Skip to main content

Implementing Digital Technologies at a National Scale

  • Chapter
  • First Online:
Mathematics Education and Technology-Rethinking the Terrain

Abstract

In this chapter we describe a range of digital technology implementation projects that have been undertaken at a national scale in different parts of the world. These projects vary widely in breadth, in the digital technologies involved, in their relation to mandated curriculum and in their involvement of different stakeholders. We compare these different projects with a view to identify some significant trends that are currently developing in such efforts, and also with a view of guiding future large-scale implementation work. We also analyse the projects in terms of relevant theories of technology use in mathematics education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning 7(3), 245–274.

    Article  Google Scholar 

  • Arzarello, F., Paola, D., & Robutti, O. (2006). Curricular Innovation: An Example Of A Learning Environment Integrated with Technology. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 443–450). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Behrooz, E. (2006). Providing mathematics e-content. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (p. 37). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Brousseau, G. (1997). Theory of Didactical Situations in Mathematics. Didactique des mathématiques 1970–1990. Dordrecht: Kluwer.

    Google Scholar 

  • Chevallard, Y. (1992). Intégration et viabilité des objets informatiques dans l’enseignement des mathématiques. In B. Cornu (Ed.), L’ordinateur pour enseigner les Mathématiques, Nouvelle Encyclopédie Diderot (pp. 183–203). Paris: Presses Universitaires de France.

    Google Scholar 

  • Dagiene, V., & Jasutiene, E. (2006). Developing Dynamic Sketches for Teaching Mathematics in Basic Schools. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 120–127). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Goldenberg, P. (2000). Thinking (and Talking) About Technology in Math Classrooms. Educational Development Center, Inc. Retrieved August 30, 2002, from World Wide Web: http://www.edc.org/mcc/iss_tech.pdf

  • Hoyles, C., Adamson, R., & Noss, R. (2002). Rethinking the Microworld Idea. Journal of Educational Computing Research 27(1&2), 29–53.

    Article  Google Scholar 

  • Jackiw, N., & Sinclair, N. (2006). Dynamic Geometry Activity Design for Elementary School Mathematics Dynamic Geometry Activity Design for Elementary School Mathematics. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 236–245). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Brighton, UK: Harvester Press.

    Google Scholar 

  • Schneider, E. (2000). Teacher experiences with the use of a CAS in a mathematics classroom. The International Journal for Computer Algebra in Mathematics Education 7(2), 119–141.

    Google Scholar 

  • Sinclair, N. (2005). Mathematics on the Internet. In S. Johnston-Wilder and D. Pimm (Eds.), Teaching Secondary Mathematics effectively with Technology (pp. 203–218). UK: Open University Press.

    Google Scholar 

  • Sinclair, N., & Jackiw, N. (2005). Understanding and Projecting ICT Trends. In S. Johnston-Wilder and D. Pimm (Eds.), Teaching Secondary Mathematics effectively with Technology (pp. 235–252). UK: Open University Press.

    Google Scholar 

  • Trigueros, M., Lozano, M., Sandoval, I., Lage, A., Jinich, E., García, H., & Tovilla, E. (2006). Developing resources for teaching and learning mathematics with digital technologies in Enciclomedia, a national project. In C. Hoyles, J.-b. Lagrange, L.H. Son, & N. Sinclair (Eds.), Proceedings of the Seventeenth Study Conference of the International Commission on Mathematical Instruction (pp. 556–563). Hanoi Institute of Technology and Didirem Université Paris 7.

    Google Scholar 

  • Vérillon, P., & Rabardel, P. (1995). Cognition and Artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology in Education 9(3), 77–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sinclair, N. et al. (2009). Implementing Digital Technologies at a National Scale. In: Hoyles, C., Lagrange, JB. (eds) Mathematics Education and Technology-Rethinking the Terrain. New ICMI Study Series, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0146-0_5

Download citation

Publish with us

Policies and ethics