Skip to main content

Use of Multicriteria Analysis for Selecting Ecotoxicity Tests

  • Chapter
  • First Online:

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 2))

Abstract

It is now well admitted that a battery of ecotoxicity tests should be designed by accounting for the requirements of a specific scenario such as classification of wastes or remediation efficiency of contaminated soils. The development of a single battery of tests for all applications is thereafter recognized not to be relevant. The selection of tests for constituting a battery may be established according to expert judgments, decision criteria such as cost, ecological relevance, sensitivity of selected organisms, standardization of the methods, implementation of the test protocols or after statistical analysis of test results obtained on a large series of bioassays. In this chapter, a methodological framework, based on the combination of an original multicriteria method called SIRIS and multivariate analyses, is presented for selecting ecotoxicity tests for assessing the level of contamination of soils. The interest of this approach that simultaneously accounts for ecological, technical, and economical constraints is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anonymous (2006) Toxicity testing for assessment of environmental agents: Interim report. Committee on Toxicity Testing and Assessment of Environmental Agents, National Research Council, National Academy of Sciences, USA

    Google Scholar 

  2. Anonymous (2007) Toxicity testing in the 21st century: A vision and a strategy. Committee on Toxicity Testing and Assessment of Environmental Agents, National Research Council, National Academy of Sciences, USA

    Google Scholar 

  3. Junghans M, Schaefer M, Drost W, Hassold E, Stock F, Dünne M, Juffernholz T, Meyer W, Ranke J (2008) Reconsidering environmental effects assessment of chemicals: Proposal for a dynamic testing strategy. Basic Appl Ecol 9: 356–364

    Article  Google Scholar 

  4. Lambolez L, Vasseur P, Ferard JF, Gisbert T (1994) The environmental risks of industrial waste disposal: an experimental approach including acute and chronic toxicity studies. Ecotoxicol Environ Safety 28: 317–328

    Article  CAS  Google Scholar 

  5. Repetto G, Jos A, Hazen MJ, Molero ML, del Peso A, Salguero M, Castillo PD, Rodriguez-Vicente MC, Repetto M (2001) A test battery for the ecotoxicological evaluation of pentachlorophenol. Toxicol In Vitro 15: 503–509

    Article  CAS  Google Scholar 

  6. Ward ML, Bitton G, Townsend T, Booth M (2002) Determining toxicity of leachates from Florida municipal solid waste landfills using a battery-of-tests approach. Environ Toxicol 17: 258–266

    Article  CAS  Google Scholar 

  7. Nalecz-Jawecki G, Grabinska-Sota E, Narkiewicz P (2003) The toxicity of cationic surfactants in four bioassays. Ecotoxicol Environ Safety 54: 87–91

    Article  CAS  Google Scholar 

  8. Wilke BM, Riepert F, Koch C, Kühne T (2008) Ecotoxicological characterization of hazardous wastes. Ecotoxicol Environ Safety 70: 283–293

    Article  CAS  Google Scholar 

  9. Alvarenga P, Palma P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of tests to assess the quality of mine-contaminated soils. Environ Geochem Health 30: 95–99

    Article  CAS  Google Scholar 

  10. Macken A, Giltrap M, Foley B, McGovern E, McHugh B, Davoren M (2008) A model compound study: The ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays. Environ Pollut 153: 627–637

    Article  CAS  Google Scholar 

  11. Clément B, Persoone G, Janssen C, Le Dû-Delepierre A (1996) Estimation of the hazard of landfills through toxicity testing of leachates: I. Determination of leachate toxicity with a battery of acute tests. Chemosphere 33: 2303–2320

    Google Scholar 

  12. Rojickova-Padrtova R, Marsálek B, Holoubek I (1998) Evaluation of alternative and standard toxicity assays for screening of environmental samples: selection of an optimal test battery. Chemosphere 37: 495–507

    Article  CAS  Google Scholar 

  13. Manusadzianas L, Balkelyte L, Sadauskas K, Blinova I, Pollumaa L, Kahru A (2003) Ecotoxicological study of Lithuanian and Estonian wastewaters: selection of the biotests, and correspondence between toxicity and chemical-based indices. Aquat Toxicol 63: 27–41

    Article  CAS  Google Scholar 

  14. Pandard P, Devillers J, Charissou AM, Poulsen V, Jourdain MJ, Férard JF, Grand C, Bispo A (2006) Selecting a battery of bioassays for ecotoxicological characterization of wastes. Sci Total Environ 363: 114–125

    Article  CAS  Google Scholar 

  15. Devillers J, Elmouaffek A, Zakarya D, Chastrette M (1988) Comparison of ecotoxicological data by means of an approach combining cluster and correspondence factor analyses. Chemosphere 17: 633–646

    Article  CAS  Google Scholar 

  16. Ren S, Frymier PD (2003) Use of multidimensional scaling in the selection of wastewater toxicity test battery components. Water Res 37: 1655–1661

    Article  CAS  Google Scholar 

  17. Keddy CJ, Greene JC, Bonnell MA (1995) Review of whole-organism bioassays: Soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicol Environ Safety 30: 221–251

    Article  CAS  Google Scholar 

  18. van Gestel CAM, Leon CD, Van Straalen NM (1997) Evaluation of soil fauna ecotoxicity tests regarding their use in risk assessment. In: Tarradellas J, Bitton G, Rossel D (eds) Soil ecotoxicology, CRC Press, Boca Raton, FL

    Google Scholar 

  19. Breitholtz M, Rudén C, Ove Hansson S, Bengtsson BE (2006) Ten challenges for improved ecotoxicological testing in environmental risk assessment. Ecotoxicol Environ Safety 63: 324–335

    Article  CAS  Google Scholar 

  20. Belton V, Stewart TJ (2002) Multiple criteria decision analysis: An integrated approach. Kluwer Academic, Dordrecht

    Google Scholar 

  21. Teng JY, Tzeng GH (1994) Multicriteria evaluation for strategies of improving and controlling air quality in the super city: A case study of Taipei city. J Environ Manag 40: 213–229

    Article  Google Scholar 

  22. Ayoko GA, Morawska L, Kokot S, Gilbert D (2004) Application of multicriteria decision making methods to air quality in the microenvironments of residential houses in Brisbane, Australia. Environ Sci Technol 38: 2609–2616

    Article  CAS  Google Scholar 

  23. Konidari P, Mavrakis D (2006) Multi-criteria evaluation of climate policy interactions. J Multi-Crit Decis Anal 14: 35–53

    Article  Google Scholar 

  24. Konidari P, Mavrakis D (2007) A multi-criteria evaluation method for climate change mitigation policy instruments. Energy Policy 35: 6235–6257

    Article  Google Scholar 

  25. Hermans C, Erickson J, Noordewier T, Sheldon A, Kline M (2007) Collaborative environmental planning in river management: An application of multicriteria decision analysis in the White River Watershed in Vermont. J Environ Manage 84: 534–546

    Article  Google Scholar 

  26. Joubert A, Stewart TJ, Eberhard R (2003) Evaluation of water supply augmentation and water demand management options for the city of Cape Town. J Multi-Crit Decis Anal 12: 17–25

    Article  Google Scholar 

  27. Raaijmakers R, Krywkow J, van der Veen A (2008) Flood risk perceptions and spatial multi-criteria analysis: An exploratory research for hazard mitigation. Nat Hazards 46: 307–322

    Article  Google Scholar 

  28. Kenyon W (2007) Evaluating flood risk management options in Scotland: A participant-led multi-criteria approach. Ecol Econ 64: 70–81

    Article  Google Scholar 

  29. Espelta JM, Retana J, Habrouk A (2003) An economic and ecological multi-criteria evaluation of reforestation methods to recover burned Pinus nigra forests in NE Spain. Forest Ecol Manage 180: 185–198

    Article  Google Scholar 

  30. Henig MI, Weintraub A (2006) A Dynamic objective-subjective structure for forest management focusing on environmental issues. J Multi-Crit Decis Anal 14: 55–65

    Article  Google Scholar 

  31. Briceno-Elizondo E, Jäger D, Lexer MJ, Garcia-Gonzalo J, Peltola H, Kellomäki S (2008) Multi-criteria evaluation of multi-purpose stand treatment programmes for Finnish boreal forests under changing climate. Ecol Ind 8: 26–45

    Article  Google Scholar 

  32. Gomontean B, Gajaseni J, Edwards-Jones G, Gajaseni N (2008) The development of appropriate ecological criteria and indicators for community forest conservation using participatory methods: A case study in northeastern Thailand. Ecol Ind 8: 614–624

    Article  Google Scholar 

  33. Critto A, Torresan S, Semenzin E, Giove S, Mesman M, Schouten AJ, Rutgers M, Marcomini A (2007) Development of a site-specific ecological risk assessment for contaminated sites: Part I. A multi-criteria based system for the selection of ecotoxicological tests and ecological observations. Sci Total Environ 379: 16–33

    CAS  Google Scholar 

  34. Semenzin E, Critto A, Carlon C, Rutgers M, Marcomini A (2007) Development of a site-specific ecological risk assessment for contaminated sites: Part II. A multi-criteria based system for the selection of bioavailability assessment tools. Sci Total Environ 379: 34–45

    CAS  Google Scholar 

  35. Semenzin E, Critto A, Rutgers M, Marcomini A (2008) Integration of bioavailability, ecology and ecotoxicology by three lines of evidence into ecological risk indexes for contaminated soil assessment. Sci Total Environ 389: 71–86

    Article  CAS  Google Scholar 

  36. Promentilla MAB, Furuichi T, Ishii K, Tanikawa N (2008) A fuzzy analytic network process for multi-criteria evaluation of contaminated site remedial countermeasures. J Environ Manage 88: 479–495

    Article  Google Scholar 

  37. Rousis K, Moustakas K, Malamis S, Papadopoulos A, Loizidou M (2008) Multi-criteria analysis for the determination of the best WEEE management scenario in Cyprus. Waste Manage 28: 1941–1954

    Article  CAS  Google Scholar 

  38. Bellehumeur C, Vasseur L, Ansseau C, Marcos B (1997) Implementation of a multicriteria sewage sludge management model in the southern Québec municipality of Lac-Mégantic, Canada. J Environ Manage 50: 51–66

    Article  Google Scholar 

  39. Baltussen R, ten Asbroek AHA, Koolman X, Shrestha N, Bhattarai P, Niessen LW (2007) Priority setting using multiple criteria: should a lung health programme be implemented in Nepal? Health Policy Plan 22: 178–185

    Article  CAS  Google Scholar 

  40. Rakotomanana F, Randremanana RV, Rabarijaona LP, Duchemin JB, Ratovonjato J, Ariey F, Rudant JP, Jeanne I (2007) Determining areas that require indoor insecticide spraying using multi criteria evaluation, a decision-support tool for malaria vector control programmes in the central highlands of Madagascar. Int J Health Geog 6: 1–11

    Article  Google Scholar 

  41. Vaillant M, Jouany JM, Devillers J (1995) A multicriteria estimation of the environmental risk of chemicals with the SIRIS method. Toxicol Model 1: 57–72

    CAS  Google Scholar 

  42. Guerbet M, Jouany JM (2002) Value of the SIRIS method for the classification of a series of 90 chemicals according to risk for the aquatic environment. Environ Impact Assess Rev 22: 377–391

    Article  Google Scholar 

  43. Vincent R, Bonthoux F, Lamoise C (2000) Evaluation du risque chimique. Hiérarchisation des risques potentiels. Cahiers Notes Doc Hyg Sec Travail 178: 29–34

    CAS  Google Scholar 

  44. Linkov I, Satterstrom FK, Steevens J, Ferguson E, Pleus RC (2007) Multi-criteria decision analysis and environmental risk assessment for nanomaterials. J Nanoparticle Res 9: 543–554

    Article  Google Scholar 

  45. Rota-Stabelli O, Telford MJ (2008) A multi criterion approach for the selection of optimal outgroups in phylogeny: Recovering some support for Mandibulata over Myriochelata using mitogenomics. Mol Phylogenet Evol 48: 103–111

    Article  CAS  Google Scholar 

  46. Phillips L, Bana e Costa CA (2007) Transparent prioritisation, budgeting and resource allocation with multi-criteria decision analysis and decision conferencing. Ann Oper Res 154: 51–68

    Google Scholar 

  47. Locatelli B, Rojas V, Salinas Z (2008) Impacts of payments for environmental services on local development in northern Costa Rica: A fuzzy multi-criteria analysis. Forest Policy Econ 10: 275–285

    Article  Google Scholar 

  48. Bottani E, Rizzi A (2008) An adapted multi-criteria approach to suppliers and products selection-An application oriented to lead-time reduction. Int J Product Econ 111: 763–781

    Article  Google Scholar 

  49. Esteves AM (2008) Mining and social development: Refocusing community investment using multi-criteria decision analysis. Res Policy 33: 39–47

    Google Scholar 

  50. Zucca A, Sharifi AM, Fabbri AG (2008) Application of spatial multi-criteria analysis to site selection for a local park: A case study in the Bergamo Province, Italy. J Environ Manage 88: 752–769

    Article  Google Scholar 

  51. Chou TY, Hsu CL, Chen MC (2008) A fuzzy multi-criteria decision model for international tourist hotels location selection. Int J Hosp Manage 27: 293–301

    Article  Google Scholar 

  52. Schaefer M (2004) Assessing 2,4,6-trinitrotoluene (TNT)-contaminated soil using three different earthworm test methods. Ecotoxicol Environ Safety 57: 74–80

    Article  CAS  Google Scholar 

  53. Aït-Aïssa S, Pandard P, Magaud H, Arrigo A, Thybaud E, Porcher JM (2003) Evaluation of an in vitro hsp70 induction test for toxicity assessment of complex mixtures: comparison with chemical analyses and ecotoxicity tests. Ecotoxicol Environ Safety 54: 92–104

    Article  Google Scholar 

  54. Beiras R, Fernández N, Bellas J, Besada V, González-Quijano A, Nunes T (2003) Integrative assessment of marine pollution in Galician estuaries using sediment chemistry, mussel bioaccumulation, and embryo-larval toxicity bioassays. Chemosphere 52: 1209–1224

    Article  CAS  Google Scholar 

  55. Chenon P, Gauthier L, Loubieres P, Severac A, Delpoux M (2003) Evaluation of the genotoxic and teratogenic potential of a municipal sludge and sludge-amended soil using the amphibian Xenopus laevis and the tobacco: Nicotiana tabacum L. var. xanthi Dulieu. Sci Total Environ 301: 139–50

    Article  CAS  Google Scholar 

  56. Chevre N, Gagne F, Blaise C (2003) Development of a biomarker-based index for assessing the ecotoxic potential of aquatic sites. Biomarkers 8: 287–98

    Article  CAS  Google Scholar 

  57. Chevre N, Gagne F, Gagnon P, Blaise C (2003) Application of rough sets analysis to identify polluted aquatic sites based on a battery of biomarkers: a comparison with classical methods. Chemosphere 51: 13–23

    Article  CAS  Google Scholar 

  58. Farré M, Barcelo D (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends Anal Chem 22: 299–310

    Article  Google Scholar 

  59. Isidori M, Lavorgna M, Nardelli A, Parrella A (2003) Toxicity identification evaluation of leachates from municipal solid waste landfills: A multispecies approach. Chemosphere 52: 85–94

    Article  CAS  Google Scholar 

  60. Mueller DC, Bonner JS, McDonald SJ, Autenrieth RL, Donnelly KC, Lee K, Doe K, Anderson J (2003) The use of toxicity bioassays to monitor the recovery of oiled wetland sediments. Environ Toxicol Chem 22: 1945–1955

    Article  CAS  Google Scholar 

  61. Sheehan P, Dewhurst RE, James S, Callaghan A, Connon R, Crane M (2003) Is there a relationship between soil and groundwater toxicity? Environ Geochem Health 25: 9–16

    Article  CAS  Google Scholar 

  62. Stronkhorst J, Schipper C, Brils J, Dubbeldam M, Postma J, van de Hoeven N (2003) Using marine bioassays to classify the toxicity of Dutch harbor sediments. Environ Toxicol Chem 22: 1535–1547

    Article  CAS  Google Scholar 

  63. Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors, Chemosphere 52: 1189–1197

    Article  CAS  Google Scholar 

  64. Vigano L, Arillo A, Buffagni A, Camusso M, Ciannarella R, Crosa G, Falugi C, Galassi S, Guzzella L, Lopez A, Mingazzini M, Pagnotta R, Patrolecco L, Tartari G, Valsecchi S (2003) Quality assessment of bed sediments of the Po River (Italy). Water Res 37: 501–518

    Article  CAS  Google Scholar 

  65. Bekaert C, Ferrier V, Marty J, Pfohl-Leszkowicz A, Bispo A, Jourdain MJ, Jauzein M, Lambolez-Michel L, Billard H (2002) Evaluation of toxic and genotoxic potential of stabilized industrial waste and contaminated soils. Waste Manag 22: 241–247

    Article  CAS  Google Scholar 

  66. Dalzell DJB, Alte S, Aspichueta E, de la Sota A, Etxebarria J, Gutierrez M, Hoffmann CC, Sales D, Obst U, Christofi N (2002) A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge, Chemosphere 47: 535–545

    Article  CAS  Google Scholar 

  67. De Boer WJ, Besten PJ, Ter Braak CF (2002) Statistical analysis of sediment toxicity by additive monotone regression splines. Ecotoxicology 11: 435–450

    Article  Google Scholar 

  68. Gagne F, Blaise C, Aoyama I, Luo R, Gagnon C, Couillard Y, Campbell P, Salazar M (2002) Biomarker study of a municipal effluent dispersion plume in two species of freshwater mussels. Environ Toxicol 17: 149–159

    Article  CAS  Google Scholar 

  69. Lapa N, Barbosa R, Morais J, Mendes B, Méhu J, Santos Oliveira JF (2002) Ecotoxicological assessment of leachates from MSWI bottom ashes, Waste Manag 22: 583–593

    Article  CAS  Google Scholar 

  70. Schultz E, Vaajasaari K, Joutti A, Ahtiainen J (2002) Toxicity of industrial wastes and waste leaching test eluates containing organic compounds. Ecotoxicol Environ Safety 52: 248–255

    Article  CAS  Google Scholar 

  71. Cordova Rosa EV, Simionatto EL, de Souza Sierra MM, Bertoli SL, Radetski CM (2001) Toxicity-based criteria for the evaluation of textile wastewater treatment efficiency. Environ Toxicol Chem 20: 839–845

    Article  CAS  Google Scholar 

  72. Machala M, Dusek L, Hilscherova K, Kubinova R, Jurajda P, Neca J, Ulrich R, Gelnar M, Studnickova Z, Holoubek I (2001) Determination and multivariate statistical analysis of biochemical responses to environmental contaminants in feral freshwater fish Leuciscus cephalus, L. Environ Toxicol Chem 20: 1141–1148

    CAS  Google Scholar 

  73. Renoux AY, Tyagi RD, Samson R (2001) Assessment of toxicity reduction after metal removal in bioleached sewage sludge. Water Res 35: 1415–1424

    Article  CAS  Google Scholar 

  74. van Gestel CA, van der Waarde JJ, Derksen JG, van der Hoek EE, Veul MF, Bouwens S, Rusch B, Kronenburg R, Stokman GN (2001) The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environ Toxicol Chem 20: 1438–1449

    Article  Google Scholar 

  75. Juvonen R, Martikainen E, Schultz E, Joutti A, Ahtiainen J, Lehtokari M (2000) A battery of toxicity tests as indicators of decontamination in composting oily waste. Ecotoxicol Environ Safety 47: 156–166

    Article  CAS  Google Scholar 

  76. Radix P, Léonard M, Papantoniou C, Roman G, Saouter E, Gallotti-Schmitt S, Thiébaud H, Vasseur P (2000) Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol Environ Safety 47: 186–194

    Article  CAS  Google Scholar 

  77. Ziehl TA, Schmitt A (2000) Sediment quality assessment of flowing waters in South-West Germany using acute and chronic bioassays. Aquat Ecosys Health Manag 3: 347–357

    CAS  Google Scholar 

  78. Bierkens J, Klein G, Corbisier P, Van Den Heuvel R, Verschaeve L, Weltens R, Schoeters G (1998) Comparative sensitivity of 20 bioassays for soil quality. Chemosphere 37: 2935–2947

    Article  CAS  Google Scholar 

  79. Robidoux PY, Lopez-Gastey J, Choucri A, Sunahara GI (1998) Procedure to screen illicit discharge of toxic substances in septic sludge received at a wastewater treatment plant. Ecotoxicol Environ Safety 39: 31–40

    Article  CAS  Google Scholar 

  80. Tarkpea M, Andrén C, Eklund B, Gravenfors E, Kukulska Z (1998) A biological and chemical characterization strategy for small and medium-sized industries connected to municipal sewage treatment plants. Environ Toxicol Chem 17: 234–250

    Article  CAS  Google Scholar 

  81. Clément B, Colin JR, Le Dû-Delepierre A (1997) Estimation of the hazard of landfills through toxicity testing of leachates: 2. Comparison of physico-chemical characteristics of landfill leachates with their toxicity determined with a battery of tests. Chemosphere 35: 2783–2796

    Google Scholar 

  82. Chang LW, Meier JR, Smith MK (1997) Application of plant and earthworm bioassays to evaluate remediation of a lead-contaminated soil. Arch Environ Contam Toxicol 32: 166–171

    Article  CAS  Google Scholar 

  83. Cheung YH, Neller A, Chu KH, Tam NFY, Wong CK, Wong YS, Wong MH (1997) Assessment of sediment toxicity using different trophic organisms. Arch Environ Contam Toxicol 32: 260–267

    Article  CAS  Google Scholar 

  84. Maxon CL, Barnett AM, Diener DR (1997) Sediment contaminants and biological effects in southern California: Use of multivariate statistical approach to assess biological impact. Environ Toxicol Chem 16: 775–784

    Article  CAS  Google Scholar 

  85. Sherry J, Scott B, Dutka B (1997) Use of various acute, sublethal, and early life-stage tests to evaluate the toxicity of refinery effluents. Environ Toxicol Chem 16: 2249–2257

    Article  CAS  Google Scholar 

  86. Sweet LI, Travers DF, Meier PG (1997) Chronic toxicity evaluation of wastewater treatment plant effluents with bioluminescent bacteria: A comparison with invertebrates and fish. Environ Toxicol Chem 16: 2187–2189

    CAS  Google Scholar 

  87. Vahl HH, Karbe L, Westendorf J (1997) Genotoxicity assessment of suspended particulate matter in the Elbe river: Comparison of Salmonella microsome test, arabinose resistance test, and umu-test. Mutat Res 394: 81–93

    CAS  Google Scholar 

  88. Naudin S, Garric J, Vindimian E, Bray M, Migeon B, Vollat B, Lenon G (1995) Influence of the sample preservation mode to assess the chronic toxicity of an industrial effluent. Ecotoxicol Environ Safety 30: 54–62

    Article  CAS  Google Scholar 

  89. Hund K, Traunspurger W (1994) Ecotox-evaluation strategy for soil bioremediation exemplified for a PAH-contaminated site. Chemosphere 29: 371–390

    Article  CAS  Google Scholar 

  90. Schafer H, Hettler H, Fritsche U, Pitzen G, Roderer G, Wenzel A (1994) Biotests using unicellular algae and ciliates for predicting long-term effects of toxicants. Ecotoxicol Environ Safety 27: 64–81

    Article  CAS  Google Scholar 

  91. Agences de l’eau (2001) Bioessais sur sédiments – Méthodologies et application à la mesure de la toxicité de sédiments naturels. Les Etudes des Agences de l’Eau n°76

    Google Scholar 

  92. Bastien C, Martel L (1995) Sélection des tests de toxicité en milieu aquatique applicables aux sédiments contaminés - Projet de coopération Franco-Québécoise. Direction des Laboratoires, Ministère de l’Environnement

    Google Scholar 

  93. Ingersoll CG, Ankley GT, Benoit DA, Brunson EL, Burton GA, Dwyer FJ, Hoke RA, Landrum PF, Norberg-King TJ, Winger PV (1995) Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and applications. Environ Toxicol Chem 14: 1885–1894

    Article  CAS  Google Scholar 

  94. Jauzein M, Jourdain MJ, Bispo A (1997) Mise au point de méthodes de caractérisation de l’écotoxicité des sols et des déchets – Development of methods to assess soil and waste ecotoxicity - Programme Ecotoxicité des Sols et des Déchets – Document de synthèse – Rapport 3

    Google Scholar 

  95. Slooff W, Canton JH (1983) Comparison of the susceptibility of 11 freshwater species to 8 chemical compounds. II. (semi)chronic toxicity tests. Aquat Toxicol 4: 271–281

    Article  CAS  Google Scholar 

  96. Vindimian E, Garric J, Flammarion P, Thybaud E, Babut M (1999) An index of effluent aquatic toxicity designed by partial least squares regression, using acute and chronic tests and expert judgments. Environ Toxicol Chem 18: 2386–2391

    Article  CAS  Google Scholar 

  97. Sekkat N, Guerbet M, Jouany JM (2001) Etude comparative de huit bioessais à court terme pour l’évaluation de la toxicité de lixiviats de déchets urbains et industriels. Rev Sci Eau 14: 63–72

    CAS  Google Scholar 

  98. Fochtman P, Raszka A, Nierzedska E (2000) The use of conventional bioassays, microbiotests, and some “rapid” methods in the selection of an optimal test battery for the assessment of pesticides toxicity. Environ Toxicol 15: 376–384

    Article  CAS  Google Scholar 

  99. Vaajasaari K, Joutti A, Schultz E, Selonen S, Westerholm H (2002) Comparisons of terrestrial and aquatic bioassays for oil-contaminated soil toxicity. J Soils Sediments 2: 194–202

    Article  CAS  Google Scholar 

  100. SIRIS-2D (version 2.04). CTIS, France

    Google Scholar 

  101. Escofier B, Pagès J (1991) Presentation of correspondence analysis and multiple correspondence analysis with the help of examples. In: Devillers J, Karcher W (eds) Applied multivariate analysis in SAR and environmental studies, Kluwer Academic, Dordrecht

    Google Scholar 

  102. Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: A multivariate analysis and graphical display software. Stat Comput 7: 75–83

    Article  Google Scholar 

  103. ISO/FDIS 17616 (2007) “Soil Quality – Guidance for the choice and evaluation of bioassays for ecotoxicological characterization of soils and soil material Geneva: International Standard Organization: 17pp

    Google Scholar 

  104. Bispo A, Feix I, Schwartz C, Morel JL, Charissou AM, Jourdain MJ, Gauthier L, Cluzeau D, Ablain F (2005) Ecotoxicological evaluation of the wastes and their products on agrosystem: Towards an integrated process for risk prevention for ecosystems. Synthèse du programme ADEME-VADETOX, contrat n°0375C0010

    Google Scholar 

  105. MATE (1998) Critères et méthodes d’évaluation de l’écotoxicité des déchets. Paris: Ministère de l’Aménagement du Territoire et de l’Environnement: 19 pp

    Google Scholar 

Download references

Acknowledgment

The financial support from the French Environment and Energy Management Agency (ADEME) is gratefully acknowledged (Contract 0475C0081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Devillers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Devillers, J., Pandard, P., Charissou, AM., Bispo, A. (2009). Use of Multicriteria Analysis for Selecting Ecotoxicity Tests. In: Devillers, J. (eds) Ecotoxicology Modeling. Emerging Topics in Ecotoxicology, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0197-2_5

Download citation

Publish with us

Policies and ethics