Skip to main content

Imaging of Interventional Therapies in Oncology: Positron Emission Tomography/Computed Tomography

  • Reference work entry
  • First Online:
Book cover Image-Guided Cancer Therapy
  • 1488 Accesses

Abstract

This chapter is intended to illustrate the utility of positron emission tomography (PET) in image-guided therapies. PET imaging provides functional images of the body allowing us to identify alterations in metabolism which better characterizes the presence of cancer, its prognosis, and early response to multimodality therapy. PET imaging is the most widely used clinical technique for molecular imaging and, in conjunction with traditional anatomic modalities such as computed tomography (CT), provides a better assessment of the status of oncology patients. PET/CT imaging has become widely available, particularly with the use of fluorodeoxyglucose (FDG) as an analogue to glucose metabolism, which in turn allows us to identify the presence of cancer and measure response to therapy. This chapter provides an overview of the biologic mechanisms which occur in cancer, and by using PET imaging, we take advantage of this altered biochemistry to improve our ability to stage the extent of cancer and direct appropriate biopsies of the primary tumor. PET/CT imaging can also provide a road map to allow nodal sampling which can be useful to stage and determine type of therapy. PET/CT has also been used to direct biopsy or verify suspected distant metastases which can allow earlier management decisions between potentially curative and palliative therapies. Finally, the minimally invasive therapies using image guidance can benefit by PET/CT to determine target delineation and any residual or recurrent disease. The future direction, particularly with the clinical use of novel radiotracers, is discussed as it pertains to imaging hypoxia to identify radiation resistant parts of tumor, DNA or proliferation imaging to assess early response, and angiogenesis PET imaging for targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yonekura Y, Benua RS, Brill AB, Som P, Yeh SD, Kemeny NE, Fowler JS, MacGregor RR, Stamm R, Christman DR, Wolf AP. Increased accumulation of 2-deoxy-2-[18F]Fluoro-d-glucose in liver metastases from colon carcinoma. J Nucl Med. 1982;23(12):1133–7.

    CAS  PubMed  Google Scholar 

  3. DiChiro GD, DeLaPaz RL, Brooks RA. Glucose utilization of cerebral gliomas measured by [18]fluorodeoxyglucose and positron emission tomography. Neurology. 1982;32:1323–9.

    Article  CAS  Google Scholar 

  4. Macapinlac HA. Positron emission tomography of the brain. Neuroimaging Clin N Am. 2006;16(4):591–603.

    Article  PubMed  Google Scholar 

  5. Goudarzi B, Jacene HA, Wahl RL. Diagnosis and differentiation of bronchioloalveolar carcinoma from adenocarcinoma with bronchioloalveolar components with metabolic and anatomic characteristics using PET/CT. J Nucl Med. 2008;49(10):1585–92.

    Article  PubMed  Google Scholar 

  6. Tunis S, Whicher D. The National oncologic PET registry: lessons learned for coverage with evidence development. J Am Coll Radiol. 2009;6(5):360–5.

    Article  PubMed  Google Scholar 

  7. Shankar LK, Hoffman JM, Bacharach S, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute trials. J Nucl Med. 2006;47:1059–66.

    CAS  PubMed  Google Scholar 

  8. Mawlawi O, Podoloff DA, Kohlmyer S, Williams JJ, Stearns CW, Culp RF, Macapinlac H. Performance characteristics of a newly developed PET/CT scanner using NEMA standards in 2D and 3D modes. J Nucl Med. 2004;45(10):1734–42.

    PubMed  Google Scholar 

  9. Pirotte B, Goldman S, Massager N, David P, Wikler D, Lipszyc M, Salmon I, Brotchi J, Levivier M. Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg. 2004;101(3):476–83.

    Article  CAS  PubMed  Google Scholar 

  10. Erasmus JJ, Macapinlac HA, Swisher SG. Positron emission tomography imaging in nonsmall-cell lung cancer. Cancer. 2007;110(10):2155–68. PMID: 17896784.

    Article  PubMed  Google Scholar 

  11. Francavilla TL, Miletich RS, Di Chiro G, Patronas NJ, Rizzoli HV, Wright DC. Positron emission tomography in the detection of malignant degeneration of low-grade gliomas. Neurosurgery. 1989;24(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  12. Truong MT, Erasmus JJ, Munden RF, Marom EM, Sabloff BS, Gladish GW, Podoloff DA, Macapinlac HA. Focal FDG uptake in mediastinal brown fat mimicking malignancy: a potential pitfall resolved on PET/CT. AJR Am J Roentgenol. 2004;183(4):1127–32.

    Article  PubMed  Google Scholar 

  13. Kwee TC, Kwee RM. Combined FDG-PET/CT for the detection of unknown primary tumors: systematic review and meta-analysis. Eur Radiol. 2009;19(3):731–44.

    Article  PubMed  Google Scholar 

  14. Bruzzi JF, Macapinlac H, Tsimberidou AM, Truong MT, Keating MJ, Marom EM, Munden RF. Detection of Richter’s transformation of chronic lymphocytic leukemia by PET/CT. J Nucl Med. 2006;47(8):1267–73.

    PubMed  Google Scholar 

  15. Juweid ME, Stroobants S, Hoekstra OS, Mottaghy FM, Dietlein M, Guermazi A, Wiseman GA, Kostakoglu L, Scheidhauer K, Buck A, Naumann R, Spaepen K, Hicks RJ, Weber WA, Reske SN, Schwaiger M, Schwartz LH, Zijlstra JM, Siegel BA, Cheson BD. Imaging subcommittee of international harmonization project in lymphoma. Use of positron emission tomography for response assessment of lymphoma: consensus of the imaging subcommittee of international harmonization project in lymphoma. J Clin Oncol. 2007;25(5):571–8.

    Article  PubMed  Google Scholar 

  16. De Leyn P, Lardinois D, Van Schil PE, Rami-Porta R, Passlick B, Zielinski M, Waller DA, Lerut T, Weder W. ESTS guidelines for preoperative lymph node staging for non-small cell lung cancer. Eur J Cardiothorac Surg. 2007;32(1):1–8.

    Article  PubMed  Google Scholar 

  17. Munden RF, Macapinlac HA, Erasmus JJ. Esophageal cancer: the role of integrated CT-PET in initial staging and response assessment after preoperative therapy. J Thorac Imaging. 2006;21(2):137–45.

    Article  PubMed  Google Scholar 

  18. Macapinlac HA. Clinical applications of positron emission tomography/computed tomography treatment planning. Semin Nucl Med. 2008; 38(2):137–40.

    Article  PubMed  Google Scholar 

  19. Vikram R, Yeung HD, Macapinlac HA, Iyer RB. Utility of PET/CT in differentiating benign from malignant adrenal nodules in patients with cancer. AJR Am J Roentgenol. 2008;191(5):1545–51.

    Article  PubMed  Google Scholar 

  20. Ansquer C, Scigliano S, Mirallié E, Taïeb D, Brunaud L, Sebag F, Leux C, Drui D, Dupas B, Renaudin K, Kraeber-Bodéré F. 18F-FDG PET/CT in the characterization and surgical decision concerning adrenal masses: a prospective multicentre evaluation. Eur J Nucl Med Mol Imaging. 2010;37(9):1669–78.

    Article  PubMed  Google Scholar 

  21. Schoellnast H, Larson SM, Nehmeh SA, Carrasquillo JA, Thornton RH, Solomon SB. Radiofrequency ablation of non-small-cell carcinoma of the lung under real-time FDG PET CT guidance. Cardiovasc Intervent Radiol. 2011;34 Suppl 2:S182–5.

    Article  PubMed  Google Scholar 

  22. Singnurkar A, Solomon SB, Gönen M, Larson SM, Schöder H. 18F-FDG PET/CT for the prediction and detection of local recurrence after radiofrequency ablation of malignant lung lesions. J Nucl Med. 2010;51(12):1833–40.

    Article  PubMed  Google Scholar 

  23. Chi PC, Mawlawi O, Luo D, Liao Z, Macapinlac HA, Pan T. Effects of respiration-averaged computed tomography on positron emission tomography/computed tomography quantification and its potential impact on gross tumor volume delineation. Int J Radiat Oncol Biol Phys. 2008;71(3):890–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tonkopi E, Chi PC, Mawlawi O, Riegel AC, Rohren EM, Macapinlac HA, Pan T. Average CT in PET studies of colorectal cancer patients with metastasis in the liver and esophageal cancer patients. J Appl Clin Med Phys. 2010;11(1):3073.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Purandare NC, Rangarajan V, Shah SA, Sharma AR, Kulkarni SS, Kulkarni AV, Dua SG. Therapeutic response to radiofrequency ablation of neoplastic lesions: FDG PET/CT findings. Radiographics. 2011;31(1):201–13.

    Article  PubMed  Google Scholar 

  26. Kuehl H, Rosenbaum-Krumme S, Veit-Haibach P, Stergar H, Forsting M, Bockisch A, Antoch G. Impact of whole-body imaging on treatment decision to radio-frequency ablation in patients with malignant liver tumors: comparison of [18F] fluorodeoxyglucose – PET/computed tomography, PET and computed tomography. Nucl Med Commun. 2008;29(7):599–606.

    Article  PubMed  Google Scholar 

  27. Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, Nader M, Gruy B, Janetschek G, Langsteger W. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254(3):925–33.

    Article  PubMed  Google Scholar 

  28. Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Hammer J, Loidl W, Pirich C, Fogelman I, Langsteger W. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2010;12(1):98–107.

    Article  PubMed  Google Scholar 

  29. Kwekkeboom DJ, Kam BL, van Essen M, Teunissen JJ, van Eijck CH, Valkema R, de Jong M, de Herder WW, Krenning EP. Somatostatin-receptor-based imaging and therapy of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer. 2010;17(1):R53–73.

    Article  CAS  PubMed  Google Scholar 

  30. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO. Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F] fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging. 2007;34(9):1339–47.

    Article  PubMed  Google Scholar 

  31. Grégoire V, Chiti A. Molecular imaging in radiotherapy planning for head and neck tumors. J Nucl Med. 2011;52(3):331–4.

    Article  PubMed  Google Scholar 

  32. Beer AJ, Schwaiger M. PET imaging of αvβ3 expression in cancer patients. Methods Mol Biol. 2011;680:183–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Homer A. Macapinlac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Macapinlac, H.A. (2013). Imaging of Interventional Therapies in Oncology: Positron Emission Tomography/Computed Tomography. In: Dupuy, D., Fong, Y., McMullen, W. (eds) Image-Guided Cancer Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0751-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0751-6_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0750-9

  • Online ISBN: 978-1-4419-0751-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics