Skip to main content

The Involvement of Corticostriatal Loops in Learning Across Tasks, Species, and Methodologies

  • Conference paper
  • First Online:

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 58))

Abstract

The basal ganglia contribute to a variety of forms of learning. The first goal of this chapter is to review the different tasks (instrumental conditioning, visual discrimination, arbitrary visuomotor learning, rule learning, categorization, and decision making) that have been used to study basal-ganglia-dependent learning in rodents, monkeys, and humans. These tasks have several features in common: in each, the subject is first presented with a stimulus within a behavioral context, is then required to respond with an appropriate behavior, and finally receives a reward or positive feedback for correct behavior. The second goal of this chapter is to examine how these different features (stimulus, response, and reward) involve the independent corticostriatal loops that connect the basal ganglia with cerebral cortex. The visual corticostriatal loop is involved in aspects of visual stimulus processing; the motor corticostriatal loop is involved in response selection; and the executive and motivation corticostriatal loops are involved in processing feedback and reward. The chapter concludes with a discussion of how the corticostriatal loops interact during learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexander GE, DeLong MR and Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci 9: 357–381

    Article  CAS  PubMed  Google Scholar 

  • Ashby FG and Maddox WT (2005) Human category learning. Ann Rev Psychol 56: 149–78

    Article  Google Scholar 

  • Ashby FG and Waldron EM (1999) On the nature of implicit categorization. Psychon Bull Rev 6: 363–378

    CAS  PubMed  Google Scholar 

  • Ashby FG, Alfonso-Reese LA, Turken AU and Waldron EM (1998) A neuropsychological theory of multiple systems in category learning. Psychol Rev 105: 442–481

    Article  CAS  PubMed  Google Scholar 

  • Ashby FG, Ennis JM and Spiering BJ (2007) A neurobiological theory of automaticity in perceptual categorization. Psychol Rev 114: 632–656

    Article  PubMed  Google Scholar 

  • Atallah HE, Lopez-Paniagua D, Rudy JW and O’Reilly RC (2007) Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nat Neurosci 10: 126–131

    Article  CAS  PubMed  Google Scholar 

  • Balleine BW, Delgado MR and Hikosaka O (2007) The role of the dorsal striatum in reward and decision-making. J Neurosci 27: 8161–8165

    Article  CAS  PubMed  Google Scholar 

  • Barnes TD, Kubota Y, Hu D, Jin DZ and Graybiel M (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437: 1158–1161

    Article  CAS  PubMed  Google Scholar 

  • Brasted PJ and Wise SP (2004) Comparison of learning-related neuronal activity in the dorsal premotor cortex and striatum. Eur J Neurosci 19: 721–740

    Article  PubMed  Google Scholar 

  • Brightwell JJ, Smith CA, Neve L and Colombo PJ (2008) Transfection of mutant CREB in the striatum, but not the hippocampus, impairs long-term memory for response learning. Neurobiol Learn Mem 89: 27–35

    CAS  PubMed  Google Scholar 

  • Brown VJ, Desimone R and Mishkin M (1995) Responses of cell in the tail of the caudate nucleus during visual discrimination learning. J Neurophysiol 74: 1083–1094

    CAS  PubMed  Google Scholar 

  • Buffalo A, Stefanacci L, Squire LR and Zola SM (1998) A reexamination of the concurrent discrimination learning task: The importance of anterior inferotemporal cortex, area TE. Behav Neurosci 112: 3–14

    Article  CAS  PubMed  Google Scholar 

  • Bunge SA, Wallis JD, Parker A, Brass M, Crone EA, Hoshi E and Sakai K (2005) Neural circuitry underlying rule use in humans and nonhuman primates. J Neurosci 25: 10347–10350

    Article  CAS  PubMed  Google Scholar 

  • Cincotta CM and Seger CA (2007) Dissociation between striatal regions while learning to categorize via observation and via feedback. J Cogn Neurosci 19: 249–265

    Article  PubMed  Google Scholar 

  • Cools R, Clark L, Owen AM and Robbins TW (2002) Defining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging. J Neurosci 22: 4563–4567

    CAS  PubMed  Google Scholar 

  • Cools R, Clark L and Robbins TW (2004) Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance. J Neurosci 24: 1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Daw ND, O’Doherty P, Daya P, Seymour B and Dolan RJ (2006) Cortical substrates for exploratory decisions in humans. Nature 441: 876–879

    Article  CAS  PubMed  Google Scholar 

  • Delgado MR, Nystrom LE, Fissell C, Noll D C and Fiez JA (2000) Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol 84: 3072–3077

    CAS  PubMed  Google Scholar 

  • Delgado MR, Miller MM, Inati S and Phelps EA (2005) An fMRI study of reward-related probability learning. NeuroImage 24: 862–873

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Ruiz J, Wang J, Aigner TG and Mishkin M (2001) Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proc Natl Acad Sci USA 98: 4196–4201

    Article  CAS  PubMed  Google Scholar 

  • Foerde K, Knowlton BJ and Poldrack RA (2006) Modulation of competing memory systems by distraction. Proc Natl Acad Sci USA 103: 11778–11783

    Article  CAS  PubMed  Google Scholar 

  • Frank M J (2006) Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19: 1120–1136

    Article  PubMed  Google Scholar 

  • Gaffan D and Eacott MJ (1995) Visual learning for an auditory secondary reinforcer by macaques is intact after uncinate fascicle section: Indirect evidence for the involvement of the corpus striatum. Eur J Neurosci 7: 1866–1871

    Article  CAS  PubMed  Google Scholar 

  • Grinband J, Hirsch J and Ferrera VP (2006) A neural representation of categorization uncertainty in the human brain. Neuron 49: 757–763

    Article  CAS  PubMed  Google Scholar 

  • Grol MJ, deLange FP, Verstraten FAJ, Passingham RE and Toni I (2006) Cerebral changes during performance of overlearned arbitrary visuomotor associations. J Neurosci 26: 117–125

    Article  CAS  PubMed  Google Scholar 

  • Gurney K, Prescott TJ, Wickens JR and Redgrave P (2004) Computational models of the basal ganglia: From robots to membranes. Trends Neurosci 27: 453–459

    Article  CAS  PubMed  Google Scholar 

  • Haber SN, Fudge JL and McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20: 2369–2382

    CAS  PubMed  Google Scholar 

  • Haber SN, Kim K-S, Mailly P and Calzavara R (2006) Reward related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci 26: 8368–8376

    Article  CAS  PubMed  Google Scholar 

  • Hadj-Bouziane F and Boussaoud D (2003) Neuronal activity in the monkey striatum during conditional visuomotor learning. Exp Brain Res 133: 190–196

    Article  Google Scholar 

  • Haruno M and Kawato M (2006) Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus–action–reward association learning. J Neurophysiol 95: 948–959

    Article  PubMed  Google Scholar 

  • Huettel SA, Stowe CJ, Gordon EM, Warner BT and Platt ML (2006) Neural signatures of economic preferences for risk and ambiguity. Neuron 49: 765–775

    Article  CAS  PubMed  Google Scholar 

  • Inoue M and Mikami A (2007) Top-down signal of retrieved information from prefrontal to inferior temporal cortices. J Neurophysiol 98: 1965–1974

    Article  PubMed  Google Scholar 

  • Joel D and Weiner I (1994) The organization of the basal ganglia–thalamacortical circuits: Open interconnected rather than closed segregated. Neuroscience 63: 363–379

    Article  CAS  PubMed  Google Scholar 

  • Jog M, Kubota Y, Connolly CI, Hillegaart V and Graybiel AM (1999) Building neural representations of habits. Science 286: 1745–1749

    Article  CAS  PubMed  Google Scholar 

  • Karachi C, Francois C, Parain K, Bardinet E, Tande D, Hirsch E and Yelnik J (2002) Three dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 450: 122–134

    Article  PubMed  Google Scholar 

  • Kim YB, Huh N, Lee H, Baeg EH, Lee D, Jung MW (2007) Encoding action history in the rat ventral striatum. J Neurophysiol 98: 3548–3556

    Article  PubMed  Google Scholar 

  • Knowlton BK, Mangels JA and Squire LR (1996a) A neostriatal habit learning system in humans. Science 273: 1399–1402

    Article  CAS  PubMed  Google Scholar 

  • Knowlton BK, Squire LR, Paulsen JS, Swerdlow NR, Swenson M and Butters N (1996b) Dissociations within nondeclarative memory in Huntington’s disease. Neuropsychology 10: 538–548

    Article  Google Scholar 

  • Kuhnen CM and Knutson B (2005) The neural basis of financial risk taking. Neuron 47: 763–770

    Article  CAS  PubMed  Google Scholar 

  • Lau B and Glimcher PW (2007) Action and outcome encoding in the primate caudate nucleus. J Neurosci 27: 14502–14514

    Article  CAS  PubMed  Google Scholar 

  • Lawrence AD, Sahakian BJ and Robbins TW (1998) Cognitive functions and corticostriatal circuits: Insights from Huntington’s disease. Trends Cogn Sci 2: 379–388

    Article  Google Scholar 

  • Middleton FA and Strick PL (1996) The temporal lobe is a target of output from the basal ganglia. Proc Natl Acad Sci USA 93: 8683–8687

    Article  CAS  PubMed  Google Scholar 

  • Monchi O, Petrides M, Petre V, Worsley K and Dagher A (2001) Wisconsin card sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21: 7733–7741

    CAS  PubMed  Google Scholar 

  • Muhammad R, Wallis JD and Miller EK (2006) A comparison of abstract rules in the prefrontal cortex, premotor cortex, inferior temporal cortex, and striatum. J Cogn Neurosci 18: 974–989

    Article  PubMed  Google Scholar 

  • Murray EA, Bussey TJ and Wise SP (2000) Role of the prefrontal cortex in a network for arbitrary visuomotor mapping. Exp Brain Res 133: 114–129

    Article  CAS  PubMed  Google Scholar 

  • Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology 191: 521–550

    Article  CAS  PubMed  Google Scholar 

  • Nixon PD, McDonald KR, Gough PM, Alexander IH and Passingham RE (2004) Cortico-basal ganglia pathways are essential for the recall of well-established visuomotor association. Eur J Neurosci 20: 3165–3178

    Article  PubMed  Google Scholar 

  • Nomura EM, Maddox WT, Filoteo JV, Ing AD, Gitelman DR, Parrish TB, Mesulam M-M and Reber PJ (2007) Neural correlates of rule-based and information-integration visual category learning. Cereb Cortex 17: 37–43

    Article  CAS  PubMed  Google Scholar 

  • O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K and Dolan RJ (2004) Dissociable roles of the ventral and dorsal striatum in instrumental conditioning. Science 304: 452–454

    Article  PubMed  Google Scholar 

  • Packard MG and McGaugh JL (1992) Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: Further evidence for multiple memory systems. Behav Neurosci 106: 439–446

    Article  CAS  PubMed  Google Scholar 

  • Packard MG, Hirsch R and White NM (1989) Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory systems. J Neurosci 9: 1465–1472

    CAS  PubMed  Google Scholar 

  • Parent A and Hazrati L (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20: 91–127

    Article  CAS  PubMed  Google Scholar 

  • Passingham RE (1993) The Frontal Lobes and Voluntary Action. New York, NY: The Clarendon Press

    Google Scholar 

  • Pasupathy A and Miller EK (2005) Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 433: 873–876

    Article  CAS  PubMed  Google Scholar 

  • Poldrack RA, Prabhakaran V, Seger CA and Gabrieli JDE (1999) Striatal activation during cognitive skill learning. Neuropsychology 13: 564–574

    Article  CAS  PubMed  Google Scholar 

  • Poldrack RA, Clark J, Pare-Blagoev EJ, Shohamy D, Creso Moyano J, Myers C and Gluck MA (2001) Interactive memory systems in the human brain. Nature 414: 546–550

    Article  CAS  PubMed  Google Scholar 

  • Preuschoff K, Bossaerts P and Quartz SP (2006) Neural differentiation of expected reward and risk in human subcortical structures. Neuron 51: 381–390

    Article  CAS  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ and Gurney K (1999) The basal ganglia: A vertebrate solution to the selection problem? Neuroscience 89: 1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez PF, Aron AR and Poldrack RA (2006) Ventral-striatal/nucleus-accumbens sensitivity to prediction errors during classification learning. Hum Brain Mapp 27: 306–313

    Article  CAS  PubMed  Google Scholar 

  • Seger CA (2008) How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neurosci Biobehav Rev 32: 265–278

    Article  PubMed  Google Scholar 

  • Seger CA and Cincotta M (2002) Striatal activation in concept learning. Cogn Affect Behav Neurosci 2: 149–161

    Article  PubMed  Google Scholar 

  • Seger CA and Cincotta CM (2005) The roles of the caudate nucleus in human classification learning. J Neurosci 25: 2941–2951

    Article  CAS  PubMed  Google Scholar 

  • Seger CA and Cincotta CM (2006) Dynamics of frontal, striatal, and hippcampal systems during rule learning. Cereb Cortex 16: 1546–1555

    Article  PubMed  Google Scholar 

  • Shohamy D, Myers CE, Grossman S, Sage J, Gluck MA and Poldrack RA (2004) Cortico-striatal contributions to feedback-based learning: Converging data from neuroimaging and neuropsychology. Brain 127: 851–859

    Article  CAS  PubMed  Google Scholar 

  • Smith JG and McDowall J (2006) When artificial grammar acquisition in Parkinson’s disease is impaired: The case of learning via trial-by-trial feedback. Brain Res 1067: 216–228

    Article  CAS  PubMed  Google Scholar 

  • Teng E, Stefanacci L, Squire LR and Zola S M (2000) Contrasting effects on discrimination learning after hippocampal lesions and conjoint hippocampal-caudate lesions in monkeys. J Neurosci 20: 3853–3863

    CAS  PubMed  Google Scholar 

  • Toni I, Rowe J, Stephan KE and Passingham RE (2002) Changes of cortico-striatal effective connectivity during visuomotor learning. Cereb Cortex 12: 1040–1047

    Article  PubMed  Google Scholar 

  • Tricomi EM, Delgado MR and Fiez JA (2004) Modulation of caudate activity by action contingency. Neuron 41: 281–292

    Article  CAS  PubMed  Google Scholar 

  • Vogels R, Sary G, Dupont P and Orban GA (2002). Human brain regions involved in visual categorization. NeuroImage 16: 401–414

    Article  PubMed  Google Scholar 

  • Voorn P, Vanderschuren L, Groenewegen HJ, Robbins TW and Pennartz CMA (2004) Putting a spin on the dorsal–ventral divide of the striatum. Trends Neurosci 27: 468–474

    Article  CAS  PubMed  Google Scholar 

  • Webster MJ, Bachevalier J and Ungerleider LG (1993) Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys. J Comp Neurol 335: 73–91

    Article  CAS  PubMed  Google Scholar 

  • Williams ZM and Eskandar EN (2006) Selective enhancement of associative learning by microstimulation of the anterior caudate. Nature Neurosci 9: 562–568

    Article  CAS  PubMed  Google Scholar 

  • Wise SP and Murray EA (2000) Arbitrary associations between antecedents and actions. Trends Neurosci 23: 271–276

    Article  CAS  PubMed  Google Scholar 

  • Yacubian J, Sommer T, Schroeder K, Gläscher J, Braus DF, and Büchel C (2007) Subregions of the ventral striatum show preferential coding of reward magnitude and probability. Neuroimage 38: 557–563

    Article  PubMed  Google Scholar 

  • Yamada H, Matsumoto N and Kimura M (2007) History- and current instruction-based coding of forthcoming behavioral outcomes in the striatum. J Neurophysiol 98: 3557–3567

    Article  PubMed  Google Scholar 

  • Yin HH and Knowlton BJ (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7: 464–476

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Seger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Seger, C.A. (2009). The Involvement of Corticostriatal Loops in Learning Across Tasks, Species, and Methodologies. In: Groenewegen, H., Voorn, P., Berendse, H., Mulder, A., Cools, A. (eds) The Basal Ganglia IX. Advances in Behavioral Biology, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0340-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0340-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0339-6

  • Online ISBN: 978-1-4419-0340-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics