforming growth factor-beta signaling correlates with progression of esophageal squamous cell carcinoma. Int J Cancer 108:818–824

    CAS  PubMed  Google Scholar 

  • Fukuchi M, Nakajima M, Miyazaki T, Masuda N, Osawa H, Manda R, Tsukada K, Kato H, Kuwano H (2006) Lack of activated Smad2 in transforming growth factor-beta signaling is an unfavorable prognostic factor in patients with esophageal squamous cell carcinoma. J Surg Oncol 94:51–56

    CAS  PubMed  Google Scholar 

  • Garavello W, Ciardo A, Spreafico R, Gaini RM (2006) Risk factors for distant metastases in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 132:762–766

    PubMed  Google Scholar 

  • Garrigue-Antar L, Munoz-Antonia T, Antonia SJ, Gesmonde J, Vellucci VF, Reiss M (1995) Missense mutations of the transforming growth factor beta type II receptor in human head and neck squamous carcinoma cells. Cancer Res 55:3982–3987

    CAS  PubMed  Google Scholar 

  • Gaspar NJ, Li L, Kapoun AM, Medicherla S, Reddy M, Li G, O’Young G, Quon D, Henson M, Damm DL, Muiru GT, Murphy A, Higgins LS, Chakravarty S, Wong DH (2007) Inhibition of transforming growth factor beta signaling reduces pancreatic adenocarcinoma growth and invasiveness. Mol Pharmacol 72:152–161

    CAS  PubMed  Google Scholar 

  • Ge R, Rajeev V, Ray P, Lattime E, Rittling S, Medicherla S, Protter A, Murphy A, Chakravarty J, Dugar S, Schreiner G, Barnard N, Reiss M (2006) Inhibition of growth and metastasis of mouse mammary carcinoma by selective inhibitor of transforming growth factor-beta type I receptor kinase in vivo. Clin Cancer Res 12:4315–4330

    CAS  PubMed  Google Scholar 

  • Glick A, Popescu N, Alexander V, Ueno H, Bottinger E, Yuspa SH (1999) Defects in transforming growth factor-beta signaling cooperate with a Ras oncogene to cause rapid aneuploidy and malignant transformation of mouse keratinocytes. Proc Natl Acad Sci U S A 96:14949–14954

    Google Scholar 

  • Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118–1122

    CAS  PubMed  Google Scholar 

  • Grunert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4:657–665

    PubMed  Google Scholar 

  • Han G, Lu SL, Li AG, He W, Corless CL, Kulesz-Martin M, Wang XJ (2005) Distinct mechanisms of TGF-beta1-mediated epithelial-to-mesenchymal transition and metastasis during skin carcinogenesis. J Clin Invest 115:1714–1723

    CAS  PubMed  Google Scholar 

  • Han G, Li AG, Liang YY, Owens P, He W, Lu S, Yoshimatsu Y, Wang D, Ten Dijke P, Lin X, Wang XJ (2006) Smad7-induced beta-catenin degradation alters epidermal appendage development. Dev Cell 11:301–312

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    CAS  PubMed  Google Scholar 

  • Hayat MJ, Howlader N, Reichman ME, Edwards BK (2007) Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 12:20–37

    PubMed  Google Scholar 

  • He W, Li AG, Wang D, Han S, Zheng B, Goumans MJ, Ten Dijke P, Wang XJ (2002) Overexpression of Smad7 results in severe pathological alterations in multiple epithelial tissues. Embo J 21:2580–2590

    Google Scholar 

  • He J, Tegen SB, Krawitz AR, Martin GS, Luo K (2003) The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J Biol Chem 278:30540–30547

    CAS  PubMed  Google Scholar 

  • Hong S, Lim S, Li AG, Lee C, Lee YS, Lee EK, Park SH, Wang XJ, Kim SJ (2007) Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 8:504–513

    CAS  PubMed  Google Scholar 

  • Huntley SP, Davies M, Matthews JB, Thomas G, Marshall J, Robinson CM, Eveson JW, Paterson IC, Prime SS (2004) Attenuated type II TGF-beta receptor signalling in human malignant oral keratinocytes induces a less differentiated and more aggressive phenotype that is associated with metastatic dissemination. Int J Cancer 110:170–176

    CAS  PubMed  Google Scholar 

  • Iamaroon A, Pattamapun K, Piboonniyom SO (2006) Aberrant expression of Smad4, a TGF-beta signaling molecule, in oral squamous cell carcinoma. J Oral Sci 48:105–109

    CAS  PubMed  Google Scholar 

  • Iida J, McCarthy JB (2007) Expression of collagenase-1 (MMP-1) promotes melanoma growth through the generation of active transforming growth factor-beta. Melanoma Res 17:205–213

    CAS  PubMed  Google Scholar 

  • Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2002) SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65–74

    CAS  PubMed  Google Scholar 

  • Ivanovic V, Demajo M, Krtolica K, Krajnovic M, Konstantinovic M, Baltic V, Prtenjak G, Stojiljkovic B, Breberina M, Neskovic-Konstantinovic Z, Nikolic-Vukosavljevic D, Dimitrijevic B (2006) Elevated plasma TGF-beta1 levels correlate with decreased survival of metastatic breast cancer patients. Clin Chim Acta 371:191–193

    CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57:43–66

    PubMed  Google Scholar 

  • Jonson T, Gorunova L, Dawiskiba S, Andren-Sandberg A, Stenman G, ten Dijke P, Johansson B, Hoglund M (1999) Molecular analyses of the 15q and 18q SMAD genes in pancreatic cancer. Genes Chromosomes Cancer 24:62–71

    CAS  PubMed  Google Scholar 

  • Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proc Natl Acad Sci U S A 104:3460–3465

    Google Scholar 

  • Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6:1365–1375

    CAS  PubMed  Google Scholar 

  • Kim SK, Fan Y, Papadimitrakopoulou V, Clayman G, Hittelman WN, Hong WK, Lotan R, Mao L (1996) DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res 56:2519–2521

    CAS  PubMed  Google Scholar 

  • Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M, Wolfraim L, Hong S, Mushinski E, Potter M, Kim SJ, Fu XY, Deng C, Letterio JJ (2006) Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441:1015–1019

    CAS  PubMed  Google Scholar 

  • Klopcic B, Maass T, Meyer E, Lehr HA, Metzger D, Chambon P, Mann A, Blessing M (2007) TGF-beta superfamily signaling is essential for tooth and hair morphogenesis and differentiation. Eur J Cell Biol 86:781–799

    CAS  PubMed  Google Scholar 

  • Korn T, Oukka M, Bettelli E (2007) Th17 cells: Effector T cells with inflammatory properties. Semin Immunol 19:362–371

    Google Scholar 

  • Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, Roberts AB, Sporn MB, Ward, JM, Karlsson S (1993) Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A 90:770–774

    Google Scholar 

  • Leivonen SK, Ala-Aho R, Koli K, Grenman R, Peltonen J, Kahari VM (2006) Activation of Smad signaling enhances collagenase-3 (MMP-13) expression and invasion of head and neck squamous carcinoma cells. Oncogene 25:2588–2600

    CAS  PubMed  Google Scholar 

  • Levy L, Hill CS (2006) Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17:41–58

    CAS  PubMed  Google Scholar 

  • Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF, Thomas GJ (2004) Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 90:822–832

    CAS  PubMed  Google Scholar 

  • Li AG, Lu SL, Zhang MX, Deng C, Wang XJ (2004a) Smad3 knockout mice exhibit a resistance to skin chemical carcinogenesis. Cancer Res 64:7836–7845

    CAS  PubMed  Google Scholar 

  • Li AG, Wang D, Feng XH, Wang XJ (2004b) Latent TGFbeta1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. Embo J 23:1770–1781

    Google Scholar 

  • Li MO, Wan YY, Flavell RA (2007) T cell-produced transforming growth factor-beta1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26:579–591

    CAS  PubMed  Google Scholar 

  • Liu X, Lee J, Cooley M, Bhogte E, Hartley S, Glick A (2003) Smad7 but not Smad6 cooperates with oncogenic ras to cause malignant conversion in a mouse model for squamous cell carcinoma. Cancer Res 63:7760–7768

    CAS  PubMed  Google Scholar 

  • Lopez-Casillas F, Wrana JL, Massague J (1993) Betaglycan presents ligand to the TGF beta signaling receptor. Cell 73:1435–1444

    CAS  PubMed  Google Scholar 

  • Lu SL, Reh D, Li AG, Woods J, Corless CL, Kulesz-Martin M, Wang XJ (2004) Overexpression of transforming growth factor beta1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial hyperproliferation. Cancer Res 64:4405–4410

    CAS  PubMed  Google Scholar 

  • Lu SL, Herrington H, Reh D, Weber S, Bornstein S, Wang D, Li AG, Tang CF, Siddiqui Y, Nord J, Andersen P, Corless CL, Wang XJ (2006) Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev 20:1331–1342

    CAS  PubMed  Google Scholar 

  • Massague J (2000) How cells read TGF-beta signals. Nat Rev Mol Cell Biol 1:169–178

    CAS  PubMed  Google Scholar 

  • Massague J, Gomis RR (2006) The logic of TGFbeta signaling. FEBS Lett 580:2811–2820

    CAS  PubMed  Google Scholar 

  • Massague J, Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. Embo J 19:1745–1754

    Google Scholar 

  • Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98:1512–1520

    CAS  PubMed  Google Scholar 

  • Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328

    CAS  PubMed  Google Scholar 

  • Muraoka RS, Dumont N, Ritter CA, Dugger TC, Brantley DM, Chen J, Easterly E, Roebuck LR, Ryan S, Gotwals PJ, Koteliansky V, Arteaga CL (2002) Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109:1551–1559

    CAS  PubMed  Google Scholar 

  • Muro-Cacho CA, Anderson M, Cordero J, Munoz-Antonia T (1999) Expression of transforming growth factor beta type II receptors in head and neck squamous cell carcinoma. Clin Cancer Res 5:1243–1248

    CAS  PubMed  Google Scholar 

  • Muro-Cacho CA, Rosario-Ortiz K, Livingston S, Munoz-Antonia T (2001) Defective transforming growth factor beta signaling pathway in head and neck squamous cell carcinoma as evidenced by the lack of expression of activated Smad2. Clin Cancer Res 7:1618–1626

    CAS  PubMed  Google Scholar 

  • Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P (1997) Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 389:631–635

    CAS  PubMed  Google Scholar 

  • Natsugoe S, Xiangming C, Matsumoto M, Okumura H, Nakashima S, Sakita H, Ishigami S, Baba M, Takao S, Aikou T (2002) Smad4 and transforming growth factor beta1 expression in patients with squamous cell carcinoma of the esophagus. Clin Cancer Res 8:1838–1842

    CAS  PubMed  Google Scholar 

  • Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E (1996) TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10:2462–2477

    CAS  PubMed  Google Scholar 

  • Osawa H, Nakajima M, Kato H, Fukuchi M, Kuwano H (2004) Prognostic value of the expression of Smad6 and Smad7, as inhibitory Smads of the TGF-beta superfamily, in esophageal squamous cell carcinoma. Anticancer Res 24:3703–3709

    CAS  PubMed  Google Scholar 

  • Papadimitrakopoulou VA, Oh Y, El-Naggar A, Izzo J, Clayman G, Mao L (1998) Presence of multiple incontiguous deleted regions at the long arm of chromosome 18 in head and neck cancer. Clin Cancer Res 4:539–544

    CAS  PubMed  Google Scholar 

  • Pardali K, Kowanetz M, Heldin CH, Moustakas A (2005) Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21(WAF1/Cip1). J Cell Physiol 204:260–272

    CAS  PubMed  Google Scholar 

  • Pennison M, Pasche B (2007) Targeting transforming growth factor-beta signaling. Curr Opin Oncol 19:579–585

    CAS  PubMed  Google Scholar 

  • Perlman R, Schiemann WP, Brooks MW, Lodish HF, Weinberg RA (2001) TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3:708–714

    CAS  PubMed  Google Scholar 

  • Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, Alitalo K (1994) Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem 269:6271–6274

    CAS  PubMed  Google Scholar 

  • Pring M, Prime S, Parkinson EK, Paterson I (2006) Dysregulated TGF-beta1-induced Smad signalling occurs as a result of defects in multiple components of the TGF-beta signalling pathway in human head and neck carcinoma cell lines. Int J Oncol 28:1279–1285

    CAS  PubMed  Google Scholar 

  • Qiao W, Li AG, Owens P, Xu X, Wang XJ, Deng CX (2006) Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin. Oncogene 25:207–217

    CAS  PubMed  Google Scholar 

  • Qiu W, Schonleben F, Li X, Su GH (2007) Disruption of transforming growth factor beta-Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4. Cancer Lett 245:163–170

    CAS  PubMed  Google Scholar 

  • Riggins GJ, Kinzler KW, Vogelstein B, Thiagalingam S (1997) Frequency of Smad gene mutations in human cancers. Cancer Res 57:2578–2580

    CAS  PubMed  Google Scholar 

  • Rodius S, Indra G, Thibault C, Pfister V, Georges-Labouesse E (2007) Loss of alpha6 integrins in keratinocytes leads to an increase in TGFbeta and AP1 signaling and in expression of differentiation genes. J Cell Physiol 212:439–449

    CAS  PubMed  Google Scholar 

  • Rosenthal E, McCrory A, Talbert M, Young G, Murphy-Ullrich J, Gladson C (2004) Elevated expression of TGF-beta1 in head and neck cancer-associated fibroblasts. Mol Carcinog 40:116–121

    CAS  PubMed  Google Scholar 

  • Saito H, Tsujitani S, Oka S, Kondo A, Ikeguchi M, Maeta M, Kaibara N (2000) An elevated serum level of transforming growth factor-beta 1 (TGF-beta 1) significantly correlated with lymph node metastasis and poor prognosis in patients with gastric carcinoma. Anticancer Res 20:4489–4493

    CAS  PubMed  Google Scholar 

  • Schlingensiepen KH, Schlingensiepen R, Steinbrecher A, Hau P, Bogdahn U, Fischer-Blass B, Jachimczak P (2006) Targeted tumor therapy with the TGF-beta2 antisense compound AP 12009. Cytokine Growth Factor Rev 17:129–139

    CAS  PubMed  Google Scholar 

  • Schlingensiepen KH, Fischer-Blass B, Schmaus S, Ludwig S (2008) Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Recent Results Cancer Res 177:137–150

    CAS  PubMed  Google Scholar 

  • Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700

    CAS  PubMed  Google Scholar 

  • Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    CAS  PubMed  Google Scholar 

  • Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821

    CAS  PubMed  Google Scholar 

  • Snijders AM, Schmidt BL, Fridlyand J, Dekker N, Pinkel D, Jordan RC, Albertson DG (2005) Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene 24:4232–4242

    CAS  PubMed  Google Scholar 

  • Sparano A, Quesnelle KM, Kumar MS, Wang Y, Sylvester AJ, Feldman M, Sewell DA, Weinstein GS, Brose MS (2006) Genome-wide profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization. Laryngoscope 116:735–741

    CAS  PubMed  Google Scholar 

  • Sporn MB, Roberts AB (1992) Transforming growth factor-beta: recent progress and new challenges. J Cell Biol 119:1017–1021

    CAS  PubMed  Google Scholar 

  • Stearns ME, Garcia FU, Fudge K, Rhim J, Wang M (1999) Role of interleukin 10 and transforming growth factor beta1 in the angiogenesis and metastasis of human prostate primary tumor lines from orthotopic implants in severe combined immunodeficiency mice. Clin Cancer Res 5:711–720

    CAS  PubMed  Google Scholar 

  • Sun SP, Jin YN, Yang HP, Wei Y, Dong Z (2007) Serum transforming growth factor-beta1 level reflects disease status in patients with esophageal carcinoma after radiotherapy. World J Gastroenterol 13:5267–5272

    CAS  PubMed  Google Scholar 

  • Takebayashi S, Ogawa T, Jung KY, Muallem A, Mineta H, Fisher SG, Grenman R, Carey TE (2000) Identification of new minimally lost regions on 18q in head and neck squamous cell carcinoma. Cancer Res 60:3397–3403

    CAS  PubMed  Google Scholar 

  • Takebayashi S, Hickson A, Ogawa T, Jung KY, Mineta H, Ueda Y, Grenman R, Fisher SG, Carey TE (2004) Loss of chromosome arm 18q with tumor progression in head and neck squamous cancer. Genes Chromosomes Cancer 41:145–154

    CAS  PubMed  Google Scholar 

  • Tannehill-Gregg SH, Kusewitt DF, Rosol TJ, Weinstein M (2004) The roles of Smad2 and Smad3 in the development of chemically induced skin tumors in mice. Vet Pathol 41:278–282

    CAS  PubMed  Google Scholar 

  • ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273

    PubMed  Google Scholar 

  • Ten Dijke P, Goumans MJ, Itoh F, Itoh S (2002) Regulation of cell proliferation by Smad proteins. J Cell Physiol 191:1–16

    PubMed  Google Scholar 

  • Thomas DA, Massague J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8:369–380

    CAS  PubMed  Google Scholar 

  • Tojo M, Hamashima Y, Hanyu A, Kajimoto T, Saitoh M, Miyazono K, Node M, Imamura T (2005) The ALK-5 inhibitor A-83–01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci 96:791–800

    CAS  PubMed  Google Scholar 

  • Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S, Imai Y, Shimomukai H, Nomura Y, Matsuda Y, Matsuzawa Y (1996) High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110:375–382

    CAS  PubMed  Google Scholar 

  • Tsushima H, Ito N, Tamura S, Matsuda Y, Inada M, Yabuuchi I, Imai Y, Nagashima R, Misawa H, Takeda H, Matsuzawa Y, Kawata S (2001) Circulating transforming growth factor beta 1 as a predictor of liver metastasis after resection in colorectal cancer. Clin Cancer Res 7:1258–1262

    CAS  PubMed  Google Scholar 

  • Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY, Almirez R, Mangadu R, Liu YW, Platten M, Herrlinger U, Murphy A, Wong DH, Wick W, Higgins LS, Weller M (2004) SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64:7954–7961

    CAS  PubMed  Google Scholar 

  • Wang D, Song H, Evans JA, Lang JC, Schuller DE, Weghorst CM (1997) Mutation and downregulation of the transforming growth factor beta type II receptor gene in primary squamous cell carcinomas of the head and neck. Carcinogenesis 18:2285–2290

    CAS  PubMed  Google Scholar 

  • Wang KS, Hu ZL, Li JH, Xiao DS, Wen JF (2006) Enhancement of metastatic and invasive capacity of gastric cancer cells by transforming growth factor-beta1. Acta Biochim Biophys Sin (Shanghai) 38:179–186

    Google Scholar 

  • Weber F, Xu Y, Zhang L, Patocs A, Shen L, Platzer P, Eng C (2007) Microenvironmental genomic alterations and clinicopathological behavior in head and neck squamous cell carcinoma. JAMA 297:187–195

    CAS  PubMed  Google Scholar 

  • Weeks BH, He W, Olson KL, Wang XJ (2001) Inducible expression of transforming growth factor beta1 in papillomas causes rapid metastasis. Cancer Res 61:7435–7443

    CAS  PubMed  Google Scholar 

  • Wilkins-Port CE, Higgins PJ (2007) Regulation of extracellular matrix remodeling following transforming growth factor-beta1/epidermal growth factor-stimulated epithelial-mesenchymal transition in human premalignant keratinocytes. Cells Tissues Organs 185:116–122

    CAS  PubMed  Google Scholar 

  • Worsham MJ, Chen KM, Meduri V, Nygren AO, Errami A, Schouten JP, Benninger MS (2006) Epigenetic events of disease progression in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 132:668–677

    PubMed  Google Scholar 

  • Xie W, Bharathy S, Kim D, Haffty BG, Rimm DL, Reiss M (2003) Frequent alterations of Smad signaling in human head and neck squamous cell carcinomas: a tissue microarray analysis. Oncol Res 14:61–73

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Ueda Y, Itoh T, Iwamoto A, Yamagishi H, Shimagaki M, Teramoto K (2006) A novel immunotherapeutic modality with direct hemoperfusion targeting transforming growth factor-beta prolongs the survival of tumor-bearing rats. Oncol Rep 16:1277–1284

    CAS  PubMed  Google Scholar 

  • Yanagisawa K, Osada H, Masuda A, Kondo M, Saito T, Yatabe Y, Takagi K, Takahashi T (1998) Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-beta in human normal lung epithelial cells. Oncogene 17:1743–1747

    CAS  PubMed  Google Scholar 

  • Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, MacGregor J, Patel SC, Khozin S, Liu ZY, Green J, Anver MR, Merlino G, Wakefield LM (2002) Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 109:1607–1615

    CAS  PubMed  Google Scholar 

  • Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X, Li X, Han X, Xia Z, Deng H, Yang X (2005) Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res 65:8671–8678

    CAS  PubMed  Google Scholar 

  • Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M, Carbone DP, Matrisian LM, Richmond A, Lin PC, Moses HL (2008) Abrogation of TGFbeta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell 13:23–35

    CAS  PubMed  Google Scholar 

  • Yingling JM, Blanchard KL, Sawyer JS (2004) Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022

    CAS  PubMed  Google Scholar 

  • Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14:163–176

    PubMed  Google Scholar 

  • Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24:5764–5774

    CAS  PubMed  Google Scholar 

  • Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 98:974–979

    Google Scholar 

  • Zhang Q, Yang X, Pins M, Javonovic B, Kuzel T, Kim SJ, Parijs LV, Greenberg NM, Liu V, Guo Y, Lee C (2005) Adoptive transfer of tumor-reactive transforming growth factor-beta-insensitive CD8+ T cells: eradication of autologous mouse prostate cancer. Cancer Res 65:1761–1769

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Malkoski, S.P., Lighthall, J.G., Wang, XJ. (2009). TGFβ Signaling in Head and Neck Cancer Development and Metastases. In: Myers, J. (eds) Oral Cancer Metastasis. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0775-2_8

Download citation

Publish with us

Policies and ethics