Skip to main content

Lakatos, Lakoff and Núñez: Towards a Satisfactory Definition of Continuity

  • Chapter
  • First Online:
Book cover Explanation and Proof in Mathematics
  • 1568 Accesses

Abstract

Lakoff and Núñez have argued that all of mathematics is a conceptual system created through metaphors on the basis of the ideas and modes of reasoning grounded in the sensory motor system. This paper explores this view by means of a Lakatosian reconstruction of the history and prehistory of the intermediate-value theorem, in which the notion of continuity plays an essential role. I conclude that in order to give an acceptable description of the actual development of mathematics, Lakoff’s and Núñez’s view must be amended: Mathematics can be viewed as a system of conceptual metaphors; however, it is permanently refined through proofs and refutations.

Parts of this paper are based on Koetsier (1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     Quoted in Lakatos (1961/1973, p. 73).

  2. 2.

     Spalt (1988) also deals with the history of the intermediate value theorem.

  3. 3.

     Cf. Müller and Kronert (1969, p. 136).

  4. 4.

     Leibniz (1695, p. 284).

  5. 5.

     Leibniz (1695, p. 284).

  6. 6.

     Leibniz wrote Y, Z and Y+Z, in this sentence, but must have meant Y, Z and Y+Z.

  7. 7.

     Leibniz (1695, pp. 284-285)

  8. 8.

     Lagrange (1808, pp. 1–2)

  9. 9.

     Lagrange (1808, pp. 101–102)

  10. 10.

     In the following reconstruction I will interpret some of Cauchy’s results in accordance with the traditional view of his work. A good presentation of this view is in Grabiner (1981). Grabiner nicely shows that the idea that the notion of limit is related to methods of approximation played an important heuristic role in Cauchy’s foundational work. For a rather different view of Cauchy’s foundational work in analysis see Spalt (1996).

  11. 11.

     I am not the first one to suggest that Cauchy’s definition of continuity was born here. Cf. Daval and Guilbaud (1945, p. 117).

  12. 12.

     Cauchy (1821, pp. 115–116)

References

  • Allis, V., & Koetsier, T. (1991). On some paradoxes of the Infinite. British Journal Philosophy of Science, 42(1991): 187–194.

    Article  Google Scholar 

  • Allis, V., & Koetsier, T. (1995). On some Paradoxes of the Infinite II. British Journal Philosophy of Science, 46(1995): 235–247.

    Article  Google Scholar 

  • Koetsier, T., & Allis, V. (1997). Assaying Supertasks. Logique & Analyse, 40(1997): 291–313.

    Google Scholar 

  • Black, M. (1962). Models and Metaphors. Ithaca: Cornell University Press.

    Google Scholar 

  • Bolzano, B. (1817). Rein analytischer Beweis des Lehrsatzes, daß zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege. Gottlieb Haase, Prag (Reprint in Czechoslovak Studies in the History of Science 12 (1981). ‘Bernard Bolzano, Early Mathematical Works’. Special Issue: 417–476).

    Google Scholar 

  • Cauchy, A. (1821). Cours d’analyse, Paris, Oeuvres, second series, Vol. 3.

    Google Scholar 

  • Clairaut. (1797). Élémens d’Algèbre par Clairaut, 5ième édition, Tome Second, Paris An. V.

    Google Scholar 

  • Daval, R., & Guilbaud, G.-T. (1945). Le raisonnement mathématique. Paris: Presses universitaires de France.

    Google Scholar 

  • Dedekind, R. (1927). Stetigkeit und irrationale Zahlen, 5. Auflage, Braunschweig.

    Google Scholar 

  • De Swart, H. C. M., & Bergmans, L. J. M. (eds.) (1995). Perspectives on Negation, Essays in honour of Johan J. de Iongh on his 80th birthday. Tilburg: Tilburg University Press.

    Google Scholar 

  • Encontre, D. (1813/1814). Mémoire sur les principes fondamentaux de la théorie générale des équations. Annales de Mathématiques Pures et Appliquées Tome IV: 201–222. Available digitally: http://archive.numdam.org.

  • Euler, L. (1748). Introductio in analysin infinitorum (Vol. I). Lausanne (Euler’s Opera Omnia, Series I, Vol. 8).

    Google Scholar 

  • Euler, L. (1751). Recherches sur les racines imaginaires des équations. Opera Omnia, Series I, 6: 78–147.

    Google Scholar 

  • Grabiner, J. V. (1981). The origins of Cauchy’s rigorous calculus. Cambridge, London: MIT Press.

    Google Scholar 

  • Heath, T. (1956). The thirteen books of the elements, 2nd ed. New York: Dover Publications.

    Google Scholar 

  • Heine, E. (1872). Die Elemente der Functionenlehre. Journal für die reine und angewandte Mathematik Band 74: 172–188.

    Article  Google Scholar 

  • Klügel, G. S. (1805). Mathematisches Wörterbuch, Band II, Leipzig.

    Google Scholar 

  • Koetsier, T. (1991). Lakatos’ Philosophy of Mathematics. Amsterdam: Elsevier.

    Google Scholar 

  • Koetsier, T. (1995). Negation in the development of mathematics: Plato, Lakatos, Mannoury and the history of the intermediate-value theorem in analysis. In H. C. M. De Swart & L. Bergmans (eds.): 105–121.

    Google Scholar 

  • Lagrange, J. L. (1808). Traité de la résolution des équations numériques de tous les degrés. Paris: Courcier.

    Google Scholar 

  • Lakatos, I. (1976). Proofs and Refutations, The Logic of Mathematical Discovery. Ed. by J. Worrall & E. Zahar. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lakatos, I. (1961/1973). The method of analysis-synthesis. In Lakatos (1978). Mathematics, Science and Epistemology: Philosophical Papers Volume 2. Cambridge University Press, Cambridge 1978: 70–103.

    Google Scholar 

  • Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from, How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Leibniz, G. W. (1695). Specimen geometriae luciferae. In C. I. Gerhardt (Hrsg.) Mathematische Schriften, Band 7, New York, 1971 (reprint of 1863 edition).

    Google Scholar 

  • Müller, K., & Kronert, G. (1969). Leben und Werk von Leibniz. Eine Cronologie. Frankfurt.

    Google Scholar 

  • Spalt, D. D. (1988). Das Unwahre des Resultatismus, Eine historische Fallstudie aus der Analysis. Mathematische Semesterberichte, 35(1988): 6–36.

    Google Scholar 

  • Spalt, D. D. (1996). Die Vernunft im Cauchy-Mythos. Frankfurt/M: Deutsch.

    Google Scholar 

  • Way, E. C. (1991). Knowledge representation and metaphor. Dordrecht: Kluwer.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Brendan Larvor and to two anonymous referees for commenting on an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teun Koetsier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koetsier, T. (2010). Lakatos, Lakoff and Núñez: Towards a Satisfactory Definition of Continuity. In: Hanna, G., Jahnke, H., Pulte, H. (eds) Explanation and Proof in Mathematics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0576-5_3

Download citation

Publish with us

Policies and ethics