Skip to main content

Neurobiological Basis of Drug Reward and Reinforcement

  • Chapter
  • First Online:
Addiction Medicine

Abstract

Drugs of abuse interact with brain circuitry involved in reward and reinforcement, and it is thought that through these interactions drugs can gain influence over brain function, leading to maladaptive behavior. This chapter reviews the basic concepts of reward and reinforcement, with particular emphasis on positive and negative reinforcement and the differences between goal-directed and stimulus-driven “habitual” behavior. The role of particular neurotransmitters and neural circuitry, most notably cortico-basal ganglia circuits, in reward, reinforcement, and drug addiction is then discussed. Several laboratory animal models of drug use are considered along with critical consideration of what constitutes an adequate “addiction” model. The actions of addictive drugs within the brain reinforcement and reward circuitry are then reviewed, including information about the molecular targets of abused drugs, their actions on relevant circuitry, and their actions in the aforementioned laboratory animal models. Finally, the neurobiological underpinnings of drug use, abuse, and addiction are discussed, and some ideas are put forward about future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams CD, Dickinson A (1981) Instrumental responding following reinforcer devaluation. Q J Exp Psychol 33B:109–121

    Google Scholar 

  2. Ahmed SH, Kenny PJ, Koob GF, Markou A (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 5:625–626

    PubMed  CAS  Google Scholar 

  3. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders iv text revision: substance-related disorders, 4th edn. American Psychiatric Publishing, inc. Washington, DC

    Google Scholar 

  4. Argilli E, Sibley DR, Malenka RC, England PM, Bonci A (2008) Mechanism and time course of cocaine-induced long-term potentiation in the ventral tegmental area. J Neurosci 28(37):9092–1000

    Google Scholar 

  5. Aston-Jones G, Harris GC (2004) Brain substrates for increased drug seeking during protracted withdrawal. Neuropharmacol 47(Suppl 1):167–179

    CAS  Google Scholar 

  6. Atallah HE, Lopez-Paniagua D, Rudy JW, O’Reilly RC (2007) Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nat Neurosci 10(1):126–131

    PubMed  CAS  Google Scholar 

  7. Azrin NH, Holz WC (1966) Punishment. In: Honig WK (ed) Operant behavior: areas of research and application. Appleton-Century-Crofts, New York, pp 380–447

    Google Scholar 

  8. Backstrom P, Bachteler D, Koch S, Hyytia P, Spanagel R (2004) mGluR5 antagonist MPEP reduces ethanol-seeking and relapse behavior. Neuropsychopharmacology 29:921–928

    PubMed  Google Scholar 

  9. Bain GT, Kornetsky C (1989) Ethanol oral self administration and rewarding brain stimulation. Alcohol 6(6):499–503

    PubMed  CAS  Google Scholar 

  10. Balleine BW (2005) Neural bases of food-seeking: affect, arousal and reward in corticostriatolimbic circuits. Physiol Behav 86(5):717–730

    PubMed  CAS  Google Scholar 

  11. Brabano MF, Cador M (2007) Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology (Berl) 191(3):497–506

    Google Scholar 

  12. Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57(3):432–441

    PubMed  CAS  Google Scholar 

  13. Belin D, Mar AC, Dalley JW, Robbins TW, Everitt BJ (2008) High impulsivity predicts the switch to compulsive cocaine-taking. Science 320(5881):1352–1355

    PubMed  CAS  Google Scholar 

  14. Berridge KC (1996) Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 20:1–25

    PubMed  CAS  Google Scholar 

  15. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28(3):309–369

    PubMed  CAS  Google Scholar 

  16. Boakes RA (2007) Self-starvation in the rat: running versus eating. Span J Psychol 10(2):251–257

    PubMed  Google Scholar 

  17. Bonson KR, Grant SJ, Contoreggi CS, Links JM, Metcalfe J, Weyl HL, Kurian V, Ernst M, London ED (2002) Neural systems and cue-induced cocaine craving. Neuropsychopharmacology 26:376–86

    PubMed  CAS  Google Scholar 

  18. Boutrel B (2008) A neuropeptide-centric view of psychostimulant addiction. Br J Pharmacol 154(2):343–357

    PubMed  CAS  Google Scholar 

  19. Broekkamp CLE, Phillips AG, Cools AR (1979) Facilitation of self-stimulation behavior following intracerebral microinjections of opioids into the ventral tegmental area. Pharmacol Biochem Behav 11:289–295

    PubMed  CAS  Google Scholar 

  20. Brown EE, Fibiger HC (1993) Differential effects of excitotoxic lesions of the amygdala on cocaine-induced conditioned locomotion and conditioned place preference. Psychopharmacology (Berl) 113:123–130

    CAS  Google Scholar 

  21. Brunton L, Lazo J, Parker K (2005) Goodman & Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  22. Carlezon WA Jr, Nestler EJ (2002) Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci 25:610–615

    PubMed  CAS  Google Scholar 

  23. Cerqueira JJ, Pêgo JM, Taipa R, Bessa JM, Almeida OF, Sousa, N (2005) Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci 25(34):7792–7800

    PubMed  CAS  Google Scholar 

  24. Cheer JF, Wassum KM, Sombers LA, Heien ML, Ariansen JL, Aragona BJ, Phillips PE, Wightman RM (2007) Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. J Neurosci 27(4):791–795

    PubMed  CAS  Google Scholar 

  25. Childress AR, Ehrman RN, Rohsenow, D, Robbins SJ, O’Brien CP (1993) Classically conditioned factors in drug dependence. In: Lowinson J, Ruiz P, Millman R (eds) Comprehensive textbook of substance abuse. Williams & Wilkins, Baltimore, pp 56–69

    Google Scholar 

  26. Childress AR, Mozley PD, McELgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatry 156:11–18

    PubMed  CAS  Google Scholar 

  27. Colombo G, Orrù A, Lai P, Cabras C, Maccioni P, Rubio M, Gessa GL, Carai MA (2007) The cannabinoid CB1 receptor antagonist, rimonabant, as a promising pharmacotherapy for alcohol dependence: preclinical evidence. Mol Neurobiol 36(1):102–112

    PubMed  CAS  Google Scholar 

  28. Colwill RM, Rescorla RA (1990) Effect of reinforcer devaluation on discriminative control of instrumental behavior. J Exp Psychol Anim Behav Proc 16(1):40–47

    CAS  Google Scholar 

  29. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Ann Rev Pharmacol Toxicol 37:205–237

    CAS  Google Scholar 

  30. Contet C, Kieffer BL, Befort K (2004) Mu opioid receptor: a gateway to drug addiction. Curr Opin Neurobiol J14(3):370–378

    Google Scholar 

  31. Corbett D, Wise RA (1980) Intracranial self-stimulation in relation to the ascending dopaminergic systems of the midbrain: a moveable electrode mapping study. Brain Res 85(1):1–15

    Google Scholar 

  32. Corbit LH, Janak PH, Balleine BW (2007) General and outcome-specific forms of Pavlovian-instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur J Neurosci 26(11):3141–3149

    PubMed  Google Scholar 

  33. Cornish J, Kalivas P (2000). Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J Neurosci 20(RC89):81–85

    Google Scholar 

  34. Dalley JW, Laane K, Theobald DE, Armstrong HC, Corlett PR, Chudasama Y, Robbins TW (2005) Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc Natl Acad Sci USA 102(17):6189–6194

    PubMed  CAS  Google Scholar 

  35. Dayan P, Balleine BW (2002) Reward, motivation, and reinforcement learning. Neuron 36(2):285–298

    PubMed  CAS  Google Scholar 

  36. Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–1017

    PubMed  CAS  Google Scholar 

  37. Dickinson A, Nicholas DJ, Adams CD (1983) The effect of the instrumental training contingency on susceptibility to reinforcer devaluation, Q J Exp Psychol 35B:35–51

    Google Scholar 

  38. Dickinson A, Wood N, Smith JW (2002) Alcohol seeking by rats: action or habit? Q J Exp Psychol B 55(4):331–348

    PubMed  Google Scholar 

  39. Divac I, Rosvold HE, Szwarcbart MK (1967) Behavioral effects of selective ablation of the caudate nucleus. J Comp Physiol Psychol 63:184–190

    PubMed  CAS  Google Scholar 

  40. Donahoe J, Palmer D, Burgos J (1997) The unit of selection: what do reinforcers reinforce? J Exp Anal Behav 67(2):259–273

    PubMed  CAS  Google Scholar 

  41. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489

    PubMed  CAS  Google Scholar 

  42. Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154(2):261–274

    PubMed  CAS  Google Scholar 

  43. Ferreira ED, Sousa JC, Melo I, Morgado P, Mesquita AR, Cerqueira JJ, Costa RM, Sousa N (2009) Chronic stress causes frontostriatal reorganization and affects decision-making. Science 325(5940):621–625

    Google Scholar 

  44. Fourgeaud L, Mato S, Bouchet D, Hémar A, Worley PF, Manzoni OJ (2004) A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J Neurosci 24(31):6939–6945

    PubMed  CAS  Google Scholar 

  45. Frederickson RC, Geary LE (1982) Endogenous opioid peptides: review of physiological, pharmacological and clinical aspects. Prog Neurobiol 19(1–2):19–69

    PubMed  CAS  Google Scholar 

  46. Frye GD, Breese GR (1981) An evaluation of the locomotor stimulating action of ethanol in rats and mice. Psychopharmacology 75:372–379

    PubMed  CAS  Google Scholar 

  47. Gaveriaux-Ruff C, Kieffer BL (2002) Opioid receptor genes inactivated in mice: the highlights. Neuropeptides 36:62–71

    PubMed  CAS  Google Scholar 

  48. Gawin FH, Kleber HD (1986) Abstinence symptomatology and psychiatric diagnosis in cocaine abusers: clinical observations. Arch Gen Psychiatry 43:107–113

    PubMed  CAS  Google Scholar 

  49. Gerdeman GL, Schechter JB, French ED (2007) Endocannabinoid signaling at striatal CB1 receptors is critical for the consolidation of stimulus-response memories. 2007 symposium on the cannabinoids. International Cannabinoid Research Society, Burlington, Vermont, p 123. http://www.cannabinoidsociety.org

  50. Gerdeman GL, Partridge JG, Lupica CR, Lovinger DM (2003) It could be habit forming: drugs of abuse and striatal synaptic plasticity. Trends Neurosci 26(4):184–192

    PubMed  CAS  Google Scholar 

  51. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612

    PubMed  CAS  Google Scholar 

  52. Goodman A (2008) Neurobiology of addiction. An integrative review. Biochem Pharmacol 75(1):266–322

    PubMed  CAS  Google Scholar 

  53. Grace AA, Floresco SB, Goto Y, Lodge DJ (2007) Regulation of firing of dopaminergic neurons and control of goal-directed behaviors. Trends Neurosci 30:220–227

    PubMed  CAS  Google Scholar 

  54. Grahame NJ, Cunningham CL (1997) Intravenous ethanol self-administration in C57BL/6 J and DBA/2 J mice. Alcohol Clin Exp Res 21:56–62

    PubMed  CAS  Google Scholar 

  55. Gremel CM, Cunningham CL (2008) Roles of the nucleus accumbens and amygdala in the acquisition and expression of ethanol-conditioned behavior in mice. J Neurosci 28(5):1076–1084

    PubMed  CAS  Google Scholar 

  56. Gratton A (1996) In vivo analysis of the role of dopamine in stimulant and opiate self-administration. J Psychiatry Neurosci 21(4):264–279

    PubMed  CAS  Google Scholar 

  57. Grueter BA, McElligott ZA, Robison AJ, Mathews GC, Winder DG (2008) In vivo metabotropic glutamate receptor 5 (mGluR5) antagonism prevents cocaine-induced disruption of postsynaptically maintained mGluR5-dependent long-term depression. J Neurosci 28(37):9261–9270

    PubMed  CAS  Google Scholar 

  58. Grueter BA, McElligott ZA, Winder DG (2007) Group I mGluRs and long-term depression: potential roles in addiction? Mol Neurobiol 36(3):232–244

    PubMed  CAS  Google Scholar 

  59. Hayward MD, Pintar JE, Low MJ (2002) Selective reward deficit in mice lacking beta-endorphin and enkephalin. J Neurosci 22(18):8251–8258

    PubMed  CAS  Google Scholar 

  60. Hemby SE, Johnson BA, Dworkin SI (1997) Neurobiological basis of drug reinforcement. In: Johnson BA, Roache JD (eds) Drug addiction and treatment, nexus of neuroscience and behavior, Lippincott Raven, Philadelphia, pp 2–19

    Google Scholar 

  61. Herkenham M, Lynn AB, Johnson MR, Melvin LS, de Costa BR, Rice KC (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study. J Neurosci 11:563–583

    PubMed  CAS  Google Scholar 

  62. Hilário MRF, Clouse E, Yin HH, Costa RM (2007) Endocannabinoid signaling is critical for habit formation. Front Integr Neurosci 1:1–12

    Google Scholar 

  63. Hnasko TS, Sotak BN, Palmiter RD (2005) Morphine reward in dopamine-deficient mice. Nature 438:854–857

    PubMed  CAS  Google Scholar 

  64. Hnasko TS, Sotak BN, Palmiter RD (2007) Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. J Neurosci 27(46):12484–12488

    PubMed  CAS  Google Scholar 

  65. Hoffman AF, Oz M, Caulder T, Lupica CR (2003) Functional tolerance and blockade of long-term depression at synapses in the nucleus accumbens after chronic cannabinoid exposure. J Neurosci 23(12):4815–4820

    PubMed  CAS  Google Scholar 

  66. Hohmann AG, Herkenham JM (2000) Localization of cannabinoid CB1 receptor mRNA in neuronal subpopulations of rat striatum: a double-label in situ hybridization study. Synapse 37:71–80

    PubMed  CAS  Google Scholar 

  67. Holman EW (1975) Some conditions for the dissociation of consummatory and instrumental behavior in rats. Learn Motiv 6:358–366

    Google Scholar 

  68. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    PubMed  CAS  Google Scholar 

  69. Howell LL, Kimmel HL (2008) Monoamine transporters and psychostimulant addiction. Biochem Pharmacol 75(1):196–217

    PubMed  CAS  Google Scholar 

  70. Hull CL (1943) Principles of behavior. Appleton-Century-Crofts, New York

    Google Scholar 

  71. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598

    PubMed  CAS  Google Scholar 

  72. Izquierdo A, Wellman CL, Holmes A (2006) Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J Neurosci 26(21):5733–5738

    PubMed  CAS  Google Scholar 

  73. Jedynak JP, Uslaner JM, Esteban JA, Robinson TE (2007) Methamphetamine-induced structural plasticity in the dorsal striatum. Eur J Neurosci 25(3):847–853

    PubMed  Google Scholar 

  74. Johnson AW, Bannerman D, Rawlins N, Sprengel R, Good MA (2007) Targeted deletion of the GluR-1 AMPA receptor in mice dissociates general and outcome-specific influences of appetitive rewards on learning. Behav Neurosci 121(6):1192–1202

    PubMed  CAS  Google Scholar 

  75. Jones S, Bonci A (2005) Synaptic plasticity and drug addiction. Curr Opin Pharmacol 5(1):20–25

    PubMed  CAS  Google Scholar 

  76. Kahlig KM, Galli A (2003) Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur J Pharmacol 479(1–3):153–158

    PubMed  CAS  Google Scholar 

  77. Kalivas PW, McFarland K (2003) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berl) 168(1–2):44–56

    CAS  Google Scholar 

  78. Kalivas PW, O’Brien C (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33(1):166–180

    PubMed  CAS  Google Scholar 

  79. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  80. Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27(8):765–776

    PubMed  Google Scholar 

  81. Kenny PJ, Chen SA, Kitamura O, Markou A, Koob GF (2006) Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci 26(22):5894–5900

    PubMed  CAS  Google Scholar 

  82. Konorski J (1967) Integrative activity of the brain. University of Chicago, Chicago

    Google Scholar 

  83. Koob G (2006) The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction 101(Suppl 1):23–30

    PubMed  Google Scholar 

  84. Koob G (2008) Neurobiological substrates for the dark side of compulsivity in addiction. Neuropharmacology 56(Suppl 1):18–31

    PubMed  Google Scholar 

  85. Koob G, Kreek MJ (2007) Stress, dysregulation of drug reward pathways, and the transition to drug dependence. Am J Psychiatry 164(8):1149–1159

    PubMed  Google Scholar 

  86. Koob G, Le Moal M (2008) Addiction and the brain antireward system. Annu Rev Psychol 59:29–53

    PubMed  Google Scholar 

  87. Kornetsky C, Bain GT, Unterwald EM, Lewis MJ (1988) Brain stimulation reward: effects of ethanol. Alcohol Clin Exp Res 12(5):609–616

    PubMed  CAS  Google Scholar 

  88. Kuhar MJ, Sanchez-Roa PM, Wong DF, Dannals RF, Grigoriadis DE, Lew R, Milberger M (1990) Dopamine transporter: biochemistry, pharmacology and imaging. Eur Neurol Suppl 1:15–20

    Google Scholar 

  89. Kumar S, Fleming RL, Morrow AL (2004) Ethanol regulation of gamma-aminobutyric acid A receptors: genomic and nongenomic mechanisms. Pharmacol Ther 101(3):211–226

    PubMed  CAS  Google Scholar 

  90. LeDoux J (2007) The amygdala. Curr Biol 17(20):R868–R874

    PubMed  CAS  Google Scholar 

  91. Le Foll B, Forget B, Aubin HJ, Goldberg SR (2008) Blocking cannabinoid CB1 receptors for the treatment of nicotine dependence: insights from pre-clinical and clinical studies. Addict Biol 13(2):239–252

    PubMed  Google Scholar 

  92. Leventhal AM, Kahler CW, Ray LA, Stone K, Young D, Chelminski I, Zimmerman M (2008) Anhedonia and amotivation in psychiatric outpatients with fully remitted stimulant use disorder. Am J Addict 17(3):218–223

    PubMed  Google Scholar 

  93. Lovinger DM (2008) Presynaptic modulation by endocannabinoids. Handb Exp Pharmacol (184):435–477

    Google Scholar 

  94. Löw K, Crestani F, Keist R, Benke D, Brünig I, Benson JA, Fritschy JM, Rülicke T, Bluethmann H, Möhler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290(5489):131–134

    PubMed  Google Scholar 

  95. Maldonado R (2002) Study of cannabinoid dependence in animals. Pharmacol Ther 2:153–164

    Google Scholar 

  96. Maldonado R, Valverde O, Berrendero F (2006) Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 29(4):225–232

    PubMed  CAS  Google Scholar 

  97. Masur J, Oliveira De Souza ML, Zwicker AP (1986) The excitatory effect of ethanol: absence in rats, no tolerance and increased sensitivity in mice. Pharmacol Biochem Behav 24:1225–1228

    PubMed  CAS  Google Scholar 

  98. Matthes HWD, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, LeMeur M, Dollé P, Tzavara E, Hanoune J, Roques BP, Kieffer BL (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid receptor gene. Nature 383:819–823

    PubMed  CAS  Google Scholar 

  99. Mato S, Chevaleyre V, Robbe D, Pazos A, Castillo PE, Manzoni OJ (2004) A single in-vivo exposure to delta 9THC blocks endocannabinoid-mediated synaptic plasticity. Nat Neurosci 7(6):585–586

    PubMed  CAS  Google Scholar 

  100. Mato S, Robbe D, Puente N, Grandes P, Manzoni OJ (2005) Presynaptic homeostatic plasticity rescues long-term depression after chronic Delta 9-tetrahydrocannabinol exposure. J Neurosci 25(50):11619–11627

    PubMed  CAS  Google Scholar 

  101. McEwen BS, Wingfield JD (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43(1):2–15

    PubMed  Google Scholar 

  102. McGregor CM, Srisurapanont M, Jittiwutikarn J, Laobhripatr S, Wongtan T, White JM (2005) The nature, time course and severity of methamphetamine withdrawal. Addiction 100:1300–1329

    Google Scholar 

  103. Melis M, Camarini R, Ungless MA, Bonci A (2002) Long-lasting potentiation of GABAergic synapses in dopamine neurons after a single in vivo ethanol exposure. J Neurosci 22(6):2074–2082

    PubMed  CAS  Google Scholar 

  104. Mihalek RM, Bowers BJ, Wehner JM, Kralic JE, VanDoren MJ, Morrow AL, Homanics GE (2001) GABA(A)-receptor delta subunit knockout mice have multiple defects in behavioral responses to ethanol. Alcohol Clin Exp Res 25:1708–1718

    PubMed  CAS  Google Scholar 

  105. Miles FJ, Everitt BJ, Dickinson A (2003) Oral cocaine seeking by rats: action or habit? Behav Neurosci 117(5):927–938

    PubMed  Google Scholar 

  106. Miles FJ, Everitt BJ, Dalley JW, Dickinson A (2004) Conditioned activity and instrumental reinforcement following long-term oral consumption of cocaine by rats. Behav Neurosci 118(6):1331–1339

    PubMed  CAS  Google Scholar 

  107. Moolten M, Kornetsky C (1990) Oral self-administration of ethanol and not experimenter-administered ethanol facilitates rewarding electrical brain stimulation. Alcohol 7:221–225

    PubMed  CAS  Google Scholar 

  108. Mulholland PJ, Chandler LJ (2007) The thorny side of addiction: adaptive plasticity and dendritic spines. Sci World J 7:9–21

    Google Scholar 

  109. Müller CP, Carey RJ, Huston JP, De Souza Silva MA (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 81(3):133–178

    PubMed  Google Scholar 

  110. Nestler EJ (2001) Molecular neurobiology of addiction. Am J Addict 10(3):201–217

    PubMed  CAS  Google Scholar 

  111. Nazzaro JM, Seeger TF, Gardner EL (1981) Morphine differentially affects ventral tegmental and substantia nigra brain reward thresholds. Pharmacol Biochem Behav 14(3):325–331

    PubMed  CAS  Google Scholar 

  112. Nicoll RA, Alger BE (2004) The brain’s own marijuana. Sci Am 291(6):68–75

    PubMed  Google Scholar 

  113. Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434(2):117–165

    PubMed  CAS  Google Scholar 

  114. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):4194–4127

    Google Scholar 

  115. Olmstead MC, Lafond MV, Everitt BJ, Dickinson A (2001) Cocaine seeking by rats is a goal-directed action. Behav Neurosci 115(2):394–402

    PubMed  CAS  Google Scholar 

  116. Ostlund SB, Balleine BW (2007) Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J Neurosci 27(18):4819–4825

    PubMed  CAS  Google Scholar 

  117. Ostlund SB, Balleine BW (2008) Differential involvement of the basolateral amygdala and mediodorsal thalamus in instrumental action selection. J Neurosci 28(17):4398–4405

    PubMed  CAS  Google Scholar 

  118. Ostlund, SB, Balleine BW (2009) Theories of goal-directed behavior. In: Squire LR (ed) Encyclopedia of neuroscience, Oxford: Academic Press, Vol. 4, pp 943–949

    Google Scholar 

  119. Palmiter RD (2008) Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann NY Acad Sci 1129:35–46

    PubMed  CAS  Google Scholar 

  120. Panlilio LV, Goldberg SR (2007) Self-administration of drugs in animals and humans as a model and an investigative tool. Addiction 102(12):1863–1870

    PubMed  Google Scholar 

  121. Pattij T, Vanderschuren LJ (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29(4):192–199

    PubMed  CAS  Google Scholar 

  122. Pelloux Y, Everitt BJ, Dickinson A (2007) Compulsive drug seeking by rats under punishment: effects of drug taking history. Psychopharmacology (Berl) 194(1):127–137

    CAS  Google Scholar 

  123. Petry NM, Heyman GM (1995) Behavioral economics of concurrent ethanol-sucrose and sucrose reinforcement in the rat: effects of altering variable ratio requirements. J Exper Anal Behav 64:331–359

    CAS  Google Scholar 

  124. Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84:167–173

    PubMed  CAS  Google Scholar 

  125. Pierce RC, Kumaresan V (2006) The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse? Neurosci Biobehav Rev 30(2):215–238

    PubMed  CAS  Google Scholar 

  126. Pfaff DW, Kieffer BL, Swanson LW (2008) Mechanisms for the regulation of state changes in the central nervous system: an introduction. Ann NY Acad Sci 1129:1–7

    PubMed  Google Scholar 

  127. Phillips AG, Fibiger HC (1973) Dopaminergic and noradrenergic substrates of positive reinforcement: differential effects of d- and l-amphetamine. Science 179(73):575–577

    PubMed  CAS  Google Scholar 

  128. Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (ed) The amygdala: a functional analysis. University Press, Oxford, pp 31–115

    Google Scholar 

  129. Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6

    PubMed  CAS  Google Scholar 

  130. Rassnick S, Stinus L, Koob GF (1993) The effects of 6-hydroxydopamine lesions of the nucleus accumbens and the mesolimbic dopamine system on oral self-administration of ethanol in the rat. Brain Res 623:16–24

    PubMed  CAS  Google Scholar 

  131. Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black AH, Prokasy WF (eds) Classical conditioning II: current research and theory. Appleton-Century-Crofts, New York, pp 64–99

    Google Scholar 

  132. Reynolds JN, Hyland BI, Wickens JR (2001) A cellular mechanism of reward-related learning. Nature 413(6851):67–70

    PubMed  CAS  Google Scholar 

  133. Richardson NR, Roberts DC (1996) Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods 66(1):1–11

    PubMed  CAS  Google Scholar 

  134. Risinger FO, Malott DH, Prather LK, Niehus DR, Cunningham CL (1994) Motivational properties of ethanol in mice selectively bred for ethanol-induced locomotor differences. Psychopharmacology (Berl) 116(2):207–216

    CAS  Google Scholar 

  135. Robinson S, Sandstrom SM, Denenberg VH, Palmiter RD (2005) Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. Behav Neurosci 119:5–15

    PubMed  CAS  Google Scholar 

  136. Robinson S, Sotak BN, During MJ, Palmiter RD (2006) Local dopamine production in the dorsal striatum restores goal-directed behavior in dopamine-deficient mice. Behav Neurosci 120(1):196–200

    PubMed  CAS  Google Scholar 

  137. Robinson S, Rainwater AJ, Hnasko TS and Palmiter RD (2007) Viral restoration of dopamine signaling to the dorsal striatum restores instrumental conditioning to dopamine-deficient mice. Psychopharmacology (Berl) 191(3):567–578

    CAS  Google Scholar 

  138. Robinson TE, Kolb B (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47(Suppl 1):33–46

    PubMed  CAS  Google Scholar 

  139. Robinson TE, Berridge KC (2008) Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond B Biol Sci 363(1507):3137–3146

    PubMed  Google Scholar 

  140. Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B, Miller GW, Caron MG (1998) Cocaine self-administration in dopamine-transporter knockout mice. Nat Neurosci 1(2):132–137

    PubMed  CAS  Google Scholar 

  141. Routtenberg A, Lindy J (1965) Effects of the availability of rewarding septal and hypothalamic stimulation on bar pressing for food under conditions of deprivation. J Comp Physiol Psychol 60:158–161

    PubMed  CAS  Google Scholar 

  142. Routtenberg A, Kuznesof AW (1967). Self-starvation of rats living in activity wheels on a restricted feeding schedule. J Comp Physiol Psych 64:414–421

    CAS  Google Scholar 

  143. Sah P, Faber ES, Lopez De Armentia M, Power J (2003) The amygdaloid complex: anatomy and physiology. Physiol Rev 83(3):803–834

    PubMed  CAS  Google Scholar 

  144. Salinas JA, Parent MB, McGaugh JL (1996) Ibotenic acid lesions of the amygdala basolateral complex or central nucleus differentially effect the response to reductions in reward. Brain Res 742:283–293

    PubMed  CAS  Google Scholar 

  145. Samson HH Tolliver, GA, Haraguchi M, Hodge CW (1992) Alcohol self-administration: role of mesolimbic dopamine. Ann NY Acad Sci 654:242–253

    Google Scholar 

  146. Samson HH, Cunningham CL, Czachowski CL, Chappell A, Legg B, Shannon E (2004) Devaluation of ethanol reinforcement. Alcohol 32(3):203–212

    PubMed  CAS  Google Scholar 

  147. Samson HH, Czachowski CL (2003) Behavioral measures of alcohol self-administration and intake control: rodent models. Int Rev Neurobiol 54:107–143

    PubMed  Google Scholar 

  148. Sanchez FP, Dickenson L, George FR (1996) Ethanol self-administration is genetically independent of locomotor stimulation in fast and slow mice. Alcohol 13(1):79–84

    PubMed  CAS  Google Scholar 

  149. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  150. Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    PubMed  CAS  Google Scholar 

  151. See RE (2005) Neural substrates of cocaine-cue associations that trigger relapse. Eur J Pharmacol 526(1–3):140–146

    PubMed  CAS  Google Scholar 

  152. Sellings LH, McQuade LE, Clarke PB (2006) Evidence for multiple sites within rat ventral striatum mediating cocaine-conditioned place preference and locomotor activation. J Pharmacol Exp Ther 317(3):1178–1187

    PubMed  CAS  Google Scholar 

  153. Shabat-Simon M, Levy D, Amir A, Rehavi M, Zangen A (2008) Dissociation between rewarding and psychomotor effects of opiates: differential roles for glutamate receptors within anterior and posterior portions of the ventral tegmental area. J Neurosci 28:8406–8416

    PubMed  CAS  Google Scholar 

  154. Schulteis G, Markou A, Cole M, Koob GF (1995) Decreased brain reward produced by ethanol withdrawal. Proc Natl Acad Sci USA 92(13):5880–5884

    PubMed  CAS  Google Scholar 

  155. Skinner BF (1938) The behavior of organisms. Appleton-Century-Crofts, New York

    Google Scholar 

  156. Skinner BF (1953) Science and human behavior. Macmillan, New York

    Google Scholar 

  157. Skinner BF (1950) Are theories of learning necessary? Psychol Rev 57(4):193–216

    PubMed  CAS  Google Scholar 

  158. Slifer BL (1983) Schedule-induction of nicotine self-administration. Pharmacol Biochem Behav 19(6):1005–1009

    PubMed  CAS  Google Scholar 

  159. Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13(7):259–265

    PubMed  CAS  Google Scholar 

  160. Smith-Roe SL, Kelley AE (2000) Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 20(20):7737–7742

    PubMed  CAS  Google Scholar 

  161. Solomon RL, Corbit JD (1974) An opponent-process theory of motivation: 1 temporal dynamics of affect. Psych Rev 81:119–145

    CAS  Google Scholar 

  162. Sora I, Wichems C, Takahashi N, Li XF, Zeng Z, Revay R, Lesch KP, Murphy DL, Uhl GR (1998) Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc Natl Acad Sci USA 95:7699–7704

    PubMed  CAS  Google Scholar 

  163. Spanagel R (2000) Recent animal models of alcoholism. Alcohol Res Health 24(2):124–131

    PubMed  CAS  Google Scholar 

  164. Stuber GD, Hopf FW, Hahn J, Cho SL, Guillory A, Bonci A (2008) Voluntary ethanol intake enhances excitatory synaptic strength in the ventral tegmental area. Alcohol Clin Exp Res 32(10):1714–1720

    Google Scholar 

  165. Swanson C, Baker D, Carson D, Worley P, Kalivas P (2001) Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer 1b/c. J Neurosci 21:9043–9052

    PubMed  CAS  Google Scholar 

  166. Szabo B, Schlicker E (2005) Effects of cannabinoids on neurotransmission. Handb Exp Pharmacol 168:327–365

    PubMed  CAS  Google Scholar 

  167. Szumlinski KK, Lominac KD, Oleson EB, Walker JK, Mason A, Dehoff MH, Klugmann M, Cagle S, Welt K, During M, Worley PF, Middaugh LD, Kalivas PW (2005) Homer2 is necessary for EtOH-induced neuroplasticity. J Neurosci 25:7054–7061

    PubMed  CAS  Google Scholar 

  168. Szumlinski KK, Ary AW, Lominac KD (2008) Homers regulate drug-induced neuroplasticity: implications for addiction. Biochem Pharmacol 75(1):112–133

    PubMed  CAS  Google Scholar 

  169. Thomas MJ, Beurrier C, Bonci A, Malenka RC (2001) Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 4(12):1217–1223

    PubMed  CAS  Google Scholar 

  170. Thorndike CL (1932) Reward and punishment in animal learning. Comp Psychol Monogr 8:29

    Google Scholar 

  171. Todtenkopf MS, Parsegian A, Naydenov A, Neve RL, Konradi C, Carlezon WA Jr (2006) Brain reward regulated by AMPA receptor subunits in nucleus accumbens shell. J Neurosci 26(45):11665–11669

    PubMed  CAS  Google Scholar 

  172. Tzschentke TM (1998) Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog Neurobiol 56:613–672

    PubMed  CAS  Google Scholar 

  173. Vanderschuren LJ, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305(5686):1017–1019

    PubMed  CAS  Google Scholar 

  174. van Rijnsoever C, Täuber M, Choulli MK, Keist R, Rudolph U, Mohler H, Fritschy JM, Crestani F (2004) Requirement of alpha5-GABAA receptors for the development of tolerance to the sedative action of diazepam in mice. J Neurosci 24(30):6785–6790

    PubMed  Google Scholar 

  175. Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411(6837):583–587

    PubMed  CAS  Google Scholar 

  176. Uwano T, Nishijo H, Ono T, Tamura R (1995) Neuronal responsiveness to various sensory stimuli, and associative learning in the rat amygdala, Neuroscience 68:339–361

    PubMed  CAS  Google Scholar 

  177. Van Dyke C, Byck R (1982) Cocaine. Sci Am 246:128–141

    PubMed  Google Scholar 

  178. Vekovischeva OY, Zamanillo D, Echenko O, Seppälä T, Uusi-Oukari M, Honkanen A, Seeburg PH, Sprengel R, Korpi ER (2001) Morphine-induced dependence and sensitization are altered in mice deficient in AMPA-type glutamate receptor-A subunits. J Neurosci 21(12):4451–4459

    PubMed  CAS  Google Scholar 

  179. Walker JR, Ahmed SH, Gracy KN, Koob GF (2000) Microinjections of an opiate receptor antagonist into the bed nucleus of the stria terminalis suppress heroin self-administration in dependent rats. Brain Res 854(1–2):85–92

    PubMed  CAS  Google Scholar 

  180. Wang L, Liu J, Harvey-White J, Zimmer A, Kunos G (2003) Endocannabinoid signaling via cannabinoid receptor 1 is involved in ethanol preference and its age-dependent decline in mice. Proc Natl Acad Sci USA 100(3):1393–1398

    PubMed  CAS  Google Scholar 

  181. Weibel SL, Wolf HH (1979) Opiate modification of intracranial self-stimulation in the rat. Pharmacol Biochem Behav 101:71–78

    Google Scholar 

  182. West TE, Wise RA (1988) Effects of naltrexone on nucleus accumbens, lateral hypothalamic and ventral tegmental self-stimulation rate-frequency functions. Brain Res 462(1):126–133

    PubMed  CAS  Google Scholar 

  183. White NM (1989) Reward or reinforcement: what’s the difference? Neurosci Biobehav Rev 13(2–3):181–186

    PubMed  CAS  Google Scholar 

  184. Wickens JR, Horvitz JC, Costa RM, Killcross S (2007) Dopaminergic mechanisms in actions and habits. J Neurosci 27(31):8181–8183

    PubMed  CAS  Google Scholar 

  185. Wingfield JC (2003) Anniversary essay: control of behavioural strategies for capricious environments. Anim Behav 66:807–816

    Google Scholar 

  186. Wise RA (1978) Catecholamine theories of reward: a critical review. Brain Res 152(2):215–247

    PubMed  CAS  Google Scholar 

  187. Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340

    PubMed  CAS  Google Scholar 

  188. Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94(4):469–92

    PubMed  CAS  Google Scholar 

  189. Wolffgramm J, Heyne A (1995) From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav Brain Res 70:77–94

    PubMed  CAS  Google Scholar 

  190. Xia JX, Li J, Zhou R, Zhang XH, Ge YB, RuYuan X (2006) Alterations of rat corticostriatal synaptic plasticity after chronic ethanol exposure and withdrawal. Alcohol Clin Exp Res 30(5):819–824

    PubMed  CAS  Google Scholar 

  191. Yin HH, Knowlton B (2006) The role of the basal ganglia in habit formation. Nat Rev Neurosci 7(6):464–476

    PubMed  CAS  Google Scholar 

  192. Yin HH, Ostlund, SB, Balleine, BW (2008) Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci 28(8):1437–1448

    Google Scholar 

  193. Zielinski K (2006) Jerzy Konorski on brain associations. Acta Neurobiol Exp (Wars) 66(1):75–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Lovinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 This chapter is not subject to U.S. copyright protection.

About this chapter

Cite this chapter

Lovinger, D.M. (2010). Neurobiological Basis of Drug Reward and Reinforcement. In: Johnson, B. (eds) Addiction Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0338-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0338-9_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0337-2

  • Online ISBN: 978-1-4419-0338-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics