Skip to main content

The Neurobiology of Chronic Pain in Children

  • Chapter
  • First Online:

Abstract

Chronic pain arises from plastic changes in the peripheral and central nervous system. These changes are triggered and may be maintained by an insult to tissues, organs or to the nervous system itself. Because neural connections within the sensory and nociceptive systems have been altered, pain can take on a ‘life of its own’ and no longer require the presence of tissue damage. As a result, chronic pain will often persist beyond the resolution of the original injury. Thus, chronic pain has a clear biological origin, but that origin lies within the nervous system itself and if we are to prevent or treat it effectively, we need to understand these neural changes. The poor pain recovery following the resolution of a physical insult can lead to the conclusion that patients, especially children, are catastrophizing or have aberrant health beliefs, while in fact defined neurobiological changes in neural pain pathways are the source of the problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Apkarian, A. V. (2008). Pain perception in relation to emotional learning. Current Opinion in Neurobiology, 18, 464–468.

    Article  PubMed  CAS  Google Scholar 

  • Beggs, S., Torsney, C., Drew, L. J., & Fitzgerald, M. (2002). The postnatal reorganization of primary afferent input and dorsal horn cell receptive fields in the rat spinal cord is an activity-dependent process. The European Journal of Neuroscience, 16, 1249–1258.

    Article  PubMed  Google Scholar 

  • Bingel, U., & Tracey, I. (2008). Imaging CNS modulation of pain in humans. Physiology (Bethesda), 23, 371–380.

    Article  Google Scholar 

  • Costigan, M., Scholz, J., & Woolf, C. J. (2009). Neuropathic pain: A maladaptive response of the nervous system to damage. Annual Review of Neuroscience, 32, 1–32.

    Article  PubMed  CAS  Google Scholar 

  • Craig, A. D. (2009). A rat is not a monkey is not a human: Comment on Mogil (Nature Rev. Neurosci. 10, 283–294 (2009)). Nature Reviews Neuroscience, 10, 466.

    Article  PubMed  CAS  Google Scholar 

  • DeLeo, J. A., & Yezierski, R. P. (2001). The role of neuroinflammation and neuroimmune activation in persistent pain. Pain, 90, 1–6.

    Article  PubMed  CAS  Google Scholar 

  • DeLeo, J. A., Tanga, F. Y., & Tawfik, V. L. (2004). Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. The Neuroscientist, 10, 40–52.

    Article  PubMed  CAS  Google Scholar 

  • Fairhurst, M., Wiech, K., Dunckley, P., & Tracey, I. (2007). Anticipatory brainstem activity predicts neural processing of pain in humans. Pain, 128, 101–110.

    Article  PubMed  Google Scholar 

  • Fitzgerald, M. (2005). The development of nociceptive circuits. Nature Reviews. Neuroscience, 6, 507–520.

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald, M., & Koltzenburg, M. (1986). The functional development of descending inhibitory pathways in the dorsolateral funiculus of the newborn rat spinal cord. Brain Research, 389, 261–270.

    PubMed  CAS  Google Scholar 

  • Fitzgerald, M., & Walker, S. (2009). Infant pain management: A developmental neurobiological approach. Nature Clinical Practice. Neurology, 5, 35–50.

    Article  PubMed  Google Scholar 

  • Gebhart, G. F. (2004). Descending modulation of pain. Neuroscience and Biobehavioral Reviews, 27, 729–737.

    Article  PubMed  CAS  Google Scholar 

  • Granmo, M., Petersson, P., & Schouenborg, J. (2008). Action-based body maps in the spinal cord emerge from a transitory floating organization. The Journal of Neuroscience, 28, 5494–5503.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, R. S., et al. (2007). Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. The Journal of Neuroscience, 27, 8699–8708.

    Article  PubMed  CAS  Google Scholar 

  • Grunau, R. E., Holsti, L., & Peters, J. W. (2006). Long-term consequences of pain in human neonates. Seminars in Fetal & Neonatal Medicine, 11, 268–275.

    Article  Google Scholar 

  • Hathway, G., Koch, S., Low, L., & Fitzgerald, M. (2009). The changing balance of brainstem-spinal cord ­modulation of pain processing over the first weeks of rat postnatal life. Journal of Physiology, 587, 2927–2935.

    Article  PubMed  CAS  Google Scholar 

  • Heinricher, M. M., Tavares, I., Leith, J. L., & Lumb, B. M. (2009). Descending control of nociception: Specificity, recruitment and plasticity. Brain Research Reviews, 60, 214–225.

    Article  PubMed  CAS  Google Scholar 

  • Hermann, C., Hohmeister, J., Demirakca, S., Zohsel, K., & Flor, H. (2006). Long-term alteration of pain sensitivity in school-aged children with early pain experiences. Pain, 125, 278–285.

    Article  PubMed  Google Scholar 

  • Hermann, C., Zohsel, K., Hohmeister, J., & Flor, H. (2008). Cortical correlates of an attentional bias to painful and innocuous somatic stimuli in children with recurrent abdominal pain. Pain, 136, 397–406.

    Article  PubMed  Google Scholar 

  • Howard, R. F. (2003). Current status of pain management in children. Journal of the American Medical Association, 290, 2464–2469.

    Article  PubMed  CAS  Google Scholar 

  • Howard, R., Walker, S., Mota, P., & Fitzgerald, M. (2005). The ontogeny of neuropathic pain: Postnatal onset of mechanical allodynia in rat spared nerve injury (SNI) and chronic constriction injury (CCI) models. Pain, 115, 382–389.

    Article  PubMed  Google Scholar 

  • Jones, G. T., Power, C., & Macfarlane, G. J. (2009). Adverse events in childhood and chronic widespread pain in adult life: Results from the 1958 British Birth Cohort Study. Pain, 143, 92–96.

    Article  PubMed  Google Scholar 

  • Kehlet, H., Jensen, T. S., & Woolf, C. J. (2006). Persistent postsurgical pain: Risk factors and prevention. Lancet, 367, 1618–1625.

    Article  PubMed  Google Scholar 

  • Lacroix-Fralish, M. L., & Mogil, J. S. (2009). Progress in genetic studies of pain and analgesia. Annual Review of Pharmacology and Toxicology, 49, 97–121.

    Article  PubMed  CAS  Google Scholar 

  • Latremoliere, A., & Woolf, C. J. (2009). Central ­sensitization: A generator of pain hypersensitivity by central neural plasticity. The Journal of Pain, 10, 895–926.

    Article  PubMed  Google Scholar 

  • Lebel, A., et al. (2008). fMRI reveals distinct CNS ­processing during symptomatic and recovered complex regional pain syndrome in children. Brain, 131, 1854–1879.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Walker, S. M., Fitzgerald, M., & Baccei, M. L. (2009). Activity-dependent modulation of glutamatergic signaling in the developing rat dorsal horn by early tissue injury. Journal of Neurophysiology, 102(4), 2208–2219.

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon, J. E., & Marinelli, M. (2009). Age matters. The European Journal of Neuroscience, 29, 997–1014.

    Article  PubMed  Google Scholar 

  • Milligan, E. D., & Watkins, L. R. (2009). Pathological and protective roles of glia in chronic pain. Nature Reviews. Neuroscience, 10, 23–36.

    Article  PubMed  CAS  Google Scholar 

  • Mogil, J. S. (2009). Animal models of pain: Progress and challenges. Nature Reviews. Neuroscience, 10, 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Moss, A., et al. (2007). Spinal microglia and neuropathic pain in young rats. Pain, 128, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Pattinson, D., et al. (2006). Aberrant dendritic branching and sensory inputs in the superficial dorsal horn of mice lacking CaMKIIalpha autophosphorylation. Molecular and Cellular Neurosciences, 33, 88–95.

    Article  PubMed  CAS  Google Scholar 

  • Peters, J. W., et al. (2005). Does neonatal surgery lead to increased pain sensitivity in later childhood? Pain, 114, 444–454.

    Article  PubMed  Google Scholar 

  • Porreca, F., Ossipov, M. H., & Gebhart, G. F. (2002). Chronic pain and medullary descending facilitation. Trends in Neurosciences, 25, 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Ren, K., et al. (2004). Characterization of basal and re-inflammation-associated long-term alteration in pain responsivity following short-lasting neonatal local inflammatory insult. Pain, 110, 588–596.

    Article  PubMed  CAS  Google Scholar 

  • Sandkuhler, J. (2009). Models and mechanisms of hyperalgesia and allodynia. Physiological Reviews, 89, 707–758.

    Article  PubMed  Google Scholar 

  • Sava, S., et al. (2009). Challenges of functional imaging research of pain in children. Molecular Pain, 5, 30.

    Article  PubMed  Google Scholar 

  • Schmelzle-Lubiecki, B. M., Campbell, K. A., Howard, R. H., Franck, L., & Fitzgerald, M. (2007). Long-term consequences of early infant injury and trauma upon somatosensory processing. European Journal of Pain, 11, 799–809.

    Article  PubMed  CAS  Google Scholar 

  • Scholz, J., & Woolf, C. J. (2007). The neuropathic pain triad: Neurons, immune cells and glia. Nature Neuroscience, 10, 1361–1368.

    Article  PubMed  CAS  Google Scholar 

  • Seifert, F., & Maihofner, C. (2009). Central mechanisms of experimental and chronic neuropathic pain: Findings from functional imaging studies. Cellular and Molecular Life Sciences, 66, 375–390.

    Article  PubMed  CAS  Google Scholar 

  • Slater, R., et al. (2006). Cortical pain responses in human infants. The Journal of Neuroscience, 26, 3662–3666.

    Article  PubMed  CAS  Google Scholar 

  • Slater, R., Worley, A., Fabrizi, L., Roberts, S., Meek, J., Boyd, S., & Fitzgerald, M. (2010). Evoked potentials generated by noxious stimulation in the human infant brain. European Journal of Pain, 14(3), 321–326.

    Article  PubMed  Google Scholar 

  • Suzuki, R., Rygh, L. J., & Dickenson, A. H. (2004). Bad news from the brain: Descending 5-HT pathways that control spinal pain processing. Trends in Pharmacological Sciences, 25, 613–617.

    Article  PubMed  CAS  Google Scholar 

  • Torsney, C., & Fitzgerald, M. (2003). Spinal dorsal horn cell receptive field size is increased in adult rats following neonatal hindpaw skin injury. Journal de Physiologie, 550, 255–261.

    Article  CAS  Google Scholar 

  • Tsuda, M., Inoue, K., & Salter, M. W. (2005). Neuropathic pain and spinal microglia: A big problem from molecules in “small” glia. Trends in Neurosciences, 28, 101–107.

    Article  PubMed  CAS  Google Scholar 

  • van Praag, H., & Frenk, H. (1991). The development of stimulation-produced analgesia (SPA) in the rat. Brain Research. Developmental Brain Research, 64, 71–76.

    PubMed  Google Scholar 

  • Vanegas, H., & Schaible, H. G. (2004). Descending control of persistent pain: Inhibitory or facilitatory? Brain Research. Brain Research Reviews, 46, 295–309.

    Article  PubMed  Google Scholar 

  • Vega-Avelaira, D., Moss, A., & Fitzgerald, M. (2007). Age-related changes in the spinal cord microglial and astrocytic response profile to nerve injury. Brain, Behavior, and Immunity, 21, 617–623.

    Article  PubMed  CAS  Google Scholar 

  • Waldenstrom, A., Thelin, J., Thimansson, E., Levinsson, A., & Schouenborg, J. (2003). Developmental learning in a pain-related system: Evidence for a cross-modality mechanism. The Journal of Neuroscience, 23, 7719–7725.

    PubMed  Google Scholar 

  • Walker, S., Franck, L., Fitzgerald, M., Myles, J., Stocks, J., & Marlow, N. (2009). Long-term impact of ­neonatal intensive care and surgery on somatosensory ­perception in children born extremely preterm. Pain, 141, 79–87.

    Article  PubMed  Google Scholar 

  • Watkins, L. R., Milligan, E. D., & Maier, S. F. (2001). Glial activation: A driving force for pathological pain. Trends in Neurosciences, 24, 450–455.

    Article  PubMed  CAS  Google Scholar 

  • Wei, F., Guo, W., Zou, S., Ren, K., & Dubner, R. (2008). Supraspinal glial-neuronal interactions contribute to descending pain facilitation. The Journal of Neuroscience, 28, 10482–10495.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, C. J. (2004). Pain: Moving from symptom ­control toward mechanism-specific pharmacologic management. Annals of Internal Medicine, 140, 441–451.

    PubMed  Google Scholar 

  • Zhuo, M. (2008). Cortical excitation and chronic pain. Trends in Neurosciences, 31, 199–207.

    Article  PubMed  CAS  Google Scholar 

  • Zohsel, K., Hohmeister, J., Oelkers-Ax, R., Flor, H., & Hermann, C. (2006). Quantitative sensory testing in children with migraine: Preliminary evidence for enhanced sensitivity to painful stimuli especially in girls. Pain, 123, 10–18.

    Article  PubMed  Google Scholar 

  • Zohsel, K., Hohmeister, J., Flor, H., & Hermann, C. (2008). Altered pain processing in children with migraine: An evoked potential study. European Journal of Pain, 12, 1090–1101.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fitzgerald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fitzgerald, M. (2011). The Neurobiology of Chronic Pain in Children. In: McClain, B., Suresh, S. (eds) Handbook of Pediatric Chronic Pain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0350-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0350-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0349-5

  • Online ISBN: 978-1-4419-0350-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics