Skip to main content
Book cover

Glioblastoma pp 153–165Cite as

Adult Neural Stem Cells and Gliomagenesis

  • Chapter
  • First Online:
  • 1797 Accesses

Abstract

Gliomas are primary cancers of the brain and the most lethal cancers known to man. The recent discovery of stem cell and progenitor populations suggests that these cells residing in the postnatal brain may themselves serve as an origin of brain tumors. On the basis of CD133 expression, cancer stem cells and normal adult neural stem cells can be isolated by sorting and are shown to self-renew and exhibit multipotency. The identification of this cellular population has led to the suggestion that these cells represent the tumor-initiating fraction of human gliomas. Investigations of human neural stem cells and their potential for malignancy may finally identify a cell-of-origin for human gliomas. This, in turn, may facilitate better therapeutic targeting, identification of new markers for the progression of gliomas, earlier cancer detection, and development of new therapeutic agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aboody KS et al (2000) Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 97(23):12846–12851

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41(5):683–686

    Article  CAS  PubMed  Google Scholar 

  • Assanah M et al (2006) Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 26(25):6781–6790

    Article  CAS  PubMed  Google Scholar 

  • Bachoo RM et al (2002) Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1(3):269–277

    Article  CAS  PubMed  Google Scholar 

  • Bao S et al (2006a) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848

    Article  CAS  PubMed  Google Scholar 

  • Bao S et al (2006b) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  PubMed  Google Scholar 

  • Bonnert TP et al (2006) Molecular characterization of adult mouse subventricular zone progenitor cells during the onset of differentiation. Eur J Neurosci 24(3):661–675

    Article  PubMed  Google Scholar 

  • Campisi J (2007) Aging and cancer cell biology, 2007. Aging Cell 6(3):261–263

    Article  CAS  PubMed  Google Scholar 

  • Clement V et al (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172

    Article  CAS  PubMed  Google Scholar 

  • Curtis MA et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315(5816):1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Dahmane N et al (2001) The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128(24):5201–5212

    CAS  PubMed  Google Scholar 

  • Daou MC et al (2005) Doublecortin is preferentially expressed in invasive human brain tumors. Acta Neuropathol 110(5):472–480

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Alvarez-Buylla A (1996) Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A 93(25):14895–14900

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17(13):5046–5061

    CAS  PubMed  Google Scholar 

  • Doetsch F et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F et al (2002a) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36(6):1021–1034

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F et al (2002b) Lack of the cell-cycle inhibitor p27Kip1 results in selective increase of transit-amplifying cells for adult neurogenesis. J Neurosci 22(6):2255–2264

    CAS  PubMed  Google Scholar 

  • Feldkamp MM, Lau N, Guha A (1997) Signal transduction pathways and their relevance in human astrocytomas. J Neurooncol 35(3):223–248

    Article  CAS  PubMed  Google Scholar 

  • Galli R et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Verdugo JM et al (1998) Architecture and cell types of the adult subventricular zone: in search of the stem cells. J Neurobiol 36(2):234–248

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7(10):733–736

    Article  CAS  PubMed  Google Scholar 

  • Gil-Perotin S et al (2006) Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 26(4):1107–1116

    Article  CAS  PubMed  Google Scholar 

  • Hesselager G et al (2003) Complementary effects of platelet-derived growth factor autocrine stimulation and p53 or Ink4a-Arf deletion in a mouse glioma model. Cancer Res 63(15):4305–4309

    CAS  PubMed  Google Scholar 

  • Hopewell JW (1975) The subependymal plate and the genesis of gliomas. J Pathol 117(2):101–103

    Article  CAS  PubMed  Google Scholar 

  • Ivanchuk SM et al (2001) The INK4A/ARF locus: role in cell cycle control and apoptosis and implications for glioma growth. J Neurooncol 51(3):219–229

    Article  CAS  PubMed  Google Scholar 

  • Jackson EL et al (2006) PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51(2):187–199

    Article  CAS  PubMed  Google Scholar 

  • Jain RK et al (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8(8):610–622

    Article  CAS  PubMed  Google Scholar 

  • Jang T et al (2004) Aberrant nestin expression during ethylnitrosourea-(ENU)-induced neurocarcinogenesis. Neurobiol Dis 15(3):544–552

    Article  CAS  PubMed  Google Scholar 

  • Kakita A, Goldman JE (1999) Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23(3):461–472

    Article  CAS  PubMed  Google Scholar 

  • Kakita A et al (2003) Some glial progenitors in the neonatal subventricular zone migrate through the corpus callosum to the contralateral cerebral hemisphere. J Comp Neurol 458(4):381–388

    Article  PubMed  Google Scholar 

  • Katayama K et al (2005) Ethylnitrosourea induces neural progenitor cell apoptosis after S-phase accumulation in a p53-dependent manner. Neurobiol Dis 18(1):218–225

    Article  CAS  PubMed  Google Scholar 

  • Knizetova P, Darling JL, Bartek J (2008) Vascular endothelial growth factor in astroglioma stem cell biology and response to therapy. J Cell Mol Med 12(1):111–125

    Article  CAS  PubMed  Google Scholar 

  • Kornack DR, Rakic P (2001) The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci U S A 98(8):4752–4757

    Article  CAS  PubMed  Google Scholar 

  • Kuan CT, Wikstrand CJ, Bigner DD (2001) EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 8(2):83–96

    Article  CAS  PubMed  Google Scholar 

  • Lachyankar MB et al (2000) A role for nuclear PTEN in neuronal differentiation. J Neurosci 20(4):1404–1413

    CAS  PubMed  Google Scholar 

  • Lantos PL (1977) The role of the subependymal plate in the origin of gliomas induced by ethylnitrosourea in the rat brain. Experientia 33(4):521–522

    Article  CAS  PubMed  Google Scholar 

  • Lantos PL, Pilkington GJ (1979) The development of experimental brain tumours. A sequential light and electron microscope study of the subependymal plate. I. Early lesions (abnormal cell clusters). Acta Neuropathol 45(3):167–175

    Article  CAS  PubMed  Google Scholar 

  • Lassman AB (2004) Molecular biology of gliomas. Curr Neurol Neurosci Rep 4(3):228–233

    Article  PubMed  Google Scholar 

  • Li L, Liu F, Ross AH (2003) PTEN regulation of neural development and CNS stem cells. J Cell Biochem 88(1):24–28

    Article  CAS  PubMed  Google Scholar 

  • Lim DA et al (2007) Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol 9(4):424–429

    Article  PubMed  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264(5162):1145–1148

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Garcia-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271(5251):978–981

    Article  CAS  PubMed  Google Scholar 

  • Menn B et al (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26(30):7907–7918

    Article  CAS  PubMed  Google Scholar 

  • Molofsky AV et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452

    Article  CAS  PubMed  Google Scholar 

  • Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14(4):629–644

    Article  CAS  PubMed  Google Scholar 

  • Nakano I, Saigusa K, Kornblum HI (2008) BMPing off glioma stem cells. Cancer Cell 13(1):3–4

    Article  CAS  PubMed  Google Scholar 

  • Noble M, Wren D, Wolswijk G (1992) The O-2A(adult) progenitor cell: a glial stem cell of the adult central nervous system. Semin Cell Biol 3(6):413–422

    Article  CAS  PubMed  Google Scholar 

  • Nunes MC et al (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat Med 9(4):439–447

    Article  CAS  PubMed  Google Scholar 

  • Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425(4):479–494

    Article  CAS  PubMed  Google Scholar 

  • Panchision DM et al (2001) Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 15(16):2094–2110

    Article  CAS  PubMed  Google Scholar 

  • Pilkington GJ, Lantos PL (1979) The development of experimental brain tumours a sequential light and electron microscope study of the subependymal plate. II. Microtumours. Acta Neuropathol 45(3):177–185

    Article  CAS  PubMed  Google Scholar 

  • Quinones-Hinojosa A et al (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494(3):415–434

    Article  PubMed  Google Scholar 

  • Roy NS et al (1999) Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci 19(22):9986–9995

    CAS  PubMed  Google Scholar 

  • Sanai N et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427(6976):740–744

    Article  CAS  PubMed  Google Scholar 

  • Sanai N et al (2007) Comment on “Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension”. Science 318(5849):393 author reply 393

    Article  CAS  PubMed  Google Scholar 

  • Santra M et al (2006) Ectopic expression of doublecortin protects adult rat progenitor cells and human glioma cells from severe oxygen and glucose deprivation. Neuroscience 142(3):739–752

    Article  CAS  PubMed  Google Scholar 

  • Savarese TM et al (2005) Isolation of immortalized, INK4a/ARF-deficient cells from the subventricular zone after in utero N-ethyl-N-nitrosourea exposure. J Neurosurg 102(1):98–108

    Article  PubMed  Google Scholar 

  • Schneider T et al (2006) Increased concentrations of transforming growth factor beta1 and beta2 in the plasma of patients with glioblastoma. J Neurooncol 79(1):61–65

    Article  CAS  PubMed  Google Scholar 

  • Schulenburg A et al (2006) Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer 107(10):2512–2520

    Article  CAS  PubMed  Google Scholar 

  • Shih AH, Holland EC (2006) Platelet-derived growth factor (PDGF) and glial tumorigenesis. Cancer Lett 232(2):139–147

    Article  CAS  PubMed  Google Scholar 

  • Singh SK et al (2004a) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  CAS  PubMed  Google Scholar 

  • Singh SK et al (2004b) Cancer stem cells in nervous system tumors. Oncogene 23(43):7267–7273

    Article  CAS  PubMed  Google Scholar 

  • Tang Y et al (2003) In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14(13):1247–1254

    Article  CAS  PubMed  Google Scholar 

  • Varga AC, Wrana JL (2005) The disparate role of BMP in stem cell biology. Oncogene 24(37):5713–5721

    Article  CAS  PubMed  Google Scholar 

  • Vick NA, Lin MJ, Bigner DD (1977) The role of the subependymal plate in glial tumorigenesis. Acta Neuropathol 40(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Wiese C et al (2004) Nestin expression–a property of multi-lineage progenitor cells? Cell Mol Life Sci 61(19–20):2510–2522

    Article  CAS  PubMed  Google Scholar 

  • Wolswijk G, Noble M (1992) Cooperation between PDGF and FGF converts slowly dividing O-2Aadult progenitor cells to rapidly dividing cells with characteristics of O-2Aperinatal progenitor cells. J Cell Biol 118(4):889–900

    Article  CAS  PubMed  Google Scholar 

  • Wolswijk G, Riddle PN, Noble M (1991) Platelet-derived growth factor is mitogenic for O-2Aadult progenitor cells. Glia 4(5):495–503

    Article  CAS  PubMed  Google Scholar 

  • Yang XH et al (2008) Nestin expression in different tumours and its relevance to malignant grade. J Clin Pathol 61(4):467–473

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y et al (2005) Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 8(2):119–130

    Article  CAS  PubMed  Google Scholar 

  • Zolota V et al (2008) Expression of cell cycle inhibitors p21, p27, p14 and p16 in gliomas Correlation with classic prognostic factors and patients’ outcome. Neuropathology 28(1):35–42

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Sanai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag New York

About this chapter

Cite this chapter

Sanai, N. (2010). Adult Neural Stem Cells and Gliomagenesis. In: Ray, S. (eds) Glioblastoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0410-2_7

Download citation

Publish with us

Policies and ethics