Skip to main content

Brain Development and CNS Plasticity

  • Chapter
  • First Online:
Book cover Imaging in CNS Drug Discovery and Development

Abstract

Since the first developmental studies using fMRI there has been an almost logarithmic growth of investigations regarding functional brain development. This growing knowledge, in combination with landmark animal studies of developmental neuroplasticity, has provided us with significant insight into the nature of brain development and how brain maturation might map onto behavior. Throughout this chapter we discuss how a number of related developmental phenomena (e.g., myelination, pruning, spontaneous activity, neuroplasticity, etc.) interact to produce a common trajectory for the typically developing brain. We also point out that much of our knowledge concerning typical development comes from studies examining neuroplasticity. In addition, we highlight the growing evidence suggesting that abnormal neuroplasticity may contribute to neuropsychiatric disorders by altering typical developmental trajectories of many brain interactions across broad cortical and subcortical networks. We emphasize how such phenomena may not only be related to neurological and psychiatric disorders of development, but disorders in adulthood as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72

    PubMed  CAS  Google Scholar 

  • Agid Y, Buzsaki G, Diamond DM, Frackowiak R, Giedd J et al (2007) How can drug discovery for psychiatric disorders be improved? Nat Rev Drug Discov 6(3):189–201

    PubMed  CAS  Google Scholar 

  • Andersen SL, Navalta CP (2004) Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs. Int J Dev Neurosci 22(5–6):423–440

    PubMed  CAS  Google Scholar 

  • Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D et al (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56(5):924–935

    PubMed  CAS  Google Scholar 

  • Atkinson J (1984) Human visual development over the first 6 months of life. A review and a hypothesis. Hum Neurobiol 3(2):61–74

    PubMed  CAS  Google Scholar 

  • Bara-Jimenez W, Catalan MJ, Hallett M, Gerloff C (1998) Abnormal somatosensory homunculus in dystonia of the hand. Ann Neurol 44(5):828–831

    PubMed  CAS  Google Scholar 

  • Bates E (1999) Plasticity, localization, and language development. In: Broman SH, Fletcher JM (eds) The changing nervous system. Oxford University Press, New York, NY, pp 214–253

    Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360(1457):1001–1013

    PubMed  Google Scholar 

  • Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51(6):477–484

    PubMed  CAS  Google Scholar 

  • Berger H (1929) Uber das Electrenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527–570

    Google Scholar 

  • Berger H (1933) Uber das Electrenkephalogramm des Menschen. Arch Psychiatr Nervenkr 100:301–320

    Google Scholar 

  • Bi G, Poo M (1999) Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401(6755):792–796

    PubMed  CAS  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    PubMed  CAS  Google Scholar 

  • Bourgeois JP, Goldman-Rakic PS, Rakic P (1994) Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb Cortex 4(1):78–96

    PubMed  CAS  Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46(3):283–301

    PubMed  CAS  Google Scholar 

  • Brown TT, Lugar HM, Coalson RS, Miezin FM, Petersen SE et al (2005) Developmental changes in human cerebral functional organization for word generation. Cerebral Cortex 15:275–290

    PubMed  Google Scholar 

  • Buchel C (1998) Functional neuroimaging studies of Braille reading: cross-modal reorganization and its implications. Brain 121(Pt 7):1193–1194

    PubMed  Google Scholar 

  • Buckner RL, Vincent JL (2007) Unrest at rest: default activity and spontaneous network correlations. Neuroimage 37(4):1091–1096

    PubMed  Google Scholar 

  • Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186

    PubMed  CAS  Google Scholar 

  • Burton H, Snyder AZ, Diamond JB, Raichle ME (2002a) Adaptive changes in early and late blind: a FMRI study of verb generation to heard nouns. J Neurophysiol 88(6):3359–3371

    PubMed  CAS  Google Scholar 

  • Burton H, Snyder AZ, Conturo TE, Akbudak E, Ollinger JM et al (2002b) Adaptive changes in early and late blind: a fMRI study of Braille reading. J Neurophysiol 87(1):589–607

    PubMed  CAS  Google Scholar 

  • Casey BJ, Cohen JD, Jezzard P, Turner R, Noll DC et al (1995) Activation of prefrontal cortex in children during a nonspatial working memory task with functional MRI. Neuroimage 2(3):221–229

    PubMed  CAS  Google Scholar 

  • Casey BJ, Tottenham N, Liston C, Durston S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9(3):104–110

    PubMed  CAS  Google Scholar 

  • Castellanos FX, Margulies DS, Kelly AMC, Uddin LQ, Ghaffari M et al (2008) Cingulate-precuneus interactions: A new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biological Psychiatry 63:332–337

    PubMed  Google Scholar 

  • Caton R (1875) The electric currents of the brain. Br Med J 2:278

    Google Scholar 

  • Church JA, Fair DA, Dosenbach NU, Cohen AL, Miezin FM et al (2009) Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 132(Pt 1):225–238

    PubMed  Google Scholar 

  • Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D et al (2008) Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41:45–57

    PubMed  Google Scholar 

  • Conel JL (1939–1963) The postnatal development of the human cerebral cortex. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Cowan WM, Fawcett J, O’Leary DDM, Stanfield BB (1984) Regressive events in neurogenesis. Science 225(468):1258–1265

    PubMed  CAS  Google Scholar 

  • Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37):13848–13853

    PubMed  CAS  Google Scholar 

  • de Haan M (1998) Electrophysiological correlates of face processing by adults and 6-month-old infants. J Cogn Neurosci (Ann Meeting Suppl) 36

    Google Scholar 

  • Diamond A, Goldman-Rakic PS (1989) Comparison of human infants and rhesus monkeys on Piaget’s AB task: evidence for dependence on dorsolateral prefrontal cortex. Exp Brain Res 74(1):24–40

    PubMed  CAS  Google Scholar 

  • Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK et al (2006) A core system for the implementation of task sets. Neuron 50(5):799–812

    PubMed  CAS  Google Scholar 

  • Dosenbach NU, Fair DA, Miezin FM, Cohen AL, Wenger KK et al (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104(26):11073–11078

    PubMed  CAS  Google Scholar 

  • Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12(3):99–105

    PubMed  Google Scholar 

  • Ebbesson SO (1980) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development, and neuronal plasticity. Cell Tissue Res 213(2):179–212

    PubMed  CAS  Google Scholar 

  • Elman JL, Bates EA, Johnson MH, Karmiloff-Smith A et al (1996) Rethinking innateness: a connectionist perspective on development. MIT, Cambridge, MA

    Google Scholar 

  • Fair DA, Schlaggar BL (2008) Brain development. In: Haith MM, Benson JB (eds) Encyclopedia of brain development. Academic, San Diego, CA

    Google Scholar 

  • Fair DA, Brown TT, Petersen SE, Schlaggar BL (2006) fMRI reveals novel functional neuroanatomy in a child with perinatal stroke. Neurology 67:2246–2249

    PubMed  Google Scholar 

  • Fair DA, Dosenbach NUF, Church JA, Cohen AL, Brahmbhatt S et al (2007a) Development of distinct control networks through segregation and integration. Proc Natl Acad Sci USA 104(33):13507–13512

    PubMed  CAS  Google Scholar 

  • Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU et al (2007b) A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. Neuroimage 35(1):396–405

    PubMed  Google Scholar 

  • Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM et al (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci USA 105(10):4028–4032

    PubMed  CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1(1):1–47

    PubMed  CAS  Google Scholar 

  • Flechsig PE (1920) Anatomie des Menschlichen Gehirn und Ruckenmarks, auf Myelogenetischer Grundlage. Thieme, Leipzig

    Google Scholar 

  • Flor H, Elbert T, Knecht S, Wienbruch C, Pantev C et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375(6531):482–484

    PubMed  CAS  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673–9678

    PubMed  CAS  Google Scholar 

  • Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp 26(1):15–29

    PubMed  Google Scholar 

  • Fransson P, Skiold B, Horsch S, Nordell A, Blennow M et al (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci USA 104(39):15531–15536

    PubMed  CAS  Google Scholar 

  • Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H et al (1999a) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2(10):861–863

    PubMed  CAS  Google Scholar 

  • Giedd JN, Jeffries NO, Blumenthal J, Castellanos FX, Vaituzis AC et al (1999b) Childhood-onset schizophrenia: progressive brain changes during adolescence. Biol Psychiatry 46(7):892–898

    PubMed  CAS  Google Scholar 

  • Gitton Y, Cohen-Tannoudji M, Wassef M (1999) Role of thalamic axons in the expression of H-2Z1, a mouse somatosensory cortex specific marker. Cereb Cortex 9(6):611–620

    PubMed  CAS  Google Scholar 

  • Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA 101(21):8174–8179

    PubMed  CAS  Google Scholar 

  • Greenough WT, Black JE, Wallace CS (1987) Experience and brain development. Child Dev 58(3):539–559

    PubMed  CAS  Google Scholar 

  • Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100(1):253–258

    PubMed  CAS  Google Scholar 

  • Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13):4637–4642

    PubMed  CAS  Google Scholar 

  • Guzzetta A, Pecini C, Biagi L, Tosetti M, Brizzolara D et al (2008) Language organisation in left perinatal stroke. Neuropediatrics 39(3):157–163

    PubMed  CAS  Google Scholar 

  • Hecaen H (1976) Acquired aphasia in children and the ontogenesis of hemispheric functional specialization. Brain Lang 3(1):114–134

    PubMed  CAS  Google Scholar 

  • Hertz-Pannier L, Gaillard WD, Mott SH, Cuenod CA, Bookheimer SY et al (1997) Noninvasive assessment of language dominance in children and adolescents with functional MRI: a preliminary study. Neurology 48(4):1003–1012

    PubMed  CAS  Google Scholar 

  • Hess EH (1972) The natural history of imprinting. Ann N Y Acad Sci 193:124–136

    PubMed  CAS  Google Scholar 

  • Huttenlocher PR (1979) Synaptic density in human frontal cortex – developmental changes and effects of aging. Brain Res 163(2):195–205

    PubMed  CAS  Google Scholar 

  • Huttenlocher PR (1990) Morphometric study of human cerebral cortex development. Neuropsychologia 28(6):517–527

    PubMed  CAS  Google Scholar 

  • Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387(2):167–178

    PubMed  CAS  Google Scholar 

  • Huttenlocher PR, de Courten C, Garey LJ, Van der Loos H (1982) Synaptogenesis in human visual cortex – evidence for synapse elimination during normal development. Neurosci Lett 33(3):247–252

    PubMed  CAS  Google Scholar 

  • Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6(12):955–965

    PubMed  CAS  Google Scholar 

  • Johnson MH (2000a) Functional brain development in infants: elements of an interactive specialization framework. Child Dev 71(1):75–81

    PubMed  CAS  Google Scholar 

  • Johnson MH (2000b) Cortical specialization for higher cognitive functions: beyond the maturational model. Brain Cogn 42(1):124–127

    PubMed  CAS  Google Scholar 

  • Johnson MH (2001) Functional brain development in humans. Nat Rev Neurosci 2(7):475–483

    PubMed  CAS  Google Scholar 

  • Johnson MH, Munakata Y (2005) Processes of change in brain and cognitive development. Trends Cogn Sci 9(3):152–158

    PubMed  Google Scholar 

  • Johnson MH, Pennington BF (1999) Series foreword. In: Tager-Flusberg H (ed) Neurodevelop­mental disorders. MIT, Cambridge, MA, p ix

    Google Scholar 

  • Johnson MH, Griffin R, Csibra G, Halit H, Farroni T et al (2005) The emergence of the social brain network: evidence from typical and atypical development. Dev Psychopathol 17(3):599–619

    PubMed  Google Scholar 

  • Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ (2007) Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. Cereb Cortex 17(4):951–961

    PubMed  Google Scholar 

  • Kaas JH, Merzenich MM, Killackey HP (1983) The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals. Annu Rev Neurosci 6:325–356

    PubMed  CAS  Google Scholar 

  • Katz LC, Crowley JC (2002) Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci 3(1):34–42

    PubMed  CAS  Google Scholar 

  • Kelly AM, Di Martino A, Uddin LQ, Shehzad Z, Gee DG et al (2009) Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 19(3):640–657

    PubMed  Google Scholar 

  • Klein RG, Mannuzza S (1991) Long-term outcome of hyperactive children: a review. J Am Acad Child Adolesc Psychiatry 30(3):383–387

    PubMed  CAS  Google Scholar 

  • Kornack DR, Rakic P (2001) Cell proliferation without neurogenesis in adult primate neocortex. Science 294(5549):2127–2130

    PubMed  CAS  Google Scholar 

  • Lenroot RK, Giedd JN (2006) Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 30(6):718–729

    PubMed  Google Scholar 

  • Leopold DA, Murayama Y, Logothetis NK (2003) Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex 13(4):422–433

    PubMed  Google Scholar 

  • Levitt P (2003) Structural and functional maturation of the developing primate brain. J Pediatr 143(4 Suppl):S35–S45

    PubMed  CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Rakic P (1991) Synchronized overproduction of neurotransmitter receptors in diverse regions of the primate cerebral cortex. Proc Natl Acad Sci USA 88(22):10218–10221

    PubMed  CAS  Google Scholar 

  • Liegeois F, Connelly A, Cross JH, Boyd SG, Gadian DG et al (2004) Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain 127(Pt 6):1229–1236

    PubMed  CAS  Google Scholar 

  • Lin W, Zhu Q, Gao W, Chen Y, Toh CH et al (2008) Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain. AJNR Am J Neuroradiol 29(10):1883–1889

    PubMed  CAS  Google Scholar 

  • Lopez-Bendito G, Molnar Z (2003) Thalamocortical development: how are we going to get there? Nat Rev Neurosci 4(4):276–289

    PubMed  CAS  Google Scholar 

  • Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7(2):119–132

    PubMed  CAS  Google Scholar 

  • Luna B, Thulborn KR, Munoz DP, Merriam EP, Garver KE et al (2001) Maturation of widely distributed brain function subserves cognitive development. Neuroimage 13(5):786–793

    PubMed  CAS  Google Scholar 

  • Luo L, O’Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156

    PubMed  CAS  Google Scholar 

  • Majewska AK, Sur M (2006) Plasticity and specificity of cortical processing networks. Trends Neurosci 29(6):323–329

    PubMed  CAS  Google Scholar 

  • Martin PI, Naeser MA, Theoret H, Tormos JM, Nicholas M et al (2004) Transcranial magnetic stimulation as a complementary treatment for aphasia. Semin Speech Lang 25(2):181–191

    PubMed  Google Scholar 

  • Mills DL, Neville HJ (1997) Electrophysiological studies of language and language impairment. Semin Pediatr Neurol 4(2):125–134

    PubMed  CAS  Google Scholar 

  • Miltner WH, Braun C, Arnold M, Witte H, Taub E (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397(6718):434–436

    PubMed  CAS  Google Scholar 

  • Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H et al (2005a) Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: an open-protocol study. Brain Lang 93(1):95–105

    PubMed  Google Scholar 

  • Naeser MA, Martin PI, Nicholas M, Baker EH, Seekins H et al (2005b) Improved naming after TMS treatments in a chronic, global aphasia patient – case report. Neurocase 11(3):182–193

    PubMed  Google Scholar 

  • Nir Y, Hasson U, Levy I, Yeshurun Y, Malach R (2006) Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. Neuroimage 30(4):1313–1324

    PubMed  Google Scholar 

  • O’Leary DD (1989) Do cortical areas emerge from a protocortex? Trends Neurosci 12(10):400–406

    PubMed  Google Scholar 

  • Paus T (2005) Mapping brain maturation and cognitive development during adolescence. Trends Cogn Sci 9(2):60–68

    PubMed  Google Scholar 

  • Paus T, Collins DL, Evans AC, Leonard G, Pike B et al (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54(3):255–266

    PubMed  CAS  Google Scholar 

  • Pfefferbaum A, Mathalon DH, Sullivan EV, Rawles JM, Zipursky RB et al (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51(9):874–887

    PubMed  CAS  Google Scholar 

  • Price DJ, Kennedy H, Dehay C, Zhou L, Mercier M et al (2006) The development of cortical connections. Eur J Neurosci 23(4):910–920

    PubMed  Google Scholar 

  • Pujol J, Soriano-Mas C, Ortiz H, Sebastian-Galles N, Losilla JM et al (2006) Myelination of language-related areas in the developing brain. Neurology 66(3):339–343

    PubMed  CAS  Google Scholar 

  • Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. NeuroImage 37(4):1083–1090

    PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2):676–682

    PubMed  CAS  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortical areas. Science. 1988 Jul 8;241(4862):170–6. Review. PMID: 3291116

    Google Scholar 

  • Rakic P (2002) Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat Rev Neurosci 3(1):65–71

    PubMed  CAS  Google Scholar 

  • Rakic P (2006) Neuroscience. No more cortical neurons for you. Science 313(5789):928–929

    PubMed  CAS  Google Scholar 

  • Rakic P, Bourgeois JP, Eckenhoff MF, Zecevic N, Goldman-Rakic PS (1986) Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science 232(4747):232–235

    PubMed  CAS  Google Scholar 

  • Rapoport JL, Gogtay N (2008) Brain neuroplasticity in healthy, hyperactive and psychotic children: insights from neuroimaging. Neuropsychopharmacology 33(1):181–197

    PubMed  Google Scholar 

  • Rapoport JL, Giedd JN, Blumenthal J, Hamburger S, Jeffries N et al (1999) Progressive cortical change during adolescence in childhood-onset schizophrenia. A longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 56(7):649–654

    PubMed  CAS  Google Scholar 

  • Rauch SL, Shin LM, Phelps EA (2006) Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research – past, present, and future. Biol Psychiatry 60(4):376–382

    PubMed  Google Scholar 

  • Rodman HR, Consuelos MJ (1994) Cortical projections to anterior inferior temporal cortex in infant macaque monkeys. Vis Neurosci 11(1):119–133

    PubMed  CAS  Google Scholar 

  • Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP et al (1996) Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380(6574):526–528

    PubMed  CAS  Google Scholar 

  • Salvador R, Suckling J, Schwarzbauer C, Bullmore E (2005) Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci 360(1457):937–946

    PubMed  Google Scholar 

  • Saugstad LF (2001) Manic depressive psychosis and schizophrenia are neurological disorders at the extremes of CNS maturation and nutritional disorders associated with a deficit in marine fat. Med Hypotheses 57(6):679–692

    PubMed  CAS  Google Scholar 

  • Schlaggar BL, O’Leary DD (1991) Potential of visual cortex to develop an array of functional units unique to somatosensory cortex. Science 252(5012):1556–1560

    PubMed  CAS  Google Scholar 

  • Schlaggar BL, O’Leary DD (1993) Patterning of the barrel field in somatosensory cortex with implications for the specification of neocortical areas. Perspect Dev Neurobiol 1(2):81–91

    PubMed  CAS  Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27(9):2349–2356

    PubMed  CAS  Google Scholar 

  • Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP et al (2007) Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci USA 104(49):19649–19654

    PubMed  CAS  Google Scholar 

  • Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW (1999) In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 2(10):859–861

    PubMed  CAS  Google Scholar 

  • Sowell ER, Thompson PM, Tessner KD, Toga AW (2001) Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J Neurosci 21(22):8819–8829

    PubMed  CAS  Google Scholar 

  • Sowell ER, Trauner DA, Gamst A, Jernigan TL (2002) Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. Dev Med Child Neurol 44(1):4–16

    PubMed  Google Scholar 

  • Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL et al (2003) Mapping cortical change across the human life span. Nat Neurosci 6(3):309–315

    PubMed  CAS  Google Scholar 

  • Stiles J, Moses P, Passarotti A, Dick FK, Buxton R (2003a) Exploring developmental change in the neural bases of higher cognitive functions: the promise of functional magnetic resonance imaging. Dev Neuropsychol 24(2–3):641–668

    PubMed  Google Scholar 

  • Stiles J, Moses P, Roe K, Akshoomoff NA, Trauner D et al (2003b) Alternative brain organization after prenatal cerebral injury: convergent fMRI and cognitive data. J Int Neuropsychol Soc 9(4):604–622

    PubMed  Google Scholar 

  • Strauss E, Verity C (1983) Effect of hemispherectomy in infantile hemiplegics. Brain Lang 20(1):1–11

    PubMed  CAS  Google Scholar 

  • Sur M, Leamey CA (2001) Development and plasticity of cortical areas and networks. Nat Rev Neurosci 2(4):251–262

    PubMed  CAS  Google Scholar 

  • Sur M, Rubenstein JL (2005) Patterning and plasticity of the cerebral cortex. Science 310(5749):805–810

    PubMed  CAS  Google Scholar 

  • Sur M, Garraghty P, Roe AW (1988) Experimentally induced visual projection into auditory thalamus and cortex. Science 242:1437–1441

    PubMed  CAS  Google Scholar 

  • Swartz BE, Goldensohn ES (1998) Timeline of the history of EEG and associated fields. Electroencephalogr Clin Neurophysiol 106(2):173–176

    PubMed  CAS  Google Scholar 

  • Teicher MH, Andersen SL, Glod CA, Navalta CP, Gelbard HA (1997) Neuropsychiatric disorders of childhood and adolescence: the American Psychiatric Press textbook of neuropsychiatry. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Thal DJ, Marchman VA, Stiles J, Aram D, Trauner D et al (1991) Early lexical development in children with focal brain injury. Brain Lang 40(4):491–527

    PubMed  CAS  Google Scholar 

  • Tillema JM, Byars AW, Jacola LM, Schapiro MB, Schmithorst VJ et al (2008) Reprint of “Cortical reorganization of language functioning following perinatal left MCA stroke” [Brain and Language 105 (2008) 99–111]. Brain Lang 106(3):184–194

    PubMed  Google Scholar 

  • Toga AW, Thompson PM, Sowell ER (2006) Mapping brain maturation. Trends Neurosci 29(3):148–159

    PubMed  CAS  Google Scholar 

  • Turkeltaub PE, Gareau L, Flowers DL, Zeffiro TA, Eden GF (2003) Development of neural mechanisms for reading. Nat Neurosci 6:767–773

    PubMed  CAS  Google Scholar 

  • Van der Loos H, Woolsey TA (1973) Somatosensory cortex: structural alterations following early injury to sense organs. Science 179(71):395–398

    PubMed  CAS  Google Scholar 

  • Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    PubMed  CAS  Google Scholar 

  • Vargha-Khadem F, Polkey CE (1992) A review of cognitive outcome after hemidecortication in humans. Adv Exp Med Biol 325:137–151

    PubMed  CAS  Google Scholar 

  • Vargha-Khadem F, O’Gorman AM, Watters GV (1985) Aphasia and handedness in relation to hemispheric side, age at injury and severity of cerebral lesion during childhood. Brain 108(3):677–696

    PubMed  Google Scholar 

  • Webster MJ, Ungerleider LG, Bachevalier J (1991a) Lesions of inferior temporal area TE in infant monkeys alter cortico-amygdalar projections. Neuroreport 2(12):769–772

    PubMed  CAS  Google Scholar 

  • Webster MJ, Ungerleider LG, Bachevalier J (1991b) Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11(4):1095–1116

    PubMed  CAS  Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4(5):470–483

    PubMed  CAS  Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1995a) Transient subcortical connections of inferior temporal areas TE and TEO in infant macaque monkeys. J Comp Neurol 352(2):213–226

    PubMed  CAS  Google Scholar 

  • Webster MJ, Ungerleider LG, Bachevalier J (1995b) Development and plasticity of the neural circuitry underlying visual recognition memory. Can J Physiol Pharmacol 73(9):1364–1371

    PubMed  CAS  Google Scholar 

  • Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Steve Nelson and Jonathan Posner for helpful comments on this chapter. This work was supported by NIH grants NS053425, the John Merck Scholars Fund, the Burroughs-Wellcome Fund, the Dana Foundation, and the Ogle Family Fund (BLS), the Washington University Chancellor’s Graduate Fellowship and UNCF/Merck Graduate and Postgraduate Science Research Dissertation Fellowship (DAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien A. Fair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fair, D.A., Schlaggar, B.L. (2010). Brain Development and CNS Plasticity. In: Borsook, D., Beccera, L., Bullmore, E., Hargreaves, R. (eds) Imaging in CNS Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0134-7_20

Download citation

Publish with us

Policies and ethics