Skip to main content

Spondyloarthritis, Diffuse Idiopathic Skeletal Hyperostosis (DISH) and Chondrocalcinosis

  • Chapter
Book cover Molecular Mechanisms of Spondyloarthropathies

Abstract

The authors describe the main clinical and radiological findings of common enthesopathic disorders—spondylarthritis (SpA), chondrocalcinosis/calcium pyrophosphate dehydrate crystal deposition disease (CPPD CDD) and diffuse idiopathic skeletal hyperostosis (DISH), stressing similarities and differences which may help in the differential diagnosis. They emphasize the clinical presentation of the “pseudoankylosing spondylitis” forms of CPPD CDD. They also review the most relevant genes and molecular mechanisms associated with these conditions and with another enthesopathic disorder with high prevalence in the Japanese population—ossification of the posterior longitudinal ligament (OPLL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Calin A. Terminology, introduction, diagnostic criteria and overview, in the spondylarthritides, A. Calin, J. Taurog, ed. Oxford University Press: Oxford 1998:1–15.

    Google Scholar 

  2. Calin A. Textbook of Rheumatology. 3rd ed. WN Kelly, ED Harris, S Rudy, CD Sledge. Philadelphia: WB Saunders 1985:1021–1137.

    Google Scholar 

  3. Calin A. Oxford Textbook of Rheumatology, ed. Peter Maddison DI, Woo P, DN Glass. Oxford: Oxford University Press. 1993; Vol. 1:681–90.

    Google Scholar 

  4. Calin A, Marder A, Marks S et al, Familial aggregation of Reiter’s syndrome and ankylosing spondylitis: a comparative study. J Rheumatol 1984; 11:672–7.

    PubMed  CAS  Google Scholar 

  5. Brewerton DA, Caffrey M, Hart FD et al. Ankylosing spondylitis and HLA-B27. Lancet 1973; 1:1103.

    Google Scholar 

  6. Schlosstein LP, Terasaki PI, Bluestone R et al. High association of an HLA antigen, W27, with ankylosing spondylitis. N Eng J Med 1973; 288:744–6.

    Article  Google Scholar 

  7. van der Linden SM, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis: a proposal for modification of New York criteria. Arthritis Rheum 1984; 27:361–8.

    Article  PubMed  Google Scholar 

  8. Dougados M, van der Linden S, Juhlin R et al. The european spondyloarthropathy study group: preliminary criteria for the classification of spondyloarthropathy. Arthritis Rheum 1991; 34:1218–27.

    Article  PubMed  CAS  Google Scholar 

  9. West F. The aetiology of ankylosing spondylitis. Ann Rheum Dis 1949; 8:143–8.

    Article  PubMed  CAS  Google Scholar 

  10. Boyer GS, Lanier AP, Templin DW et al. Spondylarthropathy and rheumatoid arthritis in alaskan, yupik eskimos. J Rheumatol 1990; 17:489–96.

    PubMed  CAS  Google Scholar 

  11. Gran JT, Husby G. Epidemiology of ankylosing spondylitis. Rheumatology. AJS Marc C Hochberg, Josef S Smolen, Michael E Weinblatt, Michael H Weisman, eds. London: Elsevier Limited, 2003; Vol. 2:1153–1159.

    Google Scholar 

  12. Gofton JP, Robinson HS, Trueman GE. Ankylosing spondylitis in a canadian indian population. Ann Rheum Dis 1966; 25:525–27.

    PubMed  CAS  Google Scholar 

  13. van der Linden SM, valkenburg HA, de Jongh BM et al. The risk of developing ankylosing spondylitis in HLA-B27 positive individuals. Arthritis Rheum 1984; 27:241–49.

    Article  PubMed  Google Scholar 

  14. Bruges Armas J, Lima C, Peixoto MJ et al. Prevalence of spondyloarthritis in terceira, azores: a population based study. Ann Rheum dis 2002; 61:551–53.

    Article  PubMed  CAS  Google Scholar 

  15. Gran JT, Husby G, Hordvik M. Prevalence of ankylosing spondylitis in males and females in a young middle-aged population in Tromso, Northern Norway. Ann Rheum Dis 1985; 44:359–67.

    Article  PubMed  CAS  Google Scholar 

  16. Johnsen K, Gran JT, Dale K et al. The prevalence of ankylosing spondylitis in a norwegian sami population. J Rheumatol 1992; 19:1591–94.

    PubMed  CAS  Google Scholar 

  17. Thorsby E, Bratlie A, Teisberg P. HLA polymorphism of norwegian Laps. Tissue Antigens 1971; 1:137–46.

    Article  PubMed  CAS  Google Scholar 

  18. Calin A, Fries JF. Striking prevalence of ankylosing spondylitis in “healthy” w27 positive males and females. A controled study. N Eng J Med 1975; 293:835–39.

    Article  CAS  Google Scholar 

  19. Bruges Armas J. Espondilartrites e doenças associadas. Heterogeneidade genética e sua expressão. PhD Thesis: Porto 2001:65–67.

    Google Scholar 

  20. Sieper J, Braun J, Rudwaleit M et al. Ankylosing spondylitis: an overview. Ann Rheum Dis 2002; 61(Suppl):iii 8–iii 18.

    Google Scholar 

  21. Hochberg MC, Borenstein DG, Arnett FC. The absence of back pain in classical ankylosing spondylitis. Johns Hopkins Med J 1978; 143:181–83.

    PubMed  CAS  Google Scholar 

  22. Khan MA. Rheumatology. 3rd ed. AJS Marc C Hochberg, Josef S Smolen, Michael E Weinblatt, Michael H Weisman. London: Elsevier Limited, 2003; 3:1161–1181.

    Google Scholar 

  23. Resnick D, Niwayama G. Ankylosing spondylitis, in Diagnosis of bone and joint disorders, Resnick D, ed., WB Saunders: Philadelphia 1995:1008–74.

    Google Scholar 

  24. Khan MA. Ankylosing spondylitis: clinical aspects, in the spondylarthritides, A Calin, J Taurog, ed. New York: Oxford University Press, 1998:27–40.

    Google Scholar 

  25. McGonagle D, Khan MA, Marzo Ortega H et al. Enthesitis in ankylosing spondylitis and related spondyloarthropathies. Curr Opinion Rheumatol 1999; 11:244–250.

    Article  CAS  Google Scholar 

  26. Will R, Palmer R, Bhalla AK et al. Osteoporosis in early ankylosing spondylitis: a primary pathological event? Lancet 1989; 2:1483–5.

    Article  PubMed  CAS  Google Scholar 

  27. Murray GC, Persellin RH. Cervical fracture complicating ankylosing spondylitis. A report of eight cases and review of the literature. Am J Med 1981; 70:1033–41.

    Article  PubMed  CAS  Google Scholar 

  28. O’Neill TW, Bresnihan B. The heart in ankylosing spondylitis. Ann Rheum Dis 1992; 51:705–6.

    Article  PubMed  Google Scholar 

  29. Resnick D, Niwayama G. Ankylosing Spondylitis. D Resnick ed. WB Saunders Company, 1995: 1008–1074.

    Google Scholar 

  30. Salonen DC, Brower AC. Seronegative spondyloarthropathies imaging, in Rheumatology, AJS Marc C Hochberg, Josef S Smolen, Michael E Weinblatt, Michael H Weisman, ed. London, Elsevier Limited: 2003:1193–1203.

    Google Scholar 

  31. Mau W, Zeidler H, Mau R et al. Clinical features and prognosis of patients with possible ankylosing spondylitis: results of a 10 year follow-up. J Rheumatol 1988; 15:1109–1114.

    PubMed  CAS  Google Scholar 

  32. Kozin F, Carrera GF, Ryan LM et al. Computed tomography in the diagnosis of sacroiliitis. Arthritis Rheum 1981; 24:1479–85.

    Article  PubMed  CAS  Google Scholar 

  33. Braun J, Bollow M, Eggens U et al. Use of dynamic magnetic resonance imaging with fast imaging in the detection of early and advanced sacroiliitis in spondyloarthropathy patients. Arthritis Rheum 1994; 37:1039–45.

    Article  PubMed  CAS  Google Scholar 

  34. Forrestier J, RQ J. Senile ankylosing hyperostosis of the spine. Ann Rheum Dis 1950; 9:321–30.

    Article  Google Scholar 

  35. Resnick D, Niwayama G. Radiographic and pathologic features of spinal involvement in diffuse idiopathic skeletal hyperostosis (DISH). Radiology 1976; 119:559.

    PubMed  CAS  Google Scholar 

  36. Durback MA, Edelstein E, Schumacher R. Abnormalities of the sacroiliac joints in diffuse idiopathic skeletal hyperostosis: demonstration by computed tomography. J Rheumatol 1988; 15:1506–10.

    PubMed  CAS  Google Scholar 

  37. Weisz GM, Green L. Progressive sacro-iliac obliteration in forestier disease. Intern Orthopedics 1986; 10:47–51.

    CAS  Google Scholar 

  38. Boachie-Adjei O, Bullough P. Incidence of ankylosing hyperostosis of the spine (forestier’s disease) at autopsy. Spine 1987; 12:739.

    Article  PubMed  CAS  Google Scholar 

  39. Harris J, Carter AR, Glick EN et al. Ankylosing hyperostosis I. Clinical and radiological features 1974; 33:210–15.

    CAS  Google Scholar 

  40. Bloom RA. The prevalence of ankylosing hyperostosis in a Jerusalem population with description of a method of grading the extension of the disease. Scand J Rheum 1984; 13:181–89.

    Article  PubMed  CAS  Google Scholar 

  41. Mader R. Clinical manifestations of diffuse Idiopathic skeletal hyperostosis of the cervical spine. Sem Arthritis Rheum 2002; 32(2):130–35.

    Article  Google Scholar 

  42. Resnick D, Shapiro RF, Wiesner KB et al. Diffuse idiopathic skeletal hyperostosis (DISH). Sem Arthritis Rheum 1978(7):153–187.

    Article  CAS  Google Scholar 

  43. Mata S, Fortin PR, Fitzcharles M et al. A controlled study of diffuse idiopathic skeletal hyperostosis. Medicine 1997; 76(2):104–17.

    Article  PubMed  CAS  Google Scholar 

  44. Littlejohn GO, Urowitz MB. Peripheral enthesopathy in diffuse idiopathic skeletal hyperostosis (DISH). J Rheumatol 1982; 9:568–72.

    PubMed  CAS  Google Scholar 

  45. Daragon A, Czernichow P, Louvel JP et al. Vertebral hyperostosis and diabetes mellitus: a case-control study. Annals of the Rheumatic Diseases 1995; 54:375–8.

    Article  PubMed  CAS  Google Scholar 

  46. Schramm P, Schmidt KL, Rude J. Familial occurrence of multiple basalomas associated with hyperostotic spondylosis. Z Hauktr 1985; 60(10):785–6, 791–2.

    CAS  Google Scholar 

  47. Gorman C, Jawad ASM, Chikanza I. A family with diffuse idiopathic skeletal hyperostosis. Ann Rheum Dis 2005; 64:1794–95.

    Article  PubMed  CAS  Google Scholar 

  48. Beardwell A. Familial ankylosing vertebral hyperostosis with tylosis. Ann Rheum Dis 1969; 28:518–23.

    Article  PubMed  CAS  Google Scholar 

  49. Bruges-Armas JB, Couto AR, Timms A et al. Ectopic calcification in the azores—clinical and radiological manifestations of DISH and chondrocalcinosis families. Arthritis Rheum 2006; 54(4):1340–1349.

    Article  PubMed  Google Scholar 

  50. Havelka S, Fáberová R, Gatterová J et al. Familial incidence of diffuse idiopathic skeletal hyperostosis. Vnitr Lek 1990; 36(7):680–4.

    PubMed  CAS  Google Scholar 

  51. De Bandt M, Meyer O, Fuster JM et al. Ossification of the posterior longitudinal ligament, diffuse, idiopathic skeletal hyperostosis, abnormal retinol and retinol binding protein: a familial observation. J Rheumatol 1995; 22(7):1395–8.

    PubMed  Google Scholar 

  52. Abiteboul M, Mazières B Ménard H. 2 New familial cases of ankylosing vertebral hyperostosis. Rev Rhum Mal Osteoartic 1985; 52(11):645–7.

    PubMed  CAS  Google Scholar 

  53. Sváb V. To the extent, development and genetic predisposition to the so-called diffuse idiopathic skeletal hyperostosis (osteodesmosis). Cas Lek Cesk 1981; 120(21):625–8.

    PubMed  Google Scholar 

  54. Matsunaga S, Sakou T. Epidemiology of ossification of the posterior longitudinal ligament, in ossification of the posterior longitudinal ligament, ST Yonenobu, K Ono, Editor. Springer: Tokyo 1997:11–7.

    Google Scholar 

  55. Resnick D, Guerra JJ, Robinson CA et al. Association of diffuse idiopathic skeletal hyperostosis (DISH) and calcification and ossification of the posterior longitudinal ligament. Am J Roentgenol 1978; 131:1049–53.

    CAS  Google Scholar 

  56. Zitnan D, Sitaj S. Mnohopocentna familiarna kalcifikacin articularnych chrupiek. Bratisl Lek Listy 1958; 38:217–28.

    Google Scholar 

  57. McCarty DJ. The heberden oration 1982. Crystals, joints and consternation. Ann Rheum Dis 1983; 42:243–53.

    Article  PubMed  CAS  Google Scholar 

  58. Rosenthal AK, Ryan LM. Calcium pyrophosphate crystal deposition disease, pseudogout and articular chondrocalcinosis, in arthritis and allied conditions, W J Koopman, LW Moreland, ed. Lippincott Williams and Wilkins: Philadelphia 2005:2373–2396.

    Google Scholar 

  59. McCarty DJ, Gatter RA. Pseudogout syndrome. Bull Rheum Dis 1964; 14:331.

    Google Scholar 

  60. Kohn NN, Hughes RE, McCarty DJ et al. The significance of calcium phosphate crystals in the synovial fluid of arthritic patients: “the pseudogout syndrome” Identification of crystals II. Ann Int Med 1962; 56:738.

    PubMed  CAS  Google Scholar 

  61. Resnick D, Niwayama G, Goergen TG et al. Clinical, radiographic and pathological abnormalities in calcium pyrophosphate dehydrate deposition disease (CPPD) pseudogout. Diagn Radiol 1977; 122:1–15.

    CAS  Google Scholar 

  62. Martel W, McCarter DK, Solsky MA et al. Further observations on the arthropathy of calcium pyrophosphate crystal deposition disease. Radiology 1981; 141:1–15.

    PubMed  CAS  Google Scholar 

  63. McCarty DJ. Diagnostic mimicry in arthritis: patterns of joint involvement associated with calcium pyrophosphate dehydrate crystal deposits. Bull Rheum dis 1975; 25:804–9.

    Google Scholar 

  64. Gerster JC, Baud CA, Lagier R et al. Tendon calcifications in chondrocalcinosis. Arthritis Rheum 1977; 20:717–22.

    Article  PubMed  CAS  Google Scholar 

  65. Lagier R, Boivin G, Gerster J. Carpal tunnel syndrome associated with mixed calcium pyrophosphate dihydrate and apatite crystal deposition in tendon sheath. Arthritis Rheum 1984; 27:1190–95.

    Article  PubMed  CAS  Google Scholar 

  66. Ellman MH, Krieger MI, Brown N. Pseudogout mimicking synovial chondromatosis. J Bone Joint Surg (AM) 1975; 57:863.

    CAS  Google Scholar 

  67. Hensley CD, Lin JJ. Massive intrasynovial deposition of calcium pyrophosphate in the elbow. J Bone Joint Surg (AM) 1984; 66:133.

    CAS  Google Scholar 

  68. Zitnan D, Sitaj S. Chondrocalcinosis articularis. Ann Rheum Dis 1963; 22:142–70.

    Article  PubMed  CAS  Google Scholar 

  69. Gaudreau A, Camerlain M, Pibarot ML et al. Familial articular chondrocalcinosis in Quebec. Arthritis Rheum 1981; 24(4):611–615.

    Article  PubMed  CAS  Google Scholar 

  70. Richardson BC, Chafetz NI, Ferrel LD et al. Chondrocalcinosis in a mexican-american family. Arthritis Rheum 1983; 26:1387–96.

    Article  PubMed  CAS  Google Scholar 

  71. Hamza M, Meddeb N, Bardin T. Hereditary chondrocalcinosis in a tunisian family. Clin Exp Rheum 1992; 10:43–49.

    CAS  Google Scholar 

  72. Balsa A, Martin-Mola E, Gonzalez T et al. Familial articular chondrocalcinosis in spain. Ann Rheum Dis 1990; 49:531–535.

    Article  PubMed  CAS  Google Scholar 

  73. Eshel G, Gulik A, Halperin N et al. Hereditary chondrocalcinosis in an Ashkenazi jewish family. Ann Rheum Dis 1990; 49:528–530.

    Article  PubMed  CAS  Google Scholar 

  74. Doherty M, Hamilton E, Henderson J et al. Familial chondrocalcinosis due to calcium pyrophosphate dihydrate crystal deposition in English Families. Br J Rheum 1991; 30:10–15.

    Article  CAS  Google Scholar 

  75. Bjelle A, Edvinson U, Hagstam A. Pyrophosphate Arthropathy in Two Swedish Families. Arthritis Rheum 1982; 25(1):66–74.

    Article  PubMed  CAS  Google Scholar 

  76. Reginato A. Articular chondrocalcinosis in the Chiloe Islanders. Arthritis Rheum 1976; 19(Suppl 3): 395–404.

    Article  PubMed  Google Scholar 

  77. Rodriguez-Valverde V, Tinture T, Zuniga M et al. Familial chondrocalcinosis—Prevalence in Northern Spain and Clinical Features in Five Pedigrees. Arthritis Rheum 1980; 23(4):471–478.

    Article  PubMed  CAS  Google Scholar 

  78. Van der Korst JK, Gerards J, Driessens FM. A hereditary type of idiopathic articular chondrocalcinosis. Survey of a pedigree. Am J Med Genet 1974; 56(3):307–14.

    Google Scholar 

  79. McCarty DJ. Calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum 1976; 19(Suppl):272–85.

    Google Scholar 

  80. Rodriguez-Valverde V, Zuniga M, Casanueva B et al. Hereditary articular chondrocalcinosis. Am J Med 1988; 84:101–106.

    Article  PubMed  CAS  Google Scholar 

  81. Dapica MPF, Gomez-Reino JJ. Familial chondrocalcinosis in the Spanish pupulation. J Rheumatol 1986; 13:631–3.

    Google Scholar 

  82. Zitnan D, Sitaj S. Natural course of articular chondrocalcinosis. Arthritis Rheum 1976; 19(Suppl):363–90.

    Article  PubMed  Google Scholar 

  83. Okazaki T, Saito T, Mitomo T et al. Pseudogout: Clinical observations and chemical analyses of deposyts. Arthritis Rheum 1976; 19:293–305.

    Article  PubMed  Google Scholar 

  84. Magnet JL, Strauss J, Dentan S et al. Joint ankylosis in familial chondrocalcinosis. Presse Med 1986; 15(23):1105.

    PubMed  CAS  Google Scholar 

  85. Gaucher A, Pourel J, Faure G et al. Diffuse hereditary articular chondrocalcinosis. Rev Rhum Mal Osteoartic 1977; 44(10):589–97.

    PubMed  CAS  Google Scholar 

  86. Brem J. Vertebral ankylosis in a patient with hereditary chondrocalcinosis: a chance association? Arthritis Rheum 1982; 25(10):1257–63.

    Article  PubMed  CAS  Google Scholar 

  87. Sharp J. Heredo-familial vascular and articular calcification. Ann Rheum Dis 1954:15–27.

    Google Scholar 

  88. Ho HH, Yang WE, Lu SF. Ankylosing spondylitis with severe chondrocalcinosis: a case report. Changgeng Yi Xue Za Zhi 1999; 22(3):536–40.

    PubMed  CAS  Google Scholar 

  89. Layfer LF, Katz R, Golden H. Chondrocalcinosis simulating ankylosing spondylitis. JAMA 1978; 240(1):55–6.

    Article  PubMed  CAS  Google Scholar 

  90. Anderson HC. Molecular biology of matrix vesicles. Clin Orthop Rel Res 1995; 314:266–280.

    Google Scholar 

  91. Derfus B, Kranendonk S, Camacho N et al. Human osteoarthritic cartilage matrix vesicles generate both calcium pyrophosphate dihydrate and apatite in vitro. Calcif Tissue Int 1998; 63:258–262.

    Article  PubMed  CAS  Google Scholar 

  92. Picher M, Graff RD, Lee GM. Extracellular nucleotide metabolism and signaling in the pathophysiology of articular cartilage. Arthritis Rheum 2003; 48(10):2722–2736.

    Article  PubMed  CAS  Google Scholar 

  93. Ciancaglini P, Simão AMS, Camolezi FL et al. Contribution of matrix vesicles and alkaline phosphatase to ectopic bone formation. Braz J Med Biol Res 2006; 39:603–610.

    Article  PubMed  CAS  Google Scholar 

  94. Fleisch H, Bisaz S. Mechanism of calcification: inhibitory role of pyrophosphate. Nature 1962; 195:911.

    Article  PubMed  CAS  Google Scholar 

  95. Terkeltaub RA. Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Physiol Cell Physiol 2001; 281:C1–C11.

    PubMed  CAS  Google Scholar 

  96. Silcox DC, McCarty Jr DJ. Elevated inorganic concentrations in synovial fluids in osteoarthritis and pseudogout. J Lab Clin Med 1974; 83(4).

    Google Scholar 

  97. Cohen MMJ. The new bone biology: Pathological, molecular and clinical correlated. Am J Med Genet 2006; Part A(140A):2646–2706.

    Article  CAS  Google Scholar 

  98. Couto R, Brown MA. Genetic factors in the pathogenesis of CPPD crystal deposition disease. Curr Rheumatol Rep 2007; 9(3):231–6.

    Article  PubMed  CAS  Google Scholar 

  99. Reginato A, Valenzuela F, Martinez V et al. Polyarticular and familial chondrocalcinosis. Arthritis Rheum 1970; 13(3):197–213.

    Article  PubMed  CAS  Google Scholar 

  100. Pons-Estel BA, Gimenez C, Sacnun M et al. Familial osteoarthritis and Milwaukee shoulder associated with calcium pyrophosphate and apatite crystal deposition. J Rheumatol 1999; 27(2):471–480.

    Google Scholar 

  101. Baldwin CT, Farrer LA, Adair R et al. Linkage of early-onset osteoarthritis and chondrocalcinosis to human chromosome 8q. Am J Hum Genet 1995; 56:692–697.

    PubMed  CAS  Google Scholar 

  102. Hughes AE, McGibbon D, Woodward E et al. Localisation of a gene for chondrocalcinosis to chromosome 5p. Hum Mol Genet 1995; 4(7):1225–1228.

    Article  PubMed  CAS  Google Scholar 

  103. Andrew LJ, Brancolini V, Serrano de la Pena L et al. Refinement of the chromosome 5p locus for familial calcium pyrophosphate dihydrate deposition disease. Am J Hum Genet 1999; 64:136–145.

    Article  PubMed  CAS  Google Scholar 

  104. Ho AM, Johnson MD, Kingsley DM. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 2000; 289:265–289.

    Article  PubMed  CAS  Google Scholar 

  105. Timms AE, Zhang Y, Russel RG et al. Genetic studies of disorders of calcium crystal deposition. Rheumatol 2002; 41(7):725–9.

    Article  CAS  Google Scholar 

  106. Williams CJ, Zhang Y, Timms A et al. Autosomal dominant familial calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembrane protein ANKH. Am J Hum Genet 2002; 71:985–991.

    Article  PubMed  Google Scholar 

  107. Pendleton A, Johnson MD, Hughes AE et al. Mutations in ANKH cause chondrocalcinosis. Am J Hum Genet 2002; 71:933–940.

    Article  PubMed  Google Scholar 

  108. Williams CJ, Pendleton A, Bonavita G et al. Mutations in the amino terminus of ANKH in two US families with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum 2003; 48(9):2627–2631.

    Article  PubMed  CAS  Google Scholar 

  109. Zhang Y, Johnson K, Russel RGG et al. Association of sporadic chondrocalcinosis with a-4 basepair G-to-A transition in the 5′ untranslated region of ANKH that promotes enhanced expression of ANKH protein and excess generation of extracellular inorganic pyrophosphate. Arthritis Rheum 2005; 52:1110–1117.

    Article  PubMed  CAS  Google Scholar 

  110. Gurley KA, Reimer RJ, Kingsley DM. Biochemical and genetic analysis of ANK in arthritis and bone disease. Am J Hum Genet 2006; 79:1017–1029.

    Article  PubMed  CAS  Google Scholar 

  111. Zaka R, Stokes D, Dion AS et al. P5L mutation in ANK results in an increase in extracellular inorganic pyrophosphate during proliferation and nonmineralizing hypertrophy in stably transduced ATDC5 cells. Arthritis Re Ther 2006; 8(6):R164.

    Article  CAS  Google Scholar 

  112. Ryan LM, Kurup I, Cheung HS. Stimulation of cartilage inorganic pyrophosphate elaboration by ascorbate. Matrix 1991; 11(4):276–281.

    Article  PubMed  CAS  Google Scholar 

  113. Tsui FWL, Tsui HW, Cheng EY et al. Novel genetic markers in the 5′-flanking region of ANKH are associated with ankylosing spondylitis. Arthritis Rheum 2003; 48(3):791–797.

    Article  PubMed  CAS  Google Scholar 

  114. Timms AE, Zhang Y, Bradbury L et al. Investigation of the role of ANKH in ankylosing spondylitis. Arthritis Rheum 2003; 48:2898–2902.

    Article  PubMed  CAS  Google Scholar 

  115. Tsui HW, Inman RD, Paterson AD et al. ANKH variants associated with ankylosing spondylitis: gender differences. Arthritis Res Ther 2005; 7(3):513–25.

    Article  CAS  Google Scholar 

  116. MacLean IL, Iqball S, Woo P et al. HLA-B27 subtypes in the spondarthropathies. Clin Exp Immunol 1993; 91:214–9.

    Article  PubMed  CAS  Google Scholar 

  117. Lopez-Larrea C, Sujirachato K, Mehra NK et al. HLA-B27 subtypes in asian patients with ankylosing spondylitis. Evidence for new associations. Tissue Antigens 1995; 45:1698–76.

    Article  Google Scholar 

  118. Armas JB, Gonzalez S, Martinez-Borra J et al. Susceptibility to ankylosing spondylitis is independent of the Bw4 and Bw6 epitopes of HLA-B27 alleles. Tissue Antigens 1999; 53:237–243.

    Article  PubMed  CAS  Google Scholar 

  119. Garcia F, Rognan D, Lamas JR et al. An HLA-B27 polymorphism (B*2710) that is critical for T-cell recognition has limited effects on peptide specificity. Tissue Antigens 1998; 51:1–9.

    Article  PubMed  CAS  Google Scholar 

  120. Garcia Fernandez S, Gonzalez S, Martinez-Borra J et al. New insights regarding HLA-B27 diversity in the Asian population. Tissue Antigenes 2001; 58:259–62.

    Article  CAS  Google Scholar 

  121. Gonzalez-Roces S, Alvarez MV, Gonzalez S et al. HLA-B27 polymorphism and worldwide susceptibility to ankylosing spondylitis. Tissue Antigens 1997; 49:116–123.

    Article  PubMed  CAS  Google Scholar 

  122. Tamouza R, Mansour I, Bouguacha N et al. A new HLA-B*27 allele (B*2719) identified in a Lebanese patient affected with ankylosing spondylitis. Tissue Antigens 2001; 58(1):30–3.

    Article  PubMed  CAS  Google Scholar 

  123. Lopez-Larrea C, BlancoGelaz MA, Torre-Alonso JC et al. Contribution of KIR3DL1/3DS1 to ankylosing spondylitis in human leukocyte antigen-B27 Caucasian populations. Arthritis Res Ther 2006; 8(4):R101.

    Article  PubMed  CAS  Google Scholar 

  124. Brown MA, Pile KD, Kennedy LG et al. A genome wide-screen for susceptibility loci in ankylosing spondylitis. Arthritis Rheum 1998; 41:588–95.

    Article  PubMed  CAS  Google Scholar 

  125. Brown MA, Brophy S, Bradbury L et al. Identification of major loci controlling clinical manifestations of ankylosing spondylitis. Arthritis Rheum 2003; 43:2234–9.

    Article  Google Scholar 

  126. Laval SH, Timms A, Edwards S et al. Whole-genome screening in ankylosing spondylitis: evidence of nonMHC genetic-susceptibility loci. Am J Hum Genet 2001; 68:918–26.

    Article  PubMed  CAS  Google Scholar 

  127. Timms AE, Crane AM, Sims AM et al. The interleukin 1 gene cluster contains a major susceptibility locus for ankylosing spondylitis. Am J Hum Genet 2004; 75(4):587–95.

    Article  PubMed  CAS  Google Scholar 

  128. Wellcome Trust Case control Consortium; Australo-Anglo-American Spondylitis Consortium (TASC), e.a., Association scan of 14,500 nonsynonimous SNPs in four diseases identifies autoimmunity variants. Nat Genet 2007; 39(11):1329–37.

    Article  CAS  Google Scholar 

  129. Nakamura I, Ikegawa S, Okawa A et al. Association of the human NPPS gene with ossification of the posterior longitudinal ligament of the spine (OPLL). Hum Genet 1999; 104:492–497.

    Article  PubMed  CAS  Google Scholar 

  130. Rutsch F, Ruf N, Vaingankar S et al. Mutations in ENPP1 are associated with “idiopathic” infatile arterial calcification. Nature Genet 2003; 34(4):379–381.

    Article  PubMed  CAS  Google Scholar 

  131. Okawa A, Nakamura I, Goto S et al. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 1998; 19:271–273.

    Article  PubMed  CAS  Google Scholar 

  132. Rutsch F, Ruf N, Vaingankar S et al. Mutations in ENPP1 are associated with “idiopathic” infatile arterial calcification. Nat Genet 2003; 34(4):379–381.

    Article  PubMed  CAS  Google Scholar 

  133. Zhang Y, Brown MA, Peach C et al. Investigation of the role of ENPP1 and TNAP genes in chondrocalcinosis. Rheumatol 2006; doi:10.1093/rheumatology/kel338.

    Google Scholar 

  134. Mornet E, Taillandier A, Peyramaure S et al. Identification of fifteen novel mutations in the tissue-nonspecific alkaline phosphatase (TNSALP) gene in European patients with severe hypophosphatasia. Eur J Hum Genet 1998; 6:308–314.

    Article  PubMed  CAS  Google Scholar 

  135. Hessle L, Johnson KA, Anderson HC et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. PNAS 2002; 99(14):9445–9449.

    Article  PubMed  CAS  Google Scholar 

  136. Denko CW, Boja B, Moskovitz RW. Growth promoting peptides in osteoarthritis and diffuse idiopathic skeletal hyperostosis—insulin, insulin-like growth factor, growth hormone. J Rheumatol 1994; 21:1725–30.

    PubMed  CAS  Google Scholar 

  137. Kiss C, Szilagyi M, Paksy A et al. Risk factors for diffuse idiopathic skeletal hyperostosis: a case control study. Rheumatol 2002; 41:27–30.

    Article  CAS  Google Scholar 

  138. Wyatt L, Ferrance RJ. The musculoskeletal effects of diabetes mellitus. J Can Chirop Assoc 2006; 50(1):43–50.

    Google Scholar 

  139. Miendany E, Wassif G, Baddini M. Diffuse idiopathic skeletal hyperostosis (DISH) is it of vascular (aetiology). Clin Exp Rheum 2000; 18:193–200.

    Google Scholar 

  140. Cancela L, Hsieh C, Francke U et al. Molecular structure, chromosome assignment and promoter organization of the human matrix Gla protein gene. J Bio Chem 1990; 265:15040–8.

    CAS  Google Scholar 

  141. Sarzi-Puttini P, Bevilacqua M, Atzeni F. Matrix GLA protein: evidence of persistently increased concentrations in DISH patients. Arthritis Rheum 48:S534.

    Google Scholar 

  142. Hukuda S, Mochizuki T, Ogata M et al. The pattern of spinal and extraspinal hyperostosis in patients with ossification of the posterior longitudinal ligament and the ligament flavum causing myelopathy. Skelet Radiol 1983; 10:79–85.

    Article  CAS  Google Scholar 

  143. Ehara S, Shimamura T, Nakamura R et al. Paravertebral Ligamentous Ossification: DISH, OPLL and OLF. Eur J Radiol 1998; 27:196–205.

    Article  PubMed  CAS  Google Scholar 

  144. Terayama K. Genetic studies on ossification of the posterior longitudinal ligament of the spine. Spine 1989; 14:1184–91.

    Article  PubMed  CAS  Google Scholar 

  145. Denko CW, Boja B, Moskovitz RW. Growth promoting peptides in osteoarthritis and DISH. J Rheumatol 1994; 21:1725.

    PubMed  CAS  Google Scholar 

  146. Koga H, Sakou T, Taketomi E et al. Genetic mapping of ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 1998; 62:1460–7.

    Article  PubMed  CAS  Google Scholar 

  147. Maeda S, Koga H, Matsunaga S et al. Gender-specific haplotype association of collagen alpha2 (XI) gene in ossification of the posterior longitudinal ligament. J Hum Genet 2001; 46(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  148. Okawa A, Ikegawa S, Nakamura I et al. Mapping of a gene responsible for twy (tip-toe walking Yoshimura), a mouse model of ossification of the poserior longitudinal ligament of the spine (OPLL). Mamm Genome 1998; 2:155–6.

    Article  Google Scholar 

  149. Koshizuka Y, Ikegawa S, Sano M et al. Isolation of novel mouse genes associated with ectopic ossification by differential display method using ttw, a mouse model for ectopic ossification. Cytogenet Cell Genet 2001; 94:163–8.

    Article  PubMed  CAS  Google Scholar 

  150. Kamiya M, Harada A, Mizuno M et al. Association between a polymorphism of the transforming growth factor-beta1 gene and the genetic susceptibility to ossification of the posterior longitudinal ligament in Japanese patients. Spine 2001; 26(11):1264–6.

    Article  PubMed  CAS  Google Scholar 

  151. Kawaguchi Y, Furushima K, Sugimori K et al. Association between polymorphism of the transforming growth factor-beta1 gene with the radiologic characteristic and ossification of the posterior longitudinal ligament. Spine 2003; 28(13):1424–6.

    PubMed  Google Scholar 

  152. Tanaka T, Ikari K, Furushima K et al. Genomewide Linkage and Linkage Disequilibrium Analysis Identify COL6A1, on Chromosome 21, as the Locus for Ossification of the Posterior Longitudinal Ligament of the Spine. Am J Hum Genet 2003; 73:812–22.

    Article  PubMed  CAS  Google Scholar 

  153. Horikoshi T, Maeda K, Kawagushi Y et al. A large-scale genetic association study of ossification of the posterior longitudinal ligament of the spine. Hum Genet 2006; 119(6):611–6.

    Article  PubMed  Google Scholar 

  154. Richards AJ, Hamilton EB. Spinal changes in idiopathic chondrocalcinosis articularis. Rheumatol Rehabil 1976; 15(3):138–42.

    Article  PubMed  CAS  Google Scholar 

  155. Resnick D, Pineda C. Vertebral involvement in calcium pyrophosphate dihydrate crystal deposition disease. Radiology 1984; 153:55–60.

    PubMed  CAS  Google Scholar 

  156. Littlejohn GO, Baron M, Urowitz MB. Sacroiliac joint abnormalities in calcium pyrophosphate crystal deposition disease. Rheumatol Int 1982; 1:195–198.

    Article  Google Scholar 

  157. Brigode M, Francois RJ, Dory MA. Radiological study of the sacroiliac joints in vertebral ankylosing hyperostosis. Ann Rheum Dis 1982; 41:225–231.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Armas, J.B., Couto, A.R., Bettencourt, B.F. (2009). Spondyloarthritis, Diffuse Idiopathic Skeletal Hyperostosis (DISH) and Chondrocalcinosis. In: López-Larrea, C., Díaz-Peña, R. (eds) Molecular Mechanisms of Spondyloarthropathies. Advances in Experimental Medicine and Biology, vol 649. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0298-6_3

Download citation

Publish with us

Policies and ethics