Skip to main content

Stability of a Mixed Type Additive, Quadratic, Cubic and Quartic Functional Equation

  • Chapter
  • First Online:
Book cover Nonlinear Analysis and Variational Problems

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 35))

Abstract

We find the general solution of the functional equation

$$\begin{array}{l} D_f {\rm{(}}x,y{\rm{)}}\,\,{\rm{: = }}f{\rm{(}}x + {\rm{2}}y{\rm{)}} + f{\rm{(}}x - {\rm{2}}y{\rm{)}} - {\rm{4[}}f{\rm{(}}x + y{\rm{)}} - f{\rm{(}}x - y{\rm{)]}} - f{\rm{(4}}y{\rm{)}} + {\rm{4}}f{\rm{(3}}y{\rm{)}} \\ - {\rm{6}}f{\rm{(2}}y{\rm{)}} + {\rm{4}}f{\rm{(}}y{\rm{)}} + {\rm{6}}f{\rm{(}}x{\rm{) }} = {\rm{ 0}}{\rm{.}} \\ \end{array}$$

in the context of linear spaces. We prove that if a mapping f from a linear space X into a Banach space Y satisfies f(0)=0 and

$$\|D_f(x,y)\|\leq\epsilon \quad (x,y\in X),$$

where ε > 0, then there exist a unique additive mapping \(A:X\to Y,\) a unique quadratic mapping \(Q_1:X\to Y,\) a unique cubic mapping \(C:X\to Y\) and a unique quartic mapping \(Q_2:X\to Y\) such that

$$\|f(x)-A(x)-Q_1(x)-C(x)-Q_2(x)\|\leq\frac{1087 \epsilon}{140}\quad \forall x\in X.$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Aoki, On the stability of the linear transformationin Banach spaces, J. Math. Soc. Japan 2 (1950) 64–66.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Baak and M.S. Moslehian, On the stability of orthogonally cubic functional equations, Kyungpook Math. J. 47 (2007), no. 1, 69–76.

    MATH  MathSciNet  Google Scholar 

  3. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59–64.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore, 2002.

    Book  MATH  Google Scholar 

  5. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Eshaghi Gordji and H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi–Banach spaces, Nonlinear Anal 71 (2009), 5629–5643.

    Google Scholar 

  7. M. Eshaghi, S. Kaboli and S. Zolfaghari, Stability of a mixed type quadratic, cubic and quartic functional equation, preprint.

    Google Scholar 

  8. Z. Gajda, On stability of additive mappings, Int. J. Math. Math.Sci. 14 (1991), 431–434.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Găvruta, A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.

    Article  MATH  MathSciNet  Google Scholar 

  10. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224.

    Article  MathSciNet  Google Scholar 

  11. D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.

    MATH  Google Scholar 

  12. G. Isac and Th. M. Rassias, On the Hyers–Ulam stability of ψ-additive mappings, J. Approx. Theory 72 (1993), 131–137.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Isac and Th.M. Rassias, Functional inequalities for approximately additive mappings, Stability of mappings of Hyers–Ulam type, 117–125, Hadronic Press Collect. Orig. Artic., Hadronic Press, Palm Harbor, FL, 1994.

    Google Scholar 

  14. K.W. Jun and H.M. Kim, The generalized Hyers–Ulam–Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 267–278.

    Article  MathSciNet  Google Scholar 

  15. S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg 70 (2000), 175–190.

    Article  MATH  MathSciNet  Google Scholar 

  16. S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, FL, 2001.

    MATH  Google Scholar 

  17. Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), 368–372.

    MATH  MathSciNet  Google Scholar 

  18. M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. 37 (2006), no. 3, 361–376.

    Article  MATH  MathSciNet  Google Scholar 

  19. M.S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Differ. Equations Appl. 11 (2005), 999–1004.

    Article  MATH  MathSciNet  Google Scholar 

  20. M.S. Moslehian and Th.M. Rassias, Stability of functional equations in non-Archimedian spaces, Appl. Anal. Disc. Math., 1 (2007), no. 2, 325–334.

    Article  MATH  MathSciNet  Google Scholar 

  21. A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl. 340 (2008), no. 1, 569–574.

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Nikodem, On some properties of quadratic stochastic processes, Annales Math. Silesianae 3 (15) (1990), 59–69.

    MathSciNet  Google Scholar 

  23. C. Park, On the stability of the orthogonally quartic functional equation Bull. Iranian Math. Soc. 31 (2005), no. 1, 63–70.

    MATH  MathSciNet  Google Scholar 

  24. W.-G. Park and J.-H. Bae, On a bi-quadratic functional equation and its stability, Nonlinear Anal. 62 (2005), no. 4, 643–654.

    Article  MATH  MathSciNet  Google Scholar 

  25. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.

    MATH  MathSciNet  Google Scholar 

  26. Th.M. Rassias, Problem 16 ; 2, Report of the 27th International Symp. on Functional Equations, Aequationes Math. 39 (1990), 292–293; 309.

    Google Scholar 

  27. Th.M. Rassias, and J. Tabor, What is left of Hyers-Ulam stability?, J. Natur. Geom. 1 (1992), no. 2, 65–69.

    MATH  MathSciNet  Google Scholar 

  28. Th.M. Rassias (ed.), Functional equations, inequalities and applications, Kluwer Academic Publishers, Dordrecht, 2003.

    MATH  Google Scholar 

  29. Th.M. Rassias and P. `emrl, On the behaviour of mappings which do not satisfy Hyers–Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989–993.

    Article  MATH  MathSciNet  Google Scholar 

  30. P.K. Sahoo, A generalized cubic functional equation Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 5, 1159–1166.

    Article  MATH  MathSciNet  Google Scholar 

  31. F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.

    Article  MATH  MathSciNet  Google Scholar 

  32. S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eshaghi-Gordji .

Editor information

Editors and Affiliations

Additional information

Dedicated to the memory of Professor George Isac

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Eshaghi-Gordji, M., Kaboli-Gharetapeh, S., Moslehian, M., Zolfaghari, S. (2010). Stability of a Mixed Type Additive, Quadratic, Cubic and Quartic Functional Equation. In: Pardalos, P., Rassias, T., Khan, A. (eds) Nonlinear Analysis and Variational Problems. Springer Optimization and Its Applications, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0158-3_6

Download citation

Publish with us

Policies and ethics