Skip to main content
Book cover

Glioblastoma pp 243–263Cite as

Antiangiogenic Strategies for the Treatment of Gliomas

  • Chapter
  • First Online:

Abstract

Malignant gliomas (glioblastoma and anaplastic forms of astrocytoma and oligodendroglioma) are highly vascularized tumors and, therefore, constitute ideal targets for new antiangiogenic treatments. Angiogenesis is a highly complex biologic process, involving a multitude of different molecular drivers and signaling pathways. The vascular endothelial growth factor (VEGF) pathways appear to play a key role in this process, and targeting such pathways has emerged as one of the most efficient antiangiogenic strategies. To date, the best studied of these drugs has been the anti-VEGF monoclonal antibody, bevacizumab. In recurrent malignant gliomas, this drug achieves high response rates and seems to prolong progression-free survival. However, similar to other solid tumors, the magnitude of the survival benefit has been less obvious, as most patients eventually progress after an initial clinical benefit. In this chapter, we seek to recapitulate the development of antiangiogenesis treatment for malignant gliomas, from molecular mechanisms to challenges in the evaluation of antiangiogenic drugs in the clinical setting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe T, Okamura K, Ono M et al (1993) Induction of vascular endothelial tubular morphogenesis by human glioma cells. A model system for tumor angiogenesis. J Clin Invest 92:54–61

    Article  CAS  PubMed  Google Scholar 

  • Abounader R, Laterra J (2005) Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol 7:436–451

    Article  CAS  PubMed  Google Scholar 

  • Alavi A, Hood JD, Frausto R et al (2003) Role of raf in vascular protection from distinct apoptotic stimuli. Science 301:94–96

    Article  CAS  PubMed  Google Scholar 

  • Algire GH, Chalkely HW, Legallais FY et al (1945) Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 6:73–85

    Google Scholar 

  • Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  • Batchelor TT, Sorensen AG, Di Tomaso E et al (2007) Azd2171, a pan-vegf receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11:83–95

    Article  CAS  PubMed  Google Scholar 

  • Bergsland E, Dickler MN (2004) Maximizing the potential of bevacizumab in cancer treatment. Oncologist 9(suppl 1):36–42

    Article  Google Scholar 

  • Bertolini F, Shaked Y, Mancuso P et al (2006) The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat Rev Cancer 6:835–845

    Article  CAS  PubMed  Google Scholar 

  • Blankenberg FG, Backer MV, Levashova Z et al (2006) In vivo tumor angiogenesis imaging with site-specific labeled (99m) tc-hynic-vegf. Eur J Nucl Med Mol Imaging 33:841–848

    Article  PubMed  Google Scholar 

  • Board R, Jayson GC (2005) Platelet-derived growth factor receptor (pdgfr): a target for anticancer therapeutics. Drug Resist Updat 8:75–83

    Article  CAS  PubMed  Google Scholar 

  • Brat DJ, Castellano-Sanchez A, Kaur B et al (2002) Genetic and biologic progression in astrocytomas and their relation to angiogenic dysregulation. Adv Anat Pathol 9:24–36

    Article  PubMed  Google Scholar 

  • Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133

    Article  CAS  PubMed  Google Scholar 

  • Bredow S, Lewin M, Hofmann B et al (2000) Imaging of tumour neovasculature by targeting the tgf-beta binding receptor endoglin. Eur J Cancer 36:675–681

    Article  CAS  PubMed  Google Scholar 

  • Brem S (1976) The role of vascular proliferation in the growth of brain tumors. Clin Neurosurg 23:440–453

    CAS  PubMed  Google Scholar 

  • Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 48:347–356

    CAS  PubMed  Google Scholar 

  • Brem S, Tsanaclis AM, Gately S et al (1992) Immunolocalization of basic fibroblast growth factor to the microvasculature of human brain tumors. Cancer 70:2673–2680

    Article  CAS  PubMed  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M et al (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  • Chang SM, Lamborn KR, Malec M et al (2004) Phase II study of temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys 60:353–357

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Delaloye S, Silverman DH et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18f] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25:4714–4721

    Article  CAS  PubMed  Google Scholar 

  • Cheng SY, Huang HJ, Nagane M et al (1996) Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 93:8502–8507

    Article  CAS  PubMed  Google Scholar 

  • Chi A, Norden AD, Wen PY (2007) Inhibition of angiogenesis and invasion in malignant gliomas. Expert Rev Anticancer Ther 7:1537–1560

    Article  CAS  PubMed  Google Scholar 

  • Conrad C, Friedman H, Reardon D et al (2004) A phase I/II trial of single-agent ptk 787/zk 222584 (ptk/zk), a novel, oral angiogenesis inhibitor, in patients with recurrent glioblastoma multiforme (gbm). J Clin Oncol (meeting abstract)

    Google Scholar 

  • Coomber BL (1995) Suramin inhibits c6 glioma-induced angiogenesis in vitro. J Cell Biochem 58:199–207

    Article  CAS  PubMed  Google Scholar 

  • D’amato RJ, Loughnan MS, Flynn E et al (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085

    Article  PubMed  Google Scholar 

  • Damiano V, Melisi D, Bianco C et al (2005) Cooperative antitumor effect of multitargeted kinase inhibitor zd6474 and ionizing radiation in glioblastoma. Clin Cancer Res 11:5639–5644

    Article  CAS  PubMed  Google Scholar 

  • De Bouard S, Herlin P, Christensen JG et al (2007) Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro Oncol 9:412–423

    Article  PubMed  CAS  Google Scholar 

  • De Vries C, Escobedo JA, Ueno H et al (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991

    Article  PubMed  Google Scholar 

  • Desjardins A, Vredenburgh JJ, Quinn J et al (2006) Combination of bevacizumab, a monoclonal antibody to vascular endothelial growth factor (vegf), and chemotherapy for recurrent malignant glioma patients: series of cases. Neuro Oncol (meeting abstracts) 8:454

    Google Scholar 

  • Ding H, Wu X, Roncari L et al (2000) Expression and regulation of neuropilin-1 in human astrocytomas. Int J Cancer 88:584–592

    Article  CAS  PubMed  Google Scholar 

  • Dresemann G (2005) Imatinib and hydroxyurea in pretreated progressive glioblastoma multiforme: a patient series. Ann Oncol 16:1702–1708

    Article  CAS  PubMed  Google Scholar 

  • Du R, Lu KV, Petritsch C et al (2008) Hif1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13:206–220

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF (2005) Angiogenesis: update 2005. J Thromb Haemost 3:1835–1842

    Article  CAS  PubMed  Google Scholar 

  • Fayed N, Morales H, Modrego PJ et al (2006) Contrast/noise ratio on conventional mri and choline/creatine ratio on proton mri spectroscopy accurately discriminate low-grade from high-grade cerebral gliomas. Acad Radiol 13:728–737

    Article  PubMed  Google Scholar 

  • Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (2005) Vegf as a therapeutic target in cancer. Oncology 69(suppl 3):11–16

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-vegf antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Merler E, Abernathy C et al (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288

    Article  CAS  PubMed  Google Scholar 

  • Gagliardi AR, Kassack M, Kreimeyer A et al (1998) Antiangiogenic and antiproliferative activity of suramin analogues. Cancer Chemother Pharmacol 41:117–124

    Article  CAS  PubMed  Google Scholar 

  • Gerber HP, Ferrara N (2005) Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 65:671–680

    CAS  PubMed  Google Scholar 

  • Gerstner ER, Duda DG, Di Tomaso E et al (2007) Antiangiogenic agents for the treatment of glioblastoma. Expert Opin Invest Drugs 16:1895–1908

    Article  CAS  Google Scholar 

  • Goldbrunner RH, Bendszus M, Wood J et al (2004) Ptk787/zk222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery 55:426–432; discussion 32

    Google Scholar 

  • Goldman CK, Kim J, Wong WL et al (1993) Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology. Mol Biol Cell 4:121–133

    CAS  PubMed  Google Scholar 

  • Gossmann A, Helbich TH, Kuriyama N et al (2002) Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to antiangiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging 15:233–240

    Article  PubMed  Google Scholar 

  • Greenblatt M, Shubi P (1968) Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J Natl Cancer Inst 41:111–124

    CAS  PubMed  Google Scholar 

  • Guha A (1998) Ras activation in astrocytomas and neurofibromas. Can J Neurol Sci 25:267–281

    CAS  PubMed  Google Scholar 

  • Guo W, Giancotti FG (2004) Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 5:816–826

    Article  CAS  PubMed  Google Scholar 

  • Hariharan S, Gustafson D, Holden S et al (2007) Assessment of the biological and pharmacological effects of the alpha nu beta3 and alpha nu beta5 integrin receptor antagonist, cilengitide (emd 121974), in patients with advanced solid tumors. Ann Oncol 18:1400–1407

    Article  CAS  PubMed  Google Scholar 

  • Heidenreich R, Machein M, Nicolaus A et al (2004) Inhibition of solid tumor growth by gene transfer of vegf receptor-1 mutants. Int J Cancer 111:348–357

    Article  CAS  PubMed  Google Scholar 

  • Heymach JV (2005) Zd6474–clinical experience to date. Br J Cancer 92(suppl 1):S14–S20

    Article  CAS  PubMed  Google Scholar 

  • Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and vegf. Science 284:1994–1998

    Article  CAS  PubMed  Google Scholar 

  • Holash J, Davis S, Papadopoulos N et al (2002) Vegf-trap: a vegf blocker with potent antitumor effects. Proc Natl Acad Sci USA 99:11393–11398

    Article  CAS  PubMed  Google Scholar 

  • Hormigo A, Gutin PH, Rafii S (2007) Tracking normalization of brain tumor vasculature by magnetic imaging and proangiogenic biomarkers. Cancer Cell 11:6–8

    Article  CAS  PubMed  Google Scholar 

  • Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  CAS  PubMed  Google Scholar 

  • Ide AG, Baker NH, Warren SL (1939) Vascularization of the brown pearce rabbit epithelioma transplant as seen in the transparent ear chamber. Am J Roentgenol 42:891–899

    Google Scholar 

  • Im SA, Gomez-Manzano C, Fueyo J et al (1999) Antiangiogenesis treatment for gliomas: transfer of antisense-vascular endothelial growth factor inhibits tumor growth in vivo. Cancer Res 59:895–900

    CAS  PubMed  Google Scholar 

  • Jain RK, Safabakhsh N, Sckell A et al (1998) Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci USA 95:10820–10825

    Article  CAS  PubMed  Google Scholar 

  • Jouanneau E (2008) Angiogenesis and gliomas: current issues and development of surrogate markers. Neurosurgery 62:31–50; discussion 2

    Google Scholar 

  • Jun HT, Sun J, Rex K et al (2007) Amg 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in u-87mg cells and xenografts. Clin Cancer Res 13:6735–6742

    Article  CAS  PubMed  Google Scholar 

  • Karcher S, Steiner HH, Ahmadi R et al (2006) Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 118:2182–2189

    Article  CAS  PubMed  Google Scholar 

  • Kaur B, Brat DJ, Devi NS et al (2005) Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24:3632–3642

    Article  CAS  PubMed  Google Scholar 

  • Keck PJ, Hauser SD, Krivi G et al (1989) Vascular permeability factor, an endothelial cell mitogen related to pdgf. Science 246:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Kesari S, Schiff D, Doherty L et al (2007) Phase II study of metronomic chemotherapy for recurrent malignant gliomas in adults. Neuro Oncol 9:354–363

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Li B, Winer J et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844

    Article  CAS  PubMed  Google Scholar 

  • Kindler HL, Friberg G, Singh DA et al (2005) Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 23:8033–8040

    Article  CAS  PubMed  Google Scholar 

  • Konner J, Dupont J (2004) Use of soluble recombinant decoy receptor vascular endothelial growth factor trap (vegf trap) to inhibit vascular endothelial growth factor activity. Clin Colorectal Cancer 4(suppl 2):S81–S85

    Article  CAS  PubMed  Google Scholar 

  • Leon SP, Folkerth RD, Black PM (1996) Microvessel density is a prognostic indicator for patients with astroglial brain tumors. Cancer 77:362–372

    Article  CAS  PubMed  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ et al (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  CAS  PubMed  Google Scholar 

  • Levin VA, Phuphanich S, Yung WK et al (2006) Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation. J Neurooncol 78:295–302

    Article  CAS  PubMed  Google Scholar 

  • Li VW, Folkerth RD, Watanabe H et al (1994) Microvessel count and cerebrospinal fluid basic fibroblast growth factor in children with brain tumours. Lancet 344:82–86

    Article  CAS  PubMed  Google Scholar 

  • Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  PubMed  Google Scholar 

  • Mancuso P, Burlini A, Pruneri G et al (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97:3658–3661

    Article  CAS  PubMed  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnurch H et al (1993) High affinity vegf binding and developmental expression suggest flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846

    Article  CAS  PubMed  Google Scholar 

  • Moriyama T, Kataoka H, Koono M et al (1999) Expression of hepatocyte growth factor/scatter factor and its receptor c-met in brain tumors: evidence for a role in progression of astrocytic tumors (review). Int J Mol Med 3:531–536

    CAS  PubMed  Google Scholar 

  • Newton HB (2003) Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors, part 1: growth factor and ras signaling pathways. Expert Rev Anticancer Ther 3:595–614

    Article  CAS  PubMed  Google Scholar 

  • Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787

    Article  CAS  PubMed  Google Scholar 

  • Ohgaki H, Dessen P, Jourde B et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64:6892–6899

    Article  CAS  PubMed  Google Scholar 

  • Omuro AM, Faivre S, Raymond E (2007) Lessons learned in the development of targeted therapy for malignant gliomas. Mol Cancer Ther 6:1909–1919

    Article  CAS  PubMed  Google Scholar 

  • Papapetropoulos A, Garcia-Cardena G, Madri JA et al (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100:3131–3139

    Article  CAS  PubMed  Google Scholar 

  • Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  PubMed  Google Scholar 

  • Plate KH, Breier G, Weich HA et al (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    Article  CAS  PubMed  Google Scholar 

  • Plate KH, Breier G, Weich HA et al (1994) Vascular endothelial growth factor and glioma angiogenesis: coordinate induction of vegf receptors, distribution of vegf protein and possible in vivo regulatory mechanisms. Int J Cancer 59:520–529

    Article  CAS  PubMed  Google Scholar 

  • Pope WB, Lai A, Nghiemphu P et al (2006) Mri in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66:1258–1260

    Article  CAS  PubMed  Google Scholar 

  • Rajantie I, Ilmonen M, Alminaite A et al (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104:2084–2086

    Article  CAS  PubMed  Google Scholar 

  • Raymond E, Brandes A, Van Oosterom A et al (2004) Multicentre phase II study of imatinib mesylate in patients with recurrent glioblastoma: an eortc: Nddg/btg intergroup study. J Clin Oncol (meeting abstracts) 22:1501

    Google Scholar 

  • Reardon D, Friedman H, Yung WKA et al (2004) A phase I/II trial of ptk787/zk 222584 (ptk/zk), a novel, oral angiogenesis inhibitor, in combination with either temozolomide or lomustine for patients with recurrent glioblastoma multiforme (gbm). J Clin Oncol (meeting abstracts) 22:1513

    Google Scholar 

  • Reardon DA, Egorin MJ, Quinn JA et al (2005) Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin Oncol 23:9359–9368

    Article  CAS  PubMed  Google Scholar 

  • Reardon D, Fink K, Nabors B et al (2007) Phase IIa trial of cilengitide (emd121974) single-agent therapy in patients (pts) with recurrent glioblastoma (gbm): Emd 121974-009. J Clin Oncol (meeting abstracts) 25:2002

    Google Scholar 

  • Reardon DA, Desjardins A, Vredenburgh JJ et al (2008) Safety and pharmacokinetics of dose-intensive imatinib mesylate plus temozolomide: phase 1 trial in adults with malignant glioma. Neuro Oncol 10:330–340

    Google Scholar 

  • Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56:5754–5757

    CAS  PubMed  Google Scholar 

  • Rich JN, Sathornsumetee S, Keir ST et al (2005) Zd6474, a novel tyrosine kinase inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor, inhibits tumor growth of multiple nervous system tumors. Clin Cancer Res 11:8145–8157

    Article  CAS  PubMed  Google Scholar 

  • Rubenstein JL, Kim J, Ozawa T et al (2000) Anti-vegf antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2:306–314

    Article  CAS  PubMed  Google Scholar 

  • Ryan AJ, Wedge SR (2005) Zd6474–a novel inhibitor of vegfr and egfr tyrosine kinase activity. Br J Cancer 92(suppl 1):S6–S13

    Article  CAS  PubMed  Google Scholar 

  • Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  CAS  PubMed  Google Scholar 

  • Sandstrom M, Johansson M, Andersson U et al (2004) The tyrosine kinase inhibitor zd6474 inhibits tumour growth in an intracerebral rat glioma model. Br J Cancer 91:1174–1180

    CAS  PubMed  Google Scholar 

  • Santarelli JG, Udani V, Yung CY et al (2005) Preuss resident research award: bone marrow-derived flk-1-expressing cd34+ cells contribute to the endothelium of tumor vessels in mouse brain. Clin Neurosurg 52:384–388

    CAS  PubMed  Google Scholar 

  • Sathornsumetee S, Cao Y, Marcello JE et al (2008) Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 26:271–278

    Article  CAS  PubMed  Google Scholar 

  • Schmidt NO, Westphal M, Hagel C et al (1999) Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 84:10–18

    Article  CAS  PubMed  Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM et al (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    Article  CAS  PubMed  Google Scholar 

  • Shweiki D, Itin A, Soffer D et al (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    Article  CAS  PubMed  Google Scholar 

  • Stark-Vance V (2005) Bevacizumab and cpt-11 in the treatment of relapsed malignant glioma. Neuro Oncol (meeting abstracts) 7:369

    Google Scholar 

  • Stratmann A, Risau W, Plate KH (1998) Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 153:1459–1466

    CAS  PubMed  Google Scholar 

  • Stupp R, Goldbrunner R, Neyns B et al (2007) Phase I/IIa trial of cilengitide (emd121974) and temozolomide with concomitant radiotherapy, followed by temozolomide and cilengitide maintenance therapy in patients (pts) with newly diagnosed glioblastoma (gbm). J Clin Oncol (meeting abstracts) 25:2000

    Google Scholar 

  • Suddith RL, Kelly PJ, Hutchison HT et al (1975) In vitro demonstration of an endothelial proliferative factor produced by neural cell lines. Science 190:682–684

    Article  CAS  PubMed  Google Scholar 

  • Takahashi JA, Mori H, Fukumoto M et al (1990) Gene expression of fibroblast growth factors in human gliomas and meningiomas: demonstration of cellular source of basic fibroblast growth factor mrna and peptide in tumor tissues. Proc Natl Acad Sci USA 87:5710–5714

    Article  CAS  PubMed  Google Scholar 

  • Takano S, Gately S, Engelhard H et al (1994) Suramin inhibits glioma cell proliferation in vitro and in the brain. J Neurooncol 21:189–201

    Article  CAS  PubMed  Google Scholar 

  • Tong RT, Boucher Y, Kozin SV et al (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736

    Article  CAS  PubMed  Google Scholar 

  • Tsai JC, Goldman CK, Gillespie GY (1995) Vascular endothelial growth factor in human glioma cell lines: induced secretion by egf, pdgf-bb, and bfgf. J Neurosurg 82:864–873

    Article  CAS  PubMed  Google Scholar 

  • Vredenburgh JJ, Desjardins A, Herndon JE 2nd et al (2007a) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729

    Article  CAS  PubMed  Google Scholar 

  • Vredenburgh JJ, Desjardins A, Herndon JE et al (2007b) Phase II trial of bevacizumab and ironotecan in recurrent malignant gliomas. Clin Cancer Res 13:1253–1259

    Google Scholar 

  • Wachsberger PR, Burd R, Cardi C et al (2007) Vegf trap in combination with radiotherapy improves tumor control in u87 glioblastoma. Int J Radiat Oncol Biol Phys 67:1526–1537

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Anderson JC, Gladson CL (2005) The role of the extracellular matrix in angiogenesis in malignant glioma tumors. Brain Pathol 15:318–326

    Article  CAS  PubMed  Google Scholar 

  • Weinmann M, Belka C, Plasswilm L (2004) Tumour hypoxia: impact on biology, prognosis and treatment of solid malignant tumours. Onkologie 27:83–90

    Article  CAS  PubMed  Google Scholar 

  • Wen PY, Yung WKA, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North american brain tumor consortium study 99–08. Clin Cancer Res 12:4899–4907

    Article  CAS  PubMed  Google Scholar 

  • Willett CG, Boucher Y, Di Tomaso E et al (2004) Direct evidence that the vegf-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  CAS  PubMed  Google Scholar 

  • Wood JM, Bold G, Buchdunger E et al (2000) Ptk787/zk 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60:2178–2189

    CAS  PubMed  Google Scholar 

  • Yu C, Friday BB, Lai JP et al (2006) Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through akt and c-jun nh2-terminal kinase pathways. Mol Cancer Ther 5:2378–2387

    Article  CAS  PubMed  Google Scholar 

  • Yuan F, Chen Y, Dellian M et al (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93:14765–14770

    Article  CAS  PubMed  Google Scholar 

  • Zadeh G, Qian B, Okhowat A et al (2004) Targeting the tie2/tek receptor in astrocytomas. Am J Pathol 164:467–476

    CAS  PubMed  Google Scholar 

  • Zagzag D, Miller DC, Sato Y et al (1990) Immunohistochemical localization of basic fibroblast growth factor in astrocytomas. Cancer Res 50:7393–7398

    CAS  PubMed  Google Scholar 

  • Zagzag D, Hooper A, Friedlander DR et al (1999) In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol 159:391–400

    Article  CAS  PubMed  Google Scholar 

  • Zagzag D, Amirnovin R, Greco MA et al (2000a) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80:837–849

    CAS  PubMed  Google Scholar 

  • Zagzag D, Friedlander DR, Margolis B et al (2000b) Molecular events implicated in brain tumor angiogenesis and invasion. Pediatr Neurosurg 33:49–55

    Article  CAS  PubMed  Google Scholar 

  • Zagzag D, Zhong H, Scalzitti JM et al (2000c) Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Dvorak HF, Mukhopadhyay D (2001) Vascular permeability factor (vpf)/vascular endothelial growth factor (vegf) peceptor-1 down-modulates vpf/vegf receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem 276:26969–26979

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Vakil V, Braunstein M et al (2005) Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 105:3286–3294

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio M. P. Omuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag New York

About this chapter

Cite this chapter

Bazzoli, E., Omuro, A.M.P. (2010). Antiangiogenic Strategies for the Treatment of Gliomas. In: Ray, S. (eds) Glioblastoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0410-2_12

Download citation

Publish with us

Policies and ethics