Skip to main content

Non-gadolinium Perfusion Technique (Arterial Spin Labeling)

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

Arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) technique that allows a noninvasive quantitative measurement of cerebral blood flow (CBF). In clinical applications, ASL has been demonstrated to provide reproducible and reliable CBF measurements of several neurological diseases. In comparison with conventional approaches that use radioactive tracers or paramagnetic contrast agents, ASL is completely noninvasive and, therefore, more cost efficient for the hospital and patients. Furthermore, the noninvasive nature of ASL makes it highly repeatable, suitable for routine clinical practice. The repeatability and high temporal resolution also make ASL an excellent candidate technique for functional studies in neuroscience. Although somewhat constrained by its inherent low signal-to-noise ratio (SNR) and limited spatial resolution, recent technical developments have made exceptional advancements in perfusion sensitivity and image resolution. The usage of ASL is expected to grow significantly in both clinical and research environments. In this chapter, the general principles of ASL and specific implementations, with advantages and pitfalls, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology. 1998;208(2):410–6.

    PubMed  CAS  Google Scholar 

  2. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992;23(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  3. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA. 1992;89(1):212–6.

    Article  PubMed  CAS  Google Scholar 

  4. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 1999;19(7):701–35.

    Article  PubMed  CAS  Google Scholar 

  5. Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243(1):148–57.

    Article  PubMed  Google Scholar 

  6. Liu TT, Brown GG. Measurement of cerebral perfusion with arterial spin labeling: Part 1. Methods. J Int Neuropsychol Soc. 2007;13(3):517–25.

    Article  PubMed  Google Scholar 

  7. Wintermark M, Sesay M, Barbier E, et al. Comparative overview of brain perfusion imaging techniques. J Neuroradiol. 2005;32(5):294–314.

    Article  PubMed  CAS  Google Scholar 

  8. Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics. 2007;4(3):346–59.

    Article  PubMed  Google Scholar 

  9. Pollock JM, Whitlow CT, Deibler AR, et al. Anoxic injury-associated cerebral hyperperfusion identified with arterial spin-labeled MR imaging. AJNR Am J Neuroradiol. 2008;29(7):1302–7.

    Article  PubMed  CAS  Google Scholar 

  10. Pollock JM, Deibler AR, Burdette JH, et al. Migraine associated cerebral hyperperfusion with arterial spin-labeled MR imaging. AJNR Am J Neuroradiol. 2008;29(8):1494–7.

    Article  PubMed  CAS  Google Scholar 

  11. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol. 2008;29(8):1428–35.

    Article  PubMed  CAS  Google Scholar 

  12. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol. 2008;29(7):1235–41.

    Article  PubMed  CAS  Google Scholar 

  13. Latchaw RE, Yonas H, Hunter GJ, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke. 2003;34(4):1084–104.

    Article  PubMed  Google Scholar 

  14. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16(6):1236–49.

    Article  PubMed  CAS  Google Scholar 

  15. Buxton RB, Frank LR, Wong EC, Siewert B, Warach S, Edelman RR. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med. 1998;40(3):383–96.

    Article  PubMed  CAS  Google Scholar 

  16. Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med. 1999;41(6):1246–54.

    Article  PubMed  CAS  Google Scholar 

  17. Pollock JM, Tan H, Kraft RA, Whitlow CT, Burdette JH, Maldjian JA. Arterial spin-labeled MR perfusion imaging: clinical applications. Magn Reson Imaging Clin N Am. 2009;17(2):315–38.

    Article  PubMed  Google Scholar 

  18. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995;34(3):293–301.

    Article  PubMed  CAS  Google Scholar 

  19. Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed. 1997;10(4–5):237–49.

    Article  PubMed  CAS  Google Scholar 

  20. Edelman RR, Siewert B, Darby DG, et al. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology. 1994;192(2):513–20.

    PubMed  CAS  Google Scholar 

  21. Silver MS, Joseph RI, Hoult DI. Selective spin inversion in nuclear magnetic resonance and coherent optics through an exact solution of the Bloch-Riccati equation. Phys Rev A. 1985;31(4):2753–5.

    Article  PubMed  CAS  Google Scholar 

  22. Yongbi MN, Yang Y, Frank JA, Duyn JH. Multislice perfusion imaging in human brain using the C-FOCI inversion pulse: comparison with hyperbolic secant. Magn Reson Med. 1999;42(6):1098–105.

    Article  PubMed  CAS  Google Scholar 

  23. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med. 1998;39(5):702–8.

    Article  PubMed  CAS  Google Scholar 

  24. Detre JA, Alsop DC. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol. 1999;30(2):115–24.

    Article  PubMed  CAS  Google Scholar 

  25. Silva AC, Zhang W, Williams DS, Koretsky AP. Multi-slice MRI of rat brain perfusion during amphetamine stimulation using arterial spin labeling. Magn Reson Med. 1995;33(2):209–14.

    Article  PubMed  CAS  Google Scholar 

  26. Talagala SL, Ye FQ, Ledden PJ, Chesnick S. Whole-brain 3D perfusion MRI at 3.0 T using CASL with a separate labeling coil. Magn Reson Med. 2004;52(1):131–40.

    Article  PubMed  Google Scholar 

  27. Zhang W, Silva AC, Williams DS, Koretsky AP. NMR measurement of perfusion using arterial spin labeling without saturation of macromolecular spins. Magn Reson Med. 1995;33(3):370–6.

    Article  PubMed  CAS  Google Scholar 

  28. Garcia DM, Bazelaire CD, Alsop D. Pseudo-continuous flow driven adiabatic inversion for arterial spin labeling: ISMRM 05; 2005.

    Google Scholar 

  29. Wu WC, Fernandez-Seara M, Detre JA, Wehrli FW, Wang J. A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med. 2007;58(5):1020–7.

    Article  PubMed  Google Scholar 

  30. Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT. Velocity-selective arterial spin labeling. Magn Reson Med. 2006;55(6):1334–41.

    Article  PubMed  Google Scholar 

  31. Ye FQ, Frank JA, Weinberger DR, McLaughlin AC. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med. 2000;44(1):92–100.

    Article  PubMed  CAS  Google Scholar 

  32. St Lawrence KS, Frank JA, Bandettini PA, Ye FQ. Noise reduction in multi-slice arterial spin tagging imaging. Magn Reson Med. 2005;53(3):735–8.

    Article  Google Scholar 

  33. Gunther M, Oshio K, Feinberg DA. Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med. 2005;54(2):491–8.

    Article  PubMed  Google Scholar 

  34. Pipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med. 1999;42(5):963–9.

    Article  PubMed  CAS  Google Scholar 

  35. Gonzalez-At JB, Alsop DC, Detre JA. Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling. Magn Reson Med. 2000;43(5):739–46.

    Article  PubMed  CAS  Google Scholar 

  36. Yang Y, Engelien W, Xu S, Gu H, Silbersweig DA, Stern E. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magn Reson Med. 2000;44(5):680–5.

    Article  PubMed  CAS  Google Scholar 

  37. Ye FQ, Mattay VS, Jezzard P, Frank JA, Weinberger DR, McLaughlin AC. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med. 1997;37(2):226–35.

    Article  PubMed  CAS  Google Scholar 

  38. Maccotta L, Detre JA, Alsop DC. The efficiency of adiabatic inversion for perfusion imaging by arterial spin labeling. NMR Biomed. 1997;10(4–5):216–21.

    Article  PubMed  CAS  Google Scholar 

  39. Roberts DA, Detre JA, Bolinger L, Insko EK, Leigh Jr JS. Quantitative magnetic resonance imaging of human brain perfusion at 1.5 T using steady-state inversion of arterial water. Proc Natl Acad Sci USA. 1994;91(1):33–7.

    Article  PubMed  CAS  Google Scholar 

  40. Utting JF, Thomas DL, Gadian DG, Ordidge RJ. Velocity-driven adiabatic fast passage for arterial spin labeling: results from a computer model. Magn Reson Med. 2003;49(2):398–401.

    Article  PubMed  Google Scholar 

  41. Ewing JR, Cao Y, Fenstermacher J. Single-coil arterial spin-tagging for estimating cerebral blood flow as viewed from the capillary: relative contributions of intra- and extravascular signal. Magn Reson Med. 2001;46(3):465–75.

    Article  PubMed  CAS  Google Scholar 

  42. Parkes LM, Tofts PS. Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med. 2002;48(1):27–41.

    Article  PubMed  Google Scholar 

  43. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol. 2008;29(7):1228–34.

    Article  PubMed  CAS  Google Scholar 

  44. Fernandez-Seara MA, Edlow BL, Hoang A, Wang J, Feinberg DA, Detre JA. Minimizing acquisition time of arterial spin labeling at 3T. Magn Reson Med. 2008;59(6):1467–71.

    Article  PubMed  Google Scholar 

  45. Tan H, Maldjian JA, Pollock JM, et al. A fast, effective filtering method for improving clinical pulsed arterial spin labeling MRI. J Magn Reson Imaging. 2009;29(5):1134–9.

    Article  PubMed  Google Scholar 

  46. Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: Part 2. Applications. J Int Neuropsychol Soc. 2007;13(3):526–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan H. Burdette MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tan, H., Burdette, J.H. (2011). Non-gadolinium Perfusion Technique (Arterial Spin Labeling). In: Faro, S., Mohamed, F., Law, M., Ulmer, J. (eds) Functional Neuroradiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0345-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0345-7_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0343-3

  • Online ISBN: 978-1-4419-0345-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics