Skip to main content

Molecular Imaging of the CNS: Drug Actions

  • Chapter
  • First Online:
Imaging in CNS Drug Discovery and Development
  • 636 Accesses

Abstract

Molecular imaging approaches play an important role in experimental and clinical neuroscience. Target-specific receptor ligands for positron emission tomography (PET) have been developed for the various neurotransmitter systems and a large number of CNS receptors. The PET readouts on ligand/drug biodistribution are complemented by functional/metabolic readouts provided by PET measurements of glucose utilization and blood flow or functional MRI assessment of the hemodynamic response. The tools are extensively used to characterize brain disorders such as psychiatric disorders or neurodegenerative processes and to evaluate therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agren H, Reibring L, Hartvig P, Tedroff J, Bjurling P, Hornfeldt K, Andersson Y, Lundqvist H, Langstrom B (1991) Low brain uptake of l-[11C]5-hydroxytryptophan in major depression: a positron emission tomography study on patients and healthy volunteers. Acta Psychiat Scand 83(6):449–455

    PubMed  CAS  Google Scholar 

  • Alexoff DL, Vaska P, Marsteller D, Gerasimov T, Li J, Logan J, Fowler JS, Taintor NB, Thanos PK, Volkow ND (2003) Reproducibility of 11C-raclopride binding in the rat brain measured with the microPET R4: effects of scatter correction and tracer specific activity. J Nucl Med 44(5):815–822

    PubMed  CAS  Google Scholar 

  • Attar-Lévy D, Martinot JL, Blin J, Dao-Castellana MH, Crouzel C, Mazoyer B, Poirier MF, Bourdel MC, Aymard N, Syrota A, Féline A (1999) The cortical serotonin2 receptors studied with positron-emission tomography and [18F]-setoperone during depressive illness and antidepressant treatment with clomipramine. Biol Psychiatry 45(2):180–186

    PubMed  Google Scholar 

  • Baron JC, Samson Y, Comar, D, Crouzel C, Deniker P, Agid Y (1985) In vivo study of central serotoninergic receptors in man using positron tomography. Rev Neurol (Paris) 141:537–545

    CAS  Google Scholar 

  • Bhagwagar Z et al (2004) Persistent reduction in brain serotonin1A receptor binding in recovered depressed men measured by positron emission tomography with [11C]WAY-100635. Mol Psychiatry 9(4):386–392

    PubMed  CAS  Google Scholar 

  • Blier P, de Montigny C (1999) Serotonin and drug-induced therapeutic responses in major depression, obsessive-compulsive and panic disorders. Neuropsychopharmacology 21 (2 Suppl):91S–98S

    PubMed  CAS  Google Scholar 

  • Blin J, Pappata S, Kiyosawa M, Crouzel C, Baron JC (1988) [18F]setoperone: a new high-affinity ligand for positron emission tomography study of the serotonin-2 receptors in baboon brain in vivo. Eur J Pharmacol 147:73–82

    PubMed  CAS  Google Scholar 

  • Bockaert J, Claeysen S, Becamel C, Dumuis A, Marin P (2006) Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res. 326:553–572

    PubMed  CAS  Google Scholar 

  • Bowden C, Cheetham SC, Lowther S, Katona CL, Crompton MR, Horton RW (1997) Dopamine uptake sites, labelled with [3H]GBR12935, in brain samples from depressed suicides and controls. Eur Neuropsychopharmacol 7(4):247–252

    PubMed  CAS  Google Scholar 

  • Catafau AM, Perez V, Penengo MM, Bullich S, Danús M, Puigdemont D, Pascual JC, Corripio I, Llop J, Perich J, Alvarez E (2005) SPECT of serotonin transporters using 123I-ADAM: optimal imaging time after bolus injection and long-term test-retest in healthy volunteers. J Nucl Med 46:1301–1309

    PubMed  CAS  Google Scholar 

  • Chen YC, Galpern WR, Brownell AL, Matthews RT, Bogdanov M, Isacson O, Keltner JR, Beal MF, Rosen BR, Jenkins BG (1999) Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn Reson Med 38(3):389–398

    Google Scholar 

  • Cliffe IA (2000) A retrospect on the discovery of WAY-100635 and the prospect for improved 5-HT(1A) receptor PET radioligands. Nucl Med Biol 27:441–447

    PubMed  CAS  Google Scholar 

  • Coenen HH, Wienhard K, Stocklin G, Laufer P, Hebold I, Pawlik G, Heiss WD (1988) PET measurement of D2 and S2 receptor binding of 3-N-[(2'-18F]fluoroethyl)spiperone in baboon brain. Eur J Nucl Med 14:80–87

    PubMed  CAS  Google Scholar 

  • Davies P, Maloney A (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    PubMed  CAS  Google Scholar 

  • Dewey SL, MacGregor RR, Brodie JD, Bendriem B, King PT, Volkow ND, Schlyer DJ, Fowler JS, Wolf AP, Gatley SJ (1990) Mapping muscarinic receptors in human and baboon brain using [N-11C-methyl]-benztropine. Synapse 5(3):213–223

    PubMed  CAS  Google Scholar 

  • Ding Y-S, Lin K-S, Logan J, Benveniste H, Carter PJ (2005) Neurochem 94:337

    CAS  Google Scholar 

  • Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C (1999) PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 46(10):1375–1387

    PubMed  CAS  Google Scholar 

  • Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54:597–606

    PubMed  CAS  Google Scholar 

  • Eckelman WC (2001) Radiolabeled muscarinic radioligands for in vivo studies. Nucl Med Biol 28(5):485–491

    PubMed  CAS  Google Scholar 

  • Firnau G, Sood S, Chirakal R, Nahmias C, Garnett ES (1987) Cerebral metabolism of 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine in the primate. J Neurochem 48(4):1077–1082

    PubMed  CAS  Google Scholar 

  • Frankle WG, Slifstein M, Gunn RN, Huang Y, Hwang DR, Darr EA, Narendran R, Abi-Dargham A, Laruelle M (2006) Estimation of serotonin transporter parameters with 11C-DASB in healthy humans: reproducibility and comparison of methods. J Nucl Med 47:815–826

    PubMed  CAS  Google Scholar 

  • Eckelman WC, Reba RC, Rzeszotarski WJ, Gibson RE, Hill T, Holman BL, Budinger T, Conklin JJ, Eng R, Grissom MP (1984) External imaging of cerebral muscarinic acetylcholine receptors. Science 223(4633):291–293

    PubMed  CAS  Google Scholar 

  • Frey KA, Koeppe RA, Mulholland GK, Jewett D, Hichwa R, Ehrenkaufer RLE, Carey JE, Wieland DM, Kuhl DE, Agranoff BW (1992) In vivo muscarinic cholinergic receptor imaging in human brain with [11C]scopolamine and positron emission tomography. J Cereb Blood Flow Metab 12:147–154

    PubMed  CAS  Google Scholar 

  • Fuller RW, Wong DT (1990) Serotonin uptake and serotonin uptake inhibition. Ann N Y Acad Sci 600:68–78; discussion 9–80

    Google Scholar 

  • Furumoto S, Okamura N, Iwata R Yanai K, Arai H, Kudo Y (2007) Recent advances in the development of amyloid imaging agents. Curr Top Med Chem 7:1773–1789

    Google Scholar 

  • Gershon AA, Vishne T, Grunhaus L (2007) Dopamine D2-like receptors and the antidepressant response. Biol Psychiatry 61(2):145–153

    PubMed  CAS  Google Scholar 

  • Glenner GG and Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885

    PubMed  CAS  Google Scholar 

  • Goetz CG (2006) What’s new? Clinical progression and staging of Parkinson’s disease. J Neural Transm Suppl 70:305–308

    PubMed  Google Scholar 

  • Goswami R, Ponde DE, Kung MP, Hou C, Kilbourn MR, Kung HF (2006) Fluoroalkyl derivatives of dihydrotetrabenazine as positron emission tomography imaging agents targeting vesicular monoamine transporters. Nucl Med Biol 33(6):685–694

    PubMed  CAS  Google Scholar 

  • Gupta S, Nihalani N, Masand P (2007) Duloxetine: review of its pharmacology, and therapeutic use in depression and other psychiatric disorders. Ann Clin Psychiatry 19(2):125–132

    PubMed  Google Scholar 

  • Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, Fletcher A, Cliffe IA, Barf T, Wikström H, Sedvall G (1997) Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]way-100635. Brain Res 745:96–108

    PubMed  CAS  Google Scholar 

  • Halldin C, Foged C, Chou YH, Karlsson P, Swahn CG, Sandell J, Sedvall G, Farde L (1998) Carbon-11-NNC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors. J Nucl Med 39:2061–2068

    PubMed  CAS  Google Scholar 

  • Halldin C, Lundberg J, Sovago J, Gulyás B, Guilloteau D, Vercouillie J, Emond P, Chalon S, Tarkiainen J, Hiltunen J, Farde L (2005) [(11)C]MADAM, a new serotonin transporter radioligand characterized in the monkey brain by PET. Synapse 58:173–183

    PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353

    PubMed  CAS  Google Scholar 

  • Hirvonen J, Aalto S, Lumme V, Någren K, Kajander J, Vilkman H, Hagelberg N, Oikonen V, Hietala J (2003) Measurement of striatal and thalamic dopamine D2 receptor binding with 11C-raclopride. Nucl Med Commun 24(12):1207–1214

    PubMed  CAS  Google Scholar 

  • Hirvonen J, Karlsson H, Kajander J, Markkula J, Rasi-Hakala H, Någren K, Salminen JK, Hietala J (2008) Striatal dopamine D2 receptors in medication-naive patients with major depressive disorder as assessed with [11C]raclopride PET. Psychopharmacology (Berl) 197(4):581–590

    CAS  Google Scholar 

  • Horti AG, Chefer SI, Mukhin AG, Koren AO, Gundisch D, Links JM, Kurian V, Dannals RF, London ED (2000) 6-[18F]fluoro-A-85380, a novel radioligand for in vivo imaging of central nicotinic acetylcholine receptors. Life Sci 67(4):463–469

    PubMed  CAS  Google Scholar 

  • Houle S, Ginovart N, Hussey D, Eyer JH, Wilson AA (2000) Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 27:1719–1722

    PubMed  CAS  Google Scholar 

  • Hume SP, Opacka-Juffry J, Myers R et al (1995) Effect of l-dopa and 6-hydroxydopamine lesioning on [11C]raclopride binding in rat striatum, quantified using PET. Synapse 21:45–53

    PubMed  CAS  Google Scholar 

  • Jenkins BG, Chen YI, Mandeville JB (2003) Pharmacologic magnetic resonance imaging (phmri). Biomedical imaging in experimental neuroscience. Van Bruggen N, Roberts TR, Boca Raton FL, CRC press 155–210

    Google Scholar 

  • Jones HM, Pilowsky LS (2002) Dopamine and antipsychotic drug action revisited. Br J Psychiatry 181:271–275

    PubMed  CAS  Google Scholar 

  • Kalia M (2005) Neurobiological basis of depression: an update. Metabolism 54 (5 Suppl 1):24–27

    PubMed  CAS  Google Scholar 

  • Kanegawa N, Kiyono Y, Kimura H, Sugita T, Kajiyama S, Kawashima H, Ueda M, Kuge Y, Saji H (2006) Synthesis and evaluation of radioiodinated (S,S)-2-(alpha-(2-iodophenoxy)benzyl)morpholine for imaging brain norepinephrine transporter. Eur J Nucl Med Mol Imaging 33:639

    PubMed  CAS  Google Scholar 

  • Kauppinen TA, Bergström KA, Heikman P, Hiltunen J, Ahonen AK (2003) Biodistribution and radiation dosimetry of [123I]ADAM in healthy human subjects: preliminary results. Eur J Nucl Med Mol Imaging 30(1):132–136

    PubMed  CAS  Google Scholar 

  • Kent JM, Mathew SJ, Gorman JM (2002) Molecular targets in the treatment of anxiety. Biol Psychiatry 52(10):1008–1030

    PubMed  CAS  Google Scholar 

  • Kiesewetter DO, Lee J, Lang L, Park SG, Paik CH, Eckelman WC (1995) Preparation of 18F-labeled muscarinic agonist with M2 selectivity. J Med Chem 38:5–8

    PubMed  CAS  Google Scholar 

  • Kim JS, Ichise M, Sangare J, Innis RB (2006) PET imaging of serotonin transporters with [11C]DASB: test-retest reproducibility using a multilinear reference tissue parametric imaging method. J Nucl Med 47:208–214

    PubMed  CAS  Google Scholar 

  • Klunk WE, Engler H, Nordberg A et al. (2004) Imaging brain amyroid in the Alzheimer’s discase with pittsburgh compound-B. Ann Neurol 55:306–319

    PubMed  CAS  Google Scholar 

  • Koeppe RA, Frey KA, Snyder SE, Meyer P, Kilbourn MR, Kuhl DE (1999) Kinetic modeling of N-[11C]methylpiperidin-4-yl propionate: alternatives for analysis of an irreversible positron emission tomography trace for measurement of acetylcholinesterase activity in human brain. J Cereb Blood Flow Metab 19(10):1150–1163

    PubMed  CAS  Google Scholar 

  • Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Therapeut 97(2):153–179

    CAS  Google Scholar 

  • Kudo Y (2006) Development of amyloid imaging PET probes for an early diagnosis of Alzheimer’s disease. Minim Invasive Ther Allied Technol 15(4):209–213

    PubMed  Google Scholar 

  • Kuhl DE, Koeppe RA, Fessler JA, Minoshima S, Ackermann RJ, Carey JE, Gildersleeve DL, Frey KA, Wieland DM (1994) In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM. J Nucl Med 35(3):405–410

    PubMed  CAS  Google Scholar 

  • Kung M-P, Choi S-R, Hou C, Zhuang Z-P, Foulon C, Kung HF (2004) Selective binding of 2-[125I]iodo-nisoxetine to norepinephrine transporters in the brain. Nucl Med Biol 31:533–541

    PubMed  CAS  Google Scholar 

  • Kumar JS, Prabhakaran J, Majo VJ, Milak MS, Hsiung SC, Tamir H, Simpson NR, Van Heertum RL, Mann JJ, Parsey RV (2007) Synthesis and in vivo evaluation of a novel 5-HT1A receptor agonist radioligand [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione in nonhuman primates. Eur J Nucl Med Mol Imaging 34:1050–1060

    PubMed  CAS  Google Scholar 

  • Kuroda Y, Motohashi N, Ito H, Ito S, Takano A, Nishikawa T, Suhara T (2006) Effects of repetitive transcranial magnetic stimulation on [11C]raclopride binding and cognitive function in patients with depression. J Affect Disord 95(1–3):35–42

    PubMed  CAS  Google Scholar 

  • Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA (2001) Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 25(4):455–467

    PubMed  CAS  Google Scholar 

  • Lang L, Jagoda E, Ma Y, Sassaman MB, Eckelman WC (2006) Synthesis and in vivo biodistribution of F-18 labeled 3-cis-, 3-trans-, 4-cis-, and 4-trans-fluorocyclohexane derivatives of WAY 100635. Bioorg Med Chem 14(11):3737–3748

    PubMed  CAS  Google Scholar 

  • Larsen AK, Brennum LT, Egebjerg J, Sánchez C, Halldin C, Andersen PH (2004) Selectivity of (3)H-MADAM binding to 5-hydroxytryptamine transporters in vitro and in vivo in mice; correlation with behavioural effects. Br J Pharmacol 141:1015–1023

    PubMed  CAS  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20(3):423–451

    PubMed  CAS  Google Scholar 

  • Lemaire C, Cantineau R, Guillaume M, Plenevaux A, Christiaens L (1991) Fluorine-18-altanserin: a radioligand for the study of serotonin receptors with PET: radiolabeling and in vivo biologic behavior in rats. J Nucl Med 32:2266–2272

    PubMed  CAS  Google Scholar 

  • Liang Q, Satyamurthy N, Barrio JR, Toyokuni T, Phelps MP, Gambhir SS, Herschman HR (2001) Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8(19):1490–1498

    PubMed  CAS  Google Scholar 

  • Lundberg J, Halldin C, Farde L (2006) Measurement of serotonin transporter binding with PET and [11C]MADAM: a test-retest reproducibility study. Synapse 60:256–263

    PubMed  CAS  Google Scholar 

  • Lundkvist C, Halldin C, Ginovart N, Nyberg S, Swahn CG, Carr AA, Brunner F, Farde L (1996) [11C]MDL 100907, a radioligland for selective imaging of 5-HT(2A) receptors with positron emission tomography. Life Sci. 58:PL 187–192

    Google Scholar 

  • Maelicke A, Albuquerque EX (2000) Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur J Pharmacol 393(1-3):165–170

    PubMed  CAS  Google Scholar 

  • Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG, Russell J (2007) Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 61(12):2030–2040

    PubMed  CAS  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    PubMed  CAS  Google Scholar 

  • Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9(3):471–481

    PubMed  CAS  Google Scholar 

  • Mazière B, Coenen HH, Halldin C, Någren K, Pike VW (1992) PET radioligands for dopamine receptors and re-uptake sites: chemistry and biochemistry. Int J Rad Appl Instrum B 19(4):497–512

    PubMed  Google Scholar 

  • Meltzer CC et al (2004) Serotonin 1A receptor binding and treatment response in late-life depression. Neuropsychopharmacology 29(12):2258–2265

    PubMed  CAS  Google Scholar 

  • Meyer JH (2007) Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J Psychiatry Neurosci 32(2):86–102

    PubMed  Google Scholar 

  • Meyer JH, McNeely HE, Sagrati S, Boovariwala A, Martin K, Verhoeff NP, Wilson AA, Houle S (2006) Elevated putamen D(2) receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am J Psychiatry 163(9):1594–1602

    PubMed  Google Scholar 

  • Meyer JH, Wilson AA, Ginovart N, Goulding V, Hussey D, Hood K, Houle S (2001) Occupancy of serotonin transporters by paroxetine and citalopram during treatment of depression: a [(11)C]DASB PET imaging study. Am J Psychiatry 158(11):1843–1849

    PubMed  CAS  Google Scholar 

  • Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42(1):85–94

    PubMed  CAS  Google Scholar 

  • Mischoulon D, Dougherty DD, Bottonari KA Gresham RL, Sonawalla SB, Fischman AJ, Fava M (2002) An open pilot study of nefazodone in depression with anger attacks: relationship between clinical response and receptor binding. Psychiatry Res 116:151–161

    PubMed  CAS  Google Scholar 

  • Moeller O, Norra C, Grunder G (2006) Monoaminergic function in major depression. A possibly helpful tool for choosing treatment strategy. Nervenarzt 77:800–808

    CAS  Google Scholar 

  • Montgomery AJ, Stokes P, Kitamura Y, Grasby PM (2007) Extrastriatal D2 and striatal D2 receptors in depressive illness: pilot PET studies using [11C]FLB 457 and [11C]raclopride. J Affect Disord. 101(1–3):113–122

    PubMed  CAS  Google Scholar 

  • Moresco RM, Matarrese M, Fazio F (2006) PET and SPET molecular imaging: focus on serotonin system. Curr Top Med Chem 6:2027–2034

    PubMed  CAS  Google Scholar 

  • Moses-Kolko EL, Price JC, Thase ME, Meltzer CC, Kupfer DJ, Mathis CA et al (2007) Measurement of 5-HT(1A) receptor binding in depressed adults before and after antidepressant drug treatment using positron emission tomography and [11C]WAY-100635. Synapse 61(7):523–530

    PubMed  CAS  Google Scholar 

  • Muller-Gartner HW, Wilson AA, Dannals RF, Wagner HN Jr, Frost JJ (1992) Imaging muscarinic cholinergic receptors in human brain in vivo with Spect, [123I]4-iododexetimide, and [123I]4-iodolevetimide. J Cereb Blood Flow Metab 12(4):562–570

    PubMed  CAS  Google Scholar 

  • Näslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between levels of amyloid beta-peptide in the brain and cognitive decline. J Am Med Assoc 283:1571–1577

    Google Scholar 

  • Nestler EJ and Carlezon WA (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 5 (12):1151–1159

    Google Scholar 

  • Nordberg A, Appel SH, Gottfries CG, Mesulam MM (1990) Future prospects of research on central cholinergic mechanisms. Prog Brain Res 84:415–418

    PubMed  CAS  Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B (1995) Kinetic analysis of regional (S)(-)[11]C-nicotine binding in normal and Alzheimer brains–in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9(1):21–27

    PubMed  CAS  Google Scholar 

  • Nordberg A, Lundqvist H, Hartvig P, Andersson J, Johansson M, Hellström-Lindahi E, Långström B (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8(2):78–84

    PubMed  CAS  Google Scholar 

  • Nordberg A (2004) PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol 3:19–27

    Google Scholar 

  • Nutt DJ (2008) Relationship of neurotransmitters to the symptoms of major depressive disorder. J Clin Psychiatry 69(Suppl E1):4–7

    Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5 951–5955

    Google Scholar 

  • Ogawa O, Umegaki H, Ishiwata K, Asai Y, Ikari H, Oda K, Toyama H, Ingram DK, Roth GS, Iguchi A, Senda M (2000) In vivo imaging of adenovirus-mediated over-expression of dopamine D2 receptors in rat striatum by positron emission tomography. Neuroreport 11(4):743–748

    PubMed  CAS  Google Scholar 

  • Opacka-Juffry J, Ashworth S, Ahier RG, Hume SP (1998) Modulatory effects of L-DOPA on D2 dopamine receptors in rat striatum, measured using in vivo microdialysis and PET. J Neural Transm 105:349–364

    PubMed  CAS  Google Scholar 

  • Parsey RV, Oquendo MA, Zea-Ponce Y, Rodenhiser J, Kegeles LS, Pratap M, Cooper TB, Van Heertum R, Mann JJ, Laruelle M (2001) Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol Psychiatry 50(5):313–322

    PubMed  CAS  Google Scholar 

  • Peremans K, Audenaert K, Coopman F, Jacobs F, Dumont F, Slegers G, Verschooten F, van Bree H, Mertens J, Dierckx R (2003) Regional binding index of the radiolabeled selective 5-HT2A antagonist 123I-5-I-R91150 in the normal canine brain imaged with single photon emission computed tomography. Vet Radiol Ultrasound 44:344–351

    PubMed  CAS  Google Scholar 

  • Pettibone DJ, Pflueger AB, Totaro JA (1984) Tetrabenazine-induced depletion of brain monoamines: mechanism by which desmethylimipramine protects cortical norepinephrine. Eur J Pharmacol 102(3-4):431–436

    PubMed  CAS  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 6:371–388

    PubMed  CAS  Google Scholar 

  • Pike VW, Halldin C, McCarron JA, Lundkvist C, Hirani E, Olsson H, Hume SP, Karlsson P, Osman S, Swahn CG, Hall H, Wikström H, Mensonidas M, Poole KG, Farde L (1998) [carbonyl-11C]Desmethyl-WAY-100635 (DWAY) is a potent and selective radioligand for central 5-HT1A receptors in vitro and in vivo. Eur J Nucl Med. 25(4):338–346

    PubMed  CAS  Google Scholar 

  • Pike VW, Halldin C, Wikstrom H et al (2000) Radioligands for the study of brain 5-HT(1A) receptors in vivo-development of some new analogues of way. Nucl Med Biol 27:449–455

    PubMed  CAS  Google Scholar 

  • Pappata S, Tavitian B, Traykov L, Jobert A, Dalger A, Mangin JF, Crouzel C, DiGiamberardino L (1996) In vivo imaging of human cerebral acetylcholinesterase. J Neurochem 67(2):876–879

    PubMed  CAS  Google Scholar 

  • Podruchny TA, Connolly C, Bokde A, Herscovitch P, Eckelman WC, Kiesewetter DO, Sunderland T, Carson RE, Cohen RM (2003) In vivo muscarinic 2 receptor imaging in cognitively normal young and older volunteers. Synapse 48(1):39–44

    PubMed  CAS  Google Scholar 

  • Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Dep Anx 12(Suppl 1):2–19

    Google Scholar 

  • Sandell J, Halldin C, Chou Y-H, Swahn C-G, Thorberg S-O, Farde L (2002) PET-examination and metabolite evaluation in monkey of [(11)C]NAD-299, a radioligand for visualisation of the 5-HT(1A) receptor. Nucl Med Biol 29:39–45

    PubMed  CAS  Google Scholar 

  • Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, Gunn RN, Grasby PM, Cowen PJ (2000) Brain serotonin 1A receptor binding measured by positron emission tomography with [11C] way-100635. Effects of depression and antidepressant treatment. Arch Gen Psychiatry 57:174–180

    PubMed  CAS  Google Scholar 

  • Schoenheit B, Zarski R, Ohm T (2004) Spatial and temporal relationship between plaques and tanges in Alzheimer-pathology. Neurobiol Aging 25:697–711

    Google Scholar 

  • Schou M, Halldin C, Sovago J, Pike VW, Gulyas B, Mozley PD, Johnson DP, Hall H, Innis RB, Farde L (2003) Specific in vivo binding to the norepinephrine transporter demonstrated with the PET radioligand, (S,S)-[11C]MeNER. Nucl Med Biol 30:707–714

    PubMed  CAS  Google Scholar 

  • Shiue CY, Shiue GG, Mozley PD, Kung MP, Zhuang ZP, Kim HJ, Kung HF (1997) P-[18F]-MPPF: a potential radioligand for PET studies of 5-HT1A receptors in humans. Synapse 25:147–154

    PubMed  CAS  Google Scholar 

  • Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 10:24–35

    PubMed  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    PubMed  CAS  Google Scholar 

  • Seneca N, Gulyas B, Varrone A, Schou M, Airaksinen A, Tauscher J et al (2006) Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: a PET study in nonhuman primate brain using (S,S)-[18F]FMeNER-D2. Psychopharmacol (Berl) 188:119–127

    CAS  Google Scholar 

  • Soloff PH, Price JC, Meltzer CC, Fabio A, Frank GK, Kaye WH (2007) 5HT2A receptor binding is increased in borderline personality disorder. Biol Psychiatry 62:580–587

    PubMed  CAS  Google Scholar 

  • Suhara T, Inoue O, Kobayashi K, Suzuki K, Tateno Y (1993) Age-related changes in human muscarinic acetylcholine receptors measured by positron emission tomography. Neurosci Lett 149(2):225–228

    PubMed  CAS  Google Scholar 

  • Suhara T, Takano A, Sudo Y, Ichimiya T, Inoue M, Yasuno F, Ikoma Y, Okubo Y (2003) High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch Gen Psychiatry 60(4):386–391

    PubMed  CAS  Google Scholar 

  • Talvik M, Nordström AL, Okubo Y, Olsson H, Borg J, Halldin C, Farde L (2006) Dopamine D2 receptor binding in drug-naïve patients with schizophrenia examined with raclopride-C11 and positron emission tomography. Psychiatry Res 148(2–3):165–173

    PubMed  CAS  Google Scholar 

  • Tamagnan GD, Brenner E, Alagille D, Staley JK, Haile C, Koren A, Early M, Baldwin RM, Tarazi FI, Baldessarini RJ, Jarkas N, Goodman MM, Seibyl JP (2007) Development of SPECT imaging agents for the norepinephrine transporters: [123I]INER. Bioorg Med Chem Lett 17:533–537

    PubMed  CAS  Google Scholar 

  • Tauscher J, Bagby RM, Javanmard M, Christensen BK, Kasper S, Kapur S (2001) Inverse relationship between serotonin 5-HT(1A) receptor binding and anxiety: a [(11)C]WAY-100635 PET investigation in healthy volunteers. Am J Psychiatry 158(8):1326–1328

    PubMed  CAS  Google Scholar 

  • Thanos PK, Taintor NB, Alexoff DL et al (2002) In vivo comparative imaging of dopamine D2 knockout and wild-type mice with 11C-raclopride and microPET. J Nucl Med 43:1570–1577

    PubMed  CAS  Google Scholar 

  • Verhoeff NP (1999) Radiotracer imaging of dopaminergic transmission in neuropsychiatric disorders. Psychopharmacology 147:217–249

    PubMed  CAS  Google Scholar 

  • Verhoeff NP, Wilson AA, Takeshita S, Trop L, Hussey D, Singh K, Kung HF, Kung MP, Houle S (2004) In-vivo imaging of Alzheimer disease beta-amyloid with [11C]SB-13 PET. Am J Geriatr Psychiatry 12:584–595

    PubMed  Google Scholar 

  • Vermetten E, Bremner JD (2002a) Circuits and systems in stress. I. Preclinical studies. Dep Anx 15(3):126–147

    Google Scholar 

  • Vermetten E, Bremner JD (2002b) Circuits and systems in stress. II. Applications to neurobiology and treatment in posttraumatic stress disorder. Dep Anx 16(1):14–38

    Google Scholar 

  • Voineskos AN, Wilson AA, Boovariwala A, Sagrati S, Houle S, Rusjan P, Sokolov S, Spencer EP, Ginovart N, Meyer JH (2007) Serotonin transporter occupancy of high-dose selective serotonin reuptake inhibitors during major depressive disorder measured with [11C]DASB positron emission tomography. Psychopharmacology (Berl) 193(4):539–545

    CAS  Google Scholar 

  • Whitehouse P, Price D, Clark A et al (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126

    PubMed  CAS  Google Scholar 

  • Willeit M, Ginovart N, Kapur S, Houle S, Hussey D, Seeman P, Wilson AA (2006) High-affinity states of human brain dopamine D2/3 receptors imaged by the agonist [11C]-(+)-PHNO. Biol Psychiatry 59(5):389–394

    PubMed  CAS  Google Scholar 

  • Wilson AA, Ginovart N, Hussey D, Meyer J, Houle S (2002) In vitro and in vivo characterisation of [11C]-DASB: a probe for in vivo measurements of the serotonin transporter by positron emission tomography. Nucl Med Biol 29:509–515

    PubMed  CAS  Google Scholar 

  • Zeng F, Jarkas N, Stehouwer JS, Voll RJ, Owens MJ, Kilts CD, Nemeroff CB, Goodman MM (2008) Synthesis, in vitro characterization, and radiolabeling of reboxetine analogs as potential PET radioligands for imaging the norepinephrine transporter. Bioorg Med Chem 16(2):783–793

    PubMed  CAS  Google Scholar 

  • Zhang Z, Andersen A, Grondin R, Barber T, Avison R, Gerhardt G, Gash D (2001) Pharmacological MRI mapping of age-associated changes in basal ganglia circuitry of awake rhesus monkeys. Neuroimage 14(5):1159–1167

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rudin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mueggler, T., Rudin, M. (2010). Molecular Imaging of the CNS: Drug Actions. In: Borsook, D., Beccera, L., Bullmore, E., Hargreaves, R. (eds) Imaging in CNS Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0134-7_13

Download citation

Publish with us

Policies and ethics