Skip to main content

Novel Methodologies: Proteomic Approaches in Substance Abuse Research

  • Chapter
  • First Online:
Addiction Medicine

Abstract

Proteomics is the study of sequence, expression, function, interaction and localization of proteins in tissues or fluids of various organisms. With the advent of proteomic techniques providing greater selectivity, sensitivity and throughput, drug abuse researchers are faced with decisions as to the selection of the most appropriate applications for their respective questions. In addition, drug abuse researchers face additional challenges that are unique to neuroscience limited sample quantities, heterogeneous cellular compositions of samples and the hydrophobic nature of large classes of proteins of interest. The purpose of this chapter is provide the drug abuse researcher with current technologies and methodologies for examining coordinated regulation of multiple proteins in tissue, primarily brain. Chapter content includes useful information on subcellular organelle isolation, protein fractionation and separation using two-dimensional gel electrophoresis and multi-dimensional liquid chromatography, methods for quantification of differential protein expression (e.g., two-dimensional difference in gel electrophoresis and isotope-coded affinity tags (ICAT and iTRAQ)), and mass spectrometry approaches. An overview of the techniques used currently to assign post-translational modification status on a proteomics scale is also evaluated. The application of these approaches to the study of cocaine and alcohol abuse is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537

    Article  PubMed  CAS  Google Scholar 

  2. Backes E, Hemby SE (2003) Discrete cell gene profiling of ventral tegmental dopamine neurons after acute and chronic cocaine self-administration. J Pharmacol Exp Ther 307:450–459

    Article  PubMed  CAS  Google Scholar 

  3. Bahi A, Dreyer JL (2005) Cocaine-induced expression changes of axon guidance molecules in the adult rat brain. Mol Cell Neurosci 28:275–291

    Article  PubMed  CAS  Google Scholar 

  4. Barber M, Bordoli RS, Sedgwick RD, Tyler AN, Bycroft BW (1981) Fast atom bombardment mass spectrometry of bleomycin A2 and B2 and their metal complexes. Biochem Biophys Res Commun 101:632–638

    Article  PubMed  CAS  Google Scholar 

  5. Bell RL et al (2006) Protein expression changes in the nucleus accumbens and amygdala of inbred alcohol-preferring rats given either continuous or scheduled access to ethanol. Alcohol 40:3–17

    Article  PubMed  CAS  Google Scholar 

  6. Berggren K et al (1999) A luminescent ruthenium complex for ultrasensitive detection of proteins immobilized on membrane supports. Anal Biochem 276:129–143

    Article  PubMed  CAS  Google Scholar 

  7. Breiter HC et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    Article  PubMed  CAS  Google Scholar 

  8. Carlen PL, Wortzman G, Holgate RC, Wilkinson DA, Rankin JC (1978) Reversible cerebral atrophy in recently abstinent chronic alcoholics measured by computed tomography scans. Science 200:1076–1078

    Article  PubMed  CAS  Google Scholar 

  9. Carlezon WA Jr et al (1998) Regulation of cocaine reward by CREB. Science 282:2272–2275

    Article  PubMed  CAS  Google Scholar 

  10. Choe LH, Aggarwal K, Franck Z, Lee KH (2005) A comparison of the consistency of proteome quantitation using two-dimensional electrophoresis and shotgun isobaric tagging in Escherichia coli cells. Electrophoresis 26:2437–2449

    Article  PubMed  CAS  Google Scholar 

  11. Churchward MA, Butt RH, Lang JC, Hsu KK, Coorssen JR (2005) Enhanced detergent extraction for analysis of membrane proteomes by two-dimensional gel electrophoresis. Proteome Sci 3:5

    Article  PubMed  CAS  Google Scholar 

  12. Dietrich JB et al (2005) Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology 48:965–974

    Article  PubMed  CAS  Google Scholar 

  13. Dreger M (2003) Subcellular proteomics. Mass Spectrom Rev 22:27–56

    Article  PubMed  CAS  Google Scholar 

  14. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71

    Article  PubMed  CAS  Google Scholar 

  15. Ferguson PL, Smith RD (2003) Proteome analysis by mass spectrometry. Annu Rev Biophys Biomol Struct 32:399–424

    Article  PubMed  CAS  Google Scholar 

  16. Fountoulakis M (2004) Application of proteomics technologies in the investigation of the brain. Mass Spectrom Rev 23:231–258

    Article  PubMed  CAS  Google Scholar 

  17. Goodlett DR et al (2001) Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Commun Mass Spectrom 15:1214–1221

    Article  PubMed  CAS  Google Scholar 

  18. Graham DL et al (2008) Tropomyosin-related kinase B in the mesolimbic dopamine system: region-specific effects on cocaine reward. Biol Psychiatry. 2009 Apr 15;65(8):696–701. Epub 2008 Nov 6

    Google Scholar 

  19. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    PubMed  CAS  Google Scholar 

  20. Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R (2000) Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci USA 97:9390–9395

    Article  PubMed  CAS  Google Scholar 

  21. Gygi SP, Rist B, Griffin TJ, Eng J, Aebersold R (2002) Proteome analysis of low-abundance proteins using multidimensional chromatography and isotope-coded affinity tags. J Proteome Res 1:47–54

    Article  PubMed  CAS  Google Scholar 

  22. Gygi SP et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–999

    Article  PubMed  CAS  Google Scholar 

  23. Hammack BN, Owens GP, Burgoon MP, Gilden DH (2003) Improved resolution of human cerebrospinal fluid proteins on two-dimensional gels. Mult Scler 9:472–475

    Article  PubMed  CAS  Google Scholar 

  24. Han DK, Eng J, Zhou H, Aebersold R (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19:946–951

    Article  PubMed  CAS  Google Scholar 

  25. Harper C, Dixon G, Sheedy D, Garrick T (2003) Neuropathological alterations in alcoholic brains. Studies arising from the New South Wales Tissue Resource Centre. Prog Neuropsychopharmacol Biol Psychiatry 27:951–961

    Article  PubMed  CAS  Google Scholar 

  26. Harper CG, Kril JJ (1988) Corpus callosal thickness in alcoholics. Br J Addict 83:577–580

    Article  PubMed  CAS  Google Scholar 

  27. Hemby SE, Johnson BA, Dworkin SI (1997) Neuropharmacological basis of drug reinforcement. In: Johnson BA, Roache JD (eds), Drug addiction and its treatment: nexus of neuroscience and behavior. Lippincott-Raven, Philadelphia, PA, pp 137–169

    Google Scholar 

  28. Hemby SE, Horman B, Tang W (2005) Differential regulation of ionotropic glutamate receptor subunits following cocaine self-administration. Brain Res 1064:75–82

    Article  PubMed  CAS  Google Scholar 

  29. Hemby SE, Co C, Dworkin SI, Smith JE (1999) Synergistic elevations in nucleus accumbens extracellular dopamine concentrations during self-administration of cocaine/heroin combinations (Speedball) in rats. J Pharmacol Exp Ther 288:274–280

    PubMed  CAS  Google Scholar 

  30. Hemby SE, Co C, Koves TR, Smith JE, Dworkin SI (1997) Differences in extracellular dopamine concentrations in the nucleus accumbens during response-dependent and response-independent cocaine administration in the rat. Psychopharmacology (Berl) 133:7–16

    Article  CAS  Google Scholar 

  31. Hemby SE et al (2005) Cocaine-induced alterations in nucleus accumbens ionotropic glutamate receptor subunits in human and non-human primates. J Neurochem 95:1785–1793

    Article  PubMed  CAS  Google Scholar 

  32. Henzel WJ et al (1993) Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA 90:5011–5015

    Article  PubMed  CAS  Google Scholar 

  33. Hiroi N et al (1997) FosB mutant mice: loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine’s psychomotor and rewarding effects. Proc Natl Acad Sci USA 94:10397–10402

    Article  PubMed  CAS  Google Scholar 

  34. Hope B, Kosofsky B, Hyman SE, Nestler EJ (1992) Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc Natl Acad Sci USA 89:5764–5768

    Article  PubMed  CAS  Google Scholar 

  35. Jensen PK et al (1999) Probing proteomes using capillary isoelectric focusing-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 71:2076–2084

    Article  PubMed  CAS  Google Scholar 

  36. Jiang X, Zhou J, Mash DC, Marini AM, Lipsky RH (2008) Human BDNF isoforms are differentially expressed in cocaine addicts and are sorted to the regulated secretory pathway independent of the Met66 substitution. Neuromolecular Med 2009;11(1):1–12. Epub 2008 Oct 23

    Google Scholar 

  37. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301

    Article  PubMed  CAS  Google Scholar 

  38. Kashem MA, Harper C, Matsumoto I (2008) Differential protein expression in the corpus callosum (genu) of human alcoholics. Neurochem Int 53:1–11

    Article  PubMed  CAS  Google Scholar 

  39. Kashem MA, James G, Harper C, Wilce P, Matsumoto I (2007) Differential protein expression in the corpus callosum (splenium) of human alcoholics: a proteomics study. Neurochem Int 50:450–459

    Article  PubMed  CAS  Google Scholar 

  40. Kilts CD, Gross RE, Ely TD, Drexler KP (2004) The neural correlates of cue-induced craving in cocaine-dependent women. Am J Psychiatry 161:233–241

    Article  PubMed  Google Scholar 

  41. Klose J (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26:231–243

    PubMed  CAS  Google Scholar 

  42. Kloss MW, Rosen GM, Rauckman EJ (1984) Biotransformation of norcocaine to norcocaine nitroxide by rat brain microsomes. Psychopharmacology (Berl) 84:221–224

    Article  CAS  Google Scholar 

  43. Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129

    Article  PubMed  CAS  Google Scholar 

  44. Link AJ et al (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682

    Article  PubMed  CAS  Google Scholar 

  45. Lovell MA, Xiong S, Markesbery WR, Lynn BC (2005) Quantitative proteomic analysis of mitochondria from primary neuron cultures treated with amyloid beta peptide. Neurochem Res 30:113–122

    Article  PubMed  CAS  Google Scholar 

  46. Lynch WJ, Girgenti MJ, Breslin FJ, Newton SS, Taylor JR (2008) Gene profiling the response to repeated cocaine self-administration in dorsal striatum: a focus on circadian genes. Brain Res 1213:166–177

    Article  PubMed  CAS  Google Scholar 

  47. Lyons D, Friedman DP, Nader MA, Porrino LJ (1996) Cocaine alters cerebral metabolism within the ventral striatum and limbic cortex of monkeys. J Neurosci 16:1230–1238

    PubMed  CAS  Google Scholar 

  48. Macedo DS et al (2005) Cocaine alters catalase activity in prefrontal cortex and striatum of mice. Neurosci Lett 387:53–56

    Article  PubMed  CAS  Google Scholar 

  49. Mackintosh JA et al (2003) A fluorescent natural product for ultra sensitive detection of proteins in one-dimensional and two-dimensional gel electrophoresis. Proteomics 3:2273–2288.

    Article  PubMed  CAS  Google Scholar 

  50. Mann M, Hojrup P, Roepstorff P (1993) Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom 22:338–345

    Article  PubMed  CAS  Google Scholar 

  51. Martinovic S, Veenstra TD, Anderson GA, Pasa-Tolic L, Smith RD (2002) Selective incorporation of isotopically labeled amino acids for identification of intact proteins on a proteome-wide level. J Mass Spectrom 37:99–107

    Article  PubMed  Google Scholar 

  52. Matsuda-Matsumoto H, Iwazaki T, Kashem MA, Harper C, Matsumoto I (2007) Differential protein expression profiles in the hippocampus of human alcoholics. Neurochem Int 51:370–376

    Article  PubMed  CAS  Google Scholar 

  53. Molloy MP, Brzezinski EE, Hang J, McDowell MT, VanBogelen RA (2003) Overcoming technical variation and biological variation in quantitative proteomics. Proteomics 3:1912–1919

    Article  PubMed  CAS  Google Scholar 

  54. Mootha VK et al (2003) Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–640

    Article  PubMed  CAS  Google Scholar 

  55. Mortz E, Krogh TN, Vorum H, Gorg A (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359–1363

    Article  PubMed  CAS  Google Scholar 

  56. Munchbach M, Quadroni M, Miotto G, James P (2000) Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation-directing moiety. Anal Chem 72:4047–4057

    Article  PubMed  CAS  Google Scholar 

  57. Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2;119–128

    Article  PubMed  CAS  Google Scholar 

  58. Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278:58–63

    Article  PubMed  CAS  Google Scholar 

  59. Neuhoff V et al (1990) Essential problems in quantification of proteins following colloidal staining with coomassie brilliant blue dyes in polyacrylamide gels, and their solution. Electrophoresis 11:101–117

    Article  PubMed  CAS  Google Scholar 

  60. O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    PubMed  Google Scholar 

  61. Olivieri E, Herbert B, Righetti PG (2001) The effect of protease inhibitors on the two-dimensional electrophoresis pattern of red blood cell membranes. Electrophoresis 22:560–565

    Article  PubMed  CAS  Google Scholar 

  62. Pappin DJ (2003) Peptide mass fingerprinting using MALDI-TOF mass spectrometry. Methods Mol Biol 211:211–219

    PubMed  CAS  Google Scholar 

  63. Peng J, Elias JE, Thoreen CC, Licklider LJ, Gygi SP (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J Proteome Res 2:43–50

    Article  PubMed  CAS  Google Scholar 

  64. Peng J et al (2004) Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry. J Biol Chem 279:21003–21011

    Article  PubMed  CAS  Google Scholar 

  65. Peters EC, Horn DM, Tully DC, Brock A (2001) A novel multifunctional labeling reagent for enhanced protein characterization with mass spectrometry. Rapid Commun Mass Spectrom 15:2387–2392

    Article  PubMed  CAS  Google Scholar 

  66. Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA (2002) Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 1:683–695

    Article  PubMed  CAS  Google Scholar 

  67. Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–173

    Article  PubMed  CAS  Google Scholar 

  68. Pich EM et al (1997) Common neural substrates for the addictive properties of nicotine and cocaine. Science 275:83–86

    Article  PubMed  CAS  Google Scholar 

  69. Pliakas AM et al (2001) Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci 21:7397–7403

    PubMed  CAS  Google Scholar 

  70. Polson C, Sarkar P, Incledon B, Raguvaran V, Grant R (2003) Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 785:263–275

    Article  PubMed  CAS  Google Scholar 

  71. Porrino LJ (1993) Functional consequences of acute cocaine treatment depend on route of administration. Psychopharmacology (Berl) 112:343–351

    Article  CAS  Google Scholar 

  72. Porrino LJ, Lyons D, Smith HR, Daunais JB, Nader MA (2004) Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J Neurosci 24:3554–3562

    Article  PubMed  CAS  Google Scholar 

  73. Regnier FE et al (2002) Comparative proteomics based on stable isotope labeling and affinity selection. J Mass Spectrom 37:133–145

    Article  PubMed  CAS  Google Scholar 

  74. Risinger RC et al (2005) Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage 26:1097–1108

    Article  PubMed  Google Scholar 

  75. Scheler C et al (1998) Peptide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS). Electrophoresis 19:918–927

    Article  PubMed  CAS  Google Scholar 

  76. Schrimpf SP et al (2005) Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics 5:2531–2541

    Article  PubMed  CAS  Google Scholar 

  77. Self DW et al (1998) Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 18:1848–1859

    PubMed  CAS  Google Scholar 

  78. Shaw J et al (2003) Evaluation of saturation labelling two-dimensional difference gel electrophoresis fluorescent dyes. Proteomics 3:1181–1195

    Article  PubMed  CAS  Google Scholar 

  79. Smejkal GB, Robinson MH, Lazarev A (2004) Comparison of fluorescent stains: relative photostability and differential staining of proteins in two-dimensional gels. Electrophoresis 25:2511–2519

    Article  PubMed  CAS  Google Scholar 

  80. Smith RD (2002) Trends in mass spectrometry instrumentation for proteomics. Trends Biotechnol 20:S3–S7

    Article  PubMed  CAS  Google Scholar 

  81. Southan C (2004) Has the yo-yo stopped? An assessment of human protein-coding gene number. Proteomics 4:1712–1726

    Article  PubMed  CAS  Google Scholar 

  82. Stevens T, Garcia JG, Shasby DM, Bhattacharya J, Malik AB (2000) Mechanisms regulating endothelial cell barrier function. Am J Physiol Lung Cell Mol Physiol 279:L419–L422

    PubMed  CAS  Google Scholar 

  83. Tang W-X, Fasulo WH, Mash DC, Hemby SE (2003) Molecular profiling of midbrain dopamine regions in cocaine overdose victims. J Neurochem 85:911–924

    Article  PubMed  CAS  Google Scholar 

  84. Tang W, Wesley M, Freeman WM, Liang B, Hemby SE (2004) Alterations in ionotropic glutamate receptor subunits during binge cocaine self-administration and withdrawal in rats. J Neurochem 89:1021–1033

    Article  PubMed  CAS  Google Scholar 

  85. Tang WX, Fasulo WH, Mash DC, Hemby SE (2003) Molecular profiling of midbrain dopamine regions in cocaine overdose victims. J Neurochem 85:911–924

    Article  PubMed  CAS  Google Scholar 

  86. Tannu N, Mash DC, Hemby SE (2007) Cytosolic proteomic alterations in the nucleus accumbens of cocaine overdose victims. Mol Psychiatry 12:55–73

    Article  PubMed  CAS  Google Scholar 

  87. Tannu NS, Sanchez-Brambila G, Kirby P, Andacht TM (2006) Effect of staining reagent on peptide mass fingerprinting from in-gel trypsin digestions: a comparison of SyproRuby and DeepPurple. Electrophoresis 27:3136–3143

    Article  PubMed  CAS  Google Scholar 

  88. Tannu NS et al (2004) Comparative proteomes of the proliferating C(2)C(12) myoblasts and fully differentiated myotubes reveal the complexity of the skeletal muscle differentiation program. Mol Cell Proteomics 3:1065–1082

    Article  PubMed  CAS  Google Scholar 

  89. Taylor SW et al (2003) Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21:281–286

    Article  PubMed  CAS  Google Scholar 

  90. Terwilliger RZ, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ (1991) A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548:100–110

    Article  PubMed  CAS  Google Scholar 

  91. Trinidad JC, Thalhammer A, Specht CG, Schoepfer R, Burlingame AL (2005) Phosphorylation state of postsynaptic density proteins. J Neurochem 92:1306–1316

    Article  PubMed  CAS  Google Scholar 

  92. Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  CAS  Google Scholar 

  93. Valaskovic GA, Kelleher NL (2002) Miniaturized formats for efficient mass spectrometry-based proteomics and therapeutic development. Curr Top Med Chem 2:1–12

    Article  PubMed  CAS  Google Scholar 

  94. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  95. White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Dependence 51:141–153

    Article  CAS  Google Scholar 

  96. White IR et al (2004) A statistical comparison of silver and SYPRO Ruby staining for proteomic analysis. Electrophoresis 25:3048–3054

    Article  PubMed  CAS  Google Scholar 

  97. Wilkins MR, Gasteiger E, Sanchez JC, Bairoch A, D. Hochstrasser F (1998) Two-dimensional gel electrophoresis for proteome projects: the effects of protein hydrophobicity and copy number. Electrophoresis 19:1501–1505

    Article  PubMed  CAS  Google Scholar 

  98. Wilson DS, Nock S (2003) Recent developments in protein microarray technology. Angew Chem Int Ed Engl 42:494–500

    Article  PubMed  CAS  Google Scholar 

  99. Wu CC, MacCoss MJ, Howell KE, Yates JR 3rd (2003) A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21:532–538

    Article  PubMed  CAS  Google Scholar 

  100. Wu WW, Wang G, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–658

    Article  PubMed  CAS  Google Scholar 

  101. Yuferov V, Nielsen D, Butelman E, Kreek MJ (2005) Microarray studies of psychostimulant-induced changes in gene expression. Addict Biol 10:101–118

    Article  PubMed  CAS  Google Scholar 

  102. Zhang D et al (2005) Repeated cocaine administration induces gene expression changes through the dopamine D1 receptors. Neuropsychopharmacology 30:1443–1454

    Article  PubMed  CAS  Google Scholar 

  103. Zhang S, Fu J, Zhou Z (2005) Changes in the brain mitochondrial proteome of male Sprague-Dawley rats treated with manganese chloride. Toxicol Appl Pharmacol 202:13–17

    Article  PubMed  CAS  Google Scholar 

  104. Zito KA, Vickers G, Roberts DC (1985) Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol Biochem Behav 23:1029–1036

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by funding of the following NIH grants: DA012498, DA003628, DA06634 (SEH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. Hemby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hemby, S.E., Lynch, W.J., Tannu, N.S. (2010). Novel Methodologies: Proteomic Approaches in Substance Abuse Research. In: Johnson, B. (eds) Addiction Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0338-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0338-9_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0337-2

  • Online ISBN: 978-1-4419-0338-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics