Skip to main content

Recent Advances in Understanding the Cellular Functions of BRCA2

  • Chapter
  • First Online:
  • 984 Accesses

Part of the book series: Cancer Genetics ((CANGENETICS))

Abstract

The positional cloning of BRCA2 at the end of 1995 unravelled a new gene encoding a very large protein of 3,418 amino acids (390 kDa) with no similarity to any known protein [1]. The function of BRCA1, which had been cloned 15 months earlier, was unknown and thus did not provide any clues regarding function of the BRCA2 protein. One year later, BRCA1 was reported to localize and immunoprecipitate with RAD51 [2]. This discovery shed light on the function of BRCA2, as BRCA2 was shown shortly thereafter to also bind RAD51 [3,4]. Subsequent studies of the cellular functions of these proteins have been remarkably informative [reviewed in 5].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wooster R, Bignell G, Lancaster J, Swift S, Seal S, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G. 1995. Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789–792.

    Article  CAS  PubMed  Google Scholar 

  2. Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM. 1997. Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275.

    Article  CAS  PubMed  Google Scholar 

  3. Sharan SK, Morimatsu M, Albrecht U, Lim DS, Regel E, Dinh C, Sands A, Eichele G, Hasty P, Bradley A. 1997. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386:804–810.

    Article  CAS  PubMed  Google Scholar 

  4. Wong AK, Pero R, Ormonde PA, Tavtigian SV, Bartel PL. 1997. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene brca2. J Biol Chem 272:31941–31944.

    Article  CAS  PubMed  Google Scholar 

  5. Venkitaraman AR. 2002. Cancer susceptibility and the functions of BRCA1 and BRCA2.Cell 108:171–182.

    Google Scholar 

  6. Bork P, Blomberg N, Nilges M. 1996. Internal repeats in the BRCA2 protein sequence. Nat Genet 13:22–23.

    Google Scholar 

  7. Esashi F, Christ N, Gannon J, Liu Y, Hunt T, Jasin M, West SC. 2005. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair.Nature 434:598–604.

    Article  CAS  PubMed  Google Scholar 

  8. Yang H, Jeffrey PD, Miller J, Kinnucan E, Sun Y, Thoma NH, Zheng N, Chen PL, Lee WH, Pavletich NP. 2002. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 297:1837–1848.

    Article  CAS  PubMed  Google Scholar 

  9. Bochkarev A, Bochkareva E. 2004. From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol 14:36–42.

    Article  CAS  PubMed  Google Scholar 

  10. Thorslund T, Esashi F, West SC. 2007. Interactions between human BRCA2 protein and the meiosis-specific recombinase DMC1. Embo J 26:2915–2922.

    Article  CAS  PubMed  Google Scholar 

  11. Milner J, Ponder B, Hughes-Davies L, Seltmann M, Kouzarides T. 1997. Transcriptional activation functions in BRCA2. Nature 386:772–773.

    Article  CAS  PubMed  Google Scholar 

  12. Kojic M, Kostrub CF, Buchman AR, Holloman WK. 2002. BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis.Mol Cell 10:683–691.

    Article  CAS  PubMed  Google Scholar 

  13. Warren M, Smith A, Partridge N, Masabanda J, Griffin D, Ashworth A. 2002. Structural analysis of the chicken BRCA2 gene facilitates identification of functional domains and disease causing mutations. Hum Mol Genet 11:841–851.

    Article  CAS  PubMed  Google Scholar 

  14. Lo T, Pellegrini L, Venkitaraman AR, Blundell TL. 2003. Sequence fingerprints in BRCA2 and RAD51: implications for DNA repair and cancer. DNA Repair 2:1015–1028.

    Article  CAS  PubMed  Google Scholar 

  15. Martin JS, Winkelmann N, Petalcorin MI, McIlwraith MJ, Boulton SJ. 2005. RAD-51-dependent and -independent roles of a Caenorhabditis elegans BRCA2-related protein during DNA double-strand break repair. Mol Cell Biol 25:3127–3139.

    Article  CAS  PubMed  Google Scholar 

  16. Funakoshi M, Li X, Velichutina I, Hochstrasser M, Kobayashi H. 2004. Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability. J Cell Sci 117:6447–6454.

    Article  CAS  PubMed  Google Scholar 

  17. Krogan NJ, Lam MH, Fillingham J, Keogh MC, Gebbia M, Li J, Datta N, Cagney G, Buratowski S, Emili A, Greenblatt JF. 2004. Proteasome involvement in the repair of DNA double-strand breaks. Mol Cell 16:1027–1034.

    Article  CAS  PubMed  Google Scholar 

  18. Gudmundsdottir K, Lord CJ, Ashworth A. 2007. The proteasome is involved in determining differential utilization of double-strand break repair pathways. Oncogene 26:7601–7606.

    Article  CAS  PubMed  Google Scholar 

  19. Hakimi MA, Bochar DA, Chenoweth J, Lane WS, Mandel G, Shiekhattar R. 2002. A core-BRAF35 complex containing histone deacetylase mediates repression of neuronal-specific genes. Proc Natl Acad Sci U S A 99:7420–7425.

    Article  CAS  PubMed  Google Scholar 

  20. Xia B, Sheng Q, Nakanishi K, Ohashi A, Wu J, Christ N, Liu X, Jasin M, Couch FJ, Livingston DM. 2006. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. Mol Cell 22: 719–729.

    Article  CAS  PubMed  Google Scholar 

  21. Hussain S, Wilson JB, Medhurst AL, Hejna J, Witt E, Ananth S, Davies A, Masson JY, Moses R, West SC, de Winter JP, Ashworth A, Jones NJ, Mathew CG. 2004. Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet 13:1241–1248.

    Article  CAS  PubMed  Google Scholar 

  22. Hussain S, Witt E, Huber PA, Medhurst AL, Ashworth A, Mathew CG. 2003. Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1. Hum Mol Genet 12:2503–2510.

    Article  CAS  PubMed  Google Scholar 

  23. Wong JM, Ionescu D, Ingles CJ. 2003. Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2. Oncogene 22:28–33.

    Article  CAS  PubMed  Google Scholar 

  24. Marston NJ, Richards WJ, Hughes D, Bertwistle D, Marshall CJ, Ashworth A. 1999. Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol Cell Biol 19:4633–4642.

    CAS  PubMed  Google Scholar 

  25. Liu J, Yuan Y, Huan J, Shen Z. 2001. Inhibition of breast and brain cancer cell growth by BCCIPalpha, an evolutionarily conserved nuclear protein that interacts with BRCA2. Oncogene 20:336–345.

    Article  CAS  PubMed  Google Scholar 

  26. Marmorstein LY, Kinev AV, Chan GK, Bochar DA, Beniya H, Epstein JA, Yen TJ, Shiekhattar R. 2001. A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell 104:247–257.

    Article  CAS  PubMed  Google Scholar 

  27. Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, Milner J, Brown LA, Hsu F, Gilks B, Nielsen T, Schulzer M, Chia S, Ragaz J, Cahn A, Linger L, Ozdag H, Cattaneo E, Jordanova ES, Schuuring E, Yu DS, Venkitaraman A, Ponder B, Doherty A, Aparicio S, Bentley D, Theillet C, Ponting CP, Caldas C, Kouzarides T. 2003. EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115:523–535.

    Article  CAS  PubMed  Google Scholar 

  28. Fuks F, Milner J, Kouzarides T. 1998. BRCA2 associates with acetyltransferase activity when bound to P/CAF. Oncogene 17:2531–2534.

    Article  CAS  PubMed  Google Scholar 

  29. Li X, Heyer WD. 2008. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshioka K, Yumoto-Yoshioka Y, Fleury F, Takahashi M. 2003. pH- and salt-dependent self-assembly of human Rad51 protein analyzed as fluorescence resonance energy transfer between labeled proteins. J Biochem 133:593–597.

    Article  CAS  PubMed  Google Scholar 

  31. Mine J, Disseau L, Takahashi M, Cappello G, Dutreix M, Viovy JL. 2007. Real-time measurements of the nucleation, growth and dissociation of single Rad51-DNA nucleoprotein filaments. Nucleic Acids Res 35:7171–7187.

    Article  CAS  PubMed  Google Scholar 

  32. Yu DS, Sonoda E, Takeda S, Huang CL, Pellegrini L, Blundell TL, Venkitaraman AR. 2003. Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2. Mol Cell 12:1029–1041.

    Article  CAS  PubMed  Google Scholar 

  33. Pellegrini L, Yu DS, Lo T, Anand S, Lee M, Blundell TL, Venkitaraman AR. 2002. Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature 420:287–293.

    Article  CAS  PubMed  Google Scholar 

  34. Davies OR, Pellegrini L. 2007. Interaction with the BRCA2 C terminus protects RAD51-DNA filaments from disassembly by BRC repeats. Nat Struct Mol Biol 4:475–483.

    PubMed  Google Scholar 

  35. Esashi F, Galkin VE, Yu X, Egelman EH, West SC. 2007. Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nat Struct Mol Biol 14:468–474.

    Article  CAS  PubMed  Google Scholar 

  36. Brough R, Wei D, Leulier S, Lord CJ, Rong YS, Ashworth A. 2008. Functional analysis of Drosophila melanogaster BRCA2 in DNA repair. DNA Repair (Amst) 7:10–19.

    Article  Google Scholar 

  37. Petalcorin MI, Galkin VE, Yu X, Egelman EH, Boulton SJ. 2007. Stabilization of RAD-51-DNA filaments via an interaction domain in Caenorhabditis elegans BRCA2. Proc Natl Acad Sci U S A 104:8299–8304.

    Article  CAS  PubMed  Google Scholar 

  38. Daniels MJ, Wang Y, Lee M, Venkitaraman AR. 2004. Abnormal cytokinesis in cells deficient in the breast cancer susceptibility protein BRCA2. Science 306:876–879.

    Article  CAS  PubMed  Google Scholar 

  39. Wang W. 2007. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 8:735–748.

    Article  CAS  Google Scholar 

  40. Howlett NG, Taniguchi T, Olson S, Cox B, Waisfisz Q, De Die-Smulders C, Persky N, Grompe M, Joenje H, Pals G, Ikeda H, Fox EA, D’Andrea AD. 2002. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606–609.

    Article  CAS  Google Scholar 

  41. Reid S, Renwick A, Seal S, Baskcomb L, Barfoot R, Jayatilake H, Pritchard-Jones K, Stratton MR, Ridolfi-Luthy A, Rahman N. 2005. Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. J Med Genet 42:147–151.

    Article  CAS  PubMed  Google Scholar 

  42. Nagaraju G, Scully R. 2007. Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair (Amst) 6:1018–1031.

    Article  CAS  Google Scholar 

  43. Cipak L, Watanabe N, Bessho T. 2006. The role of BRCA2 in replication-coupled DNA interstrand cross-link repair in vitro. Nat Struct Mol Biol 13:729–733.

    Article  Google Scholar 

  44. Neale MJ, Keeney S. 2006. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442:153–158.

    Article  CAS  PubMed  Google Scholar 

  45. Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM, Scully R. 1998. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell 2:317–328.

    Article  CAS  PubMed  Google Scholar 

  46. Thorslund T, West SC. 2007. BRCA2: a universal recombinase regulator. Oncogene 26:7720–7730.

    Article  Google Scholar 

  47. Evers B, Jonkers J. 2006. Mouse models of BRCA1 and BRCA2 deficiency: past lessons, current understanding and future prospects. Oncogene 25:5885–5897.

    Article  CAS  PubMed  Google Scholar 

  48. Abbott DW, Freeman ML, Holt JT. 1998. Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J Natl Cancer Inst 90:978–985.

    Article  CAS  PubMed  Google Scholar 

  49. Patel KJ, Yu VP, Lee H, Corcoran A, Thistlethwaite FC, Evans MJ, Colledge WH, Friedman LS, Friedman BA, Friedmann AR. 1998. Involvement of Brca2 in DNA repair.Mol Cell 1:347–357.

    Article  CAS  PubMed  Google Scholar 

  50. Tutt A, Gabriel A, Bertwistle D, Connor F, Paterson H, Peacock J, Ross G, Ashworth A. 1999. Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 9:1107–1110.

    Article  CAS  PubMed  Google Scholar 

  51. Moynahan ME, Pierce AJ, Jasin M. 2001. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263–272.

    Article  CAS  PubMed  Google Scholar 

  52. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O’Connor MJ, Tutt AN, Zdzienicka MZ, Smith GC, Ashworth A. 2006. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115.

    Article  CAS  PubMed  Google Scholar 

  53. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NM, Jackson SP, Smith GC, Ashworth A. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921.

    Article  CAS  PubMed  Google Scholar 

  54. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A. 2001. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29:418–425.

    Article  CAS  PubMed  Google Scholar 

  55. Ludwig T, Fisher P, Murty V, Efstratiadis A. 2001. Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene 20:3937–3948.

    Article  CAS  PubMed  Google Scholar 

  56. Cheung AM, Elia A, Tsao MS, Done S, Wagner KU, Hennighausen L, Hakem R, Mak TW. 2004. Brca2 deficiency does not impair mammary epithelium development but promotes mammary adenocarcinoma formation in p53(+/−) mutant mice. Cancer Res 64:1959–1965.

    Article  CAS  PubMed  Google Scholar 

  57. Frappart PO, Lee Y, Lamont J, McKinnon PJ. 2007. BRCA2 is required for neurogenesis and suppression of medulloblastoma. Embo J 26:2732–2742.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Mazoyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mazoyer, S. (2009). Recent Advances in Understanding the Cellular Functions of BRCA2. In: Welcsh, P. (eds) The Role of Genetics in Breast and Reproductive Cancers. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0477-5_5

Download citation

Publish with us

Policies and ethics