Skip to main content

Targeting of Apoptosis Signaling Pathways and Their Mediators for Cancer Therapy

  • Chapter
  • First Online:
Pharmaceutical Perspectives of Cancer Therapeutics

Apoptosis, also known as programmed cell death, is essential for the regulation of development, the generation of the immune system, and is a central mechanism for maintenance of cellular homeostasis in eukaryotes. This phenomenon of cellular death was described for almost a century, and was named apoptosis only recently to differentiate naturally occurring cell death during development from the acute injury associated necrotic cell death [1]. The apoptosis processes function to maintain equilibrium between cell proliferation and death, while dysregulated apoptosis is involved in development and etiology of many pathological disorders. The acute pathological conditions such as stroke, heart attack, or liver failure as well as chronic neurodegenerative disorders are associated with increased apoptosis resulting in sudden or progressive death of the target tissues. The pathologies of auto-immune disorders and carcinogenesis, on the other hand, arise due in part to the loss or reduced rate of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–257.

    Article  PubMed  CAS  Google Scholar 

  2. Johnstone RW, Rufeli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002; 108: 153–164.

    Article  PubMed  CAS  Google Scholar 

  3. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell 2004; 116: 205–219.

    Article  PubMed  CAS  Google Scholar 

  4. Nagata S. Apoptosis by death factor. Cell 1997; 88: 355–365.

    Article  PubMed  CAS  Google Scholar 

  5. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002; 2: 647–656.

    Article  PubMed  CAS  Google Scholar 

  6. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998; 281: 1312–1316.

    Article  PubMed  CAS  Google Scholar 

  7. Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 2008; 9: 378–390.

    Article  PubMed  CAS  Google Scholar 

  8. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104: 487–501.

    Article  PubMed  CAS  Google Scholar 

  9. Laverik I, Golks A, Krammer PH. Death receptor signaling. J Cell Sci 2005; 118: 265–267.

    Article  CAS  Google Scholar 

  10. LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003; 10: 66–75.

    Article  PubMed  CAS  Google Scholar 

  11. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003; 10: 26–35.

    Article  PubMed  CAS  Google Scholar 

  12. Bidere N, Su HC, Lenardo MJ. Genetic disorders of programmed cell death in the immune system. Annu Rev Immunol 2006; 24: 321–352.

    Article  PubMed  CAS  Google Scholar 

  13. Brunner T, Mogil RJ, LaFace D et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature 1995; 373: 441–444.

    Article  PubMed  CAS  Google Scholar 

  14. Dhein J, Walczak H, Baumler C et al. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 1995; 373: 438–441.

    Article  PubMed  CAS  Google Scholar 

  15. Ju ST, Panka DJ, Cui H et al. Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995; 373: 444–448.

    Article  PubMed  CAS  Google Scholar 

  16. Zheng L, Fisher G, Miller RE et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 1995; 377: 348–351.

    Article  PubMed  CAS  Google Scholar 

  17. Janssen EM, Droin NM, Lemmens EE et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 2005; 434: 88–93.

    Article  PubMed  CAS  Google Scholar 

  18. Barry M, Bleackley RC. Cytotoxic T lymphocytes: all roads lead to death. Nat Rev Immunol 2002; 2: 401–409.

    PubMed  CAS  Google Scholar 

  19. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003; 10: 45–65.

    Article  PubMed  CAS  Google Scholar 

  20. Chinnaiyan AM, O‘Rourke K, Tewari M et al. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512.

    Article  PubMed  CAS  Google Scholar 

  21. Kischkel FC, Hellbardt S, Behrmann I et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14: 5579–5588.

    PubMed  CAS  Google Scholar 

  22. Donepudi M, Mac Sweeney A, Briand C et al. Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 2003; 11: 543–549.

    Article  PubMed  CAS  Google Scholar 

  23. Boatright KM, Renatus M, Scott FL et al. A unified model for apical caspase activation. Mol Cell 2003; 11: 529–541.

    Article  PubMed  CAS  Google Scholar 

  24. Scaffidi C, Fulda S, Srinivasan A et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17: 1675–1687.

    Article  PubMed  CAS  Google Scholar 

  25. Li H, Zhu H, Xu CJ et al. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491–501.

    Article  PubMed  CAS  Google Scholar 

  26. Luo X, Budihardjo I, Zou H et al. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481–490.

    Article  PubMed  CAS  Google Scholar 

  27. Cowling V, Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death and Differentiation 2002; 9: 1046–1056.

    Article  PubMed  CAS  Google Scholar 

  28. Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 2003; 22(53): 8590–8607.

    Article  PubMed  CAS  Google Scholar 

  29. Bouillet P, Strasser A. BH3-only proteins – evolutionarily conserved proapoptotic Bcl-2 family members essential for initiating programmed cell death. J Cell Sci 2002; 115: 1567–1574.

    PubMed  CAS  Google Scholar 

  30. Korsmeyer SJ, Shutter JR, Veis DJ, Merry DE, Oltvai ZN. Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death. Semin. Cancer Biol. 1993; 4: 327–332.

    PubMed  CAS  Google Scholar 

  31. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80: 285–291.

    Article  PubMed  CAS  Google Scholar 

  32. El-Deiry WS. The role of p53 in chemosensitivity and radiosensitivity. Oncogene 2003; 22: 7486–7495.

    Article  PubMed  CAS  Google Scholar 

  33. Leu JI, Dumont P, Hafey M et al. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 2004; 6: 443–450.

    Article  PubMed  CAS  Google Scholar 

  34. Mihara M, Erster S, Zaika A et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003; 11: 577–590.

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki M, Youle RJ, Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 2000; 103: 645–654.

    Article  PubMed  CAS  Google Scholar 

  36. Scorrano L, Oakes SA, Opferman JT et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003; 300: 135–139.

    Article  PubMed  CAS  Google Scholar 

  37. Willis SN, Chen L, Dewson G et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005; 19: 1294–1305.

    Article  PubMed  CAS  Google Scholar 

  38. Du C, Fang M, Li Y et al. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki Y, Imai Y, Nakayama H et al. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 2001; 8: 613–621.

    Article  PubMed  CAS  Google Scholar 

  40. Verhagen AM, Ekert PG, Pakusch M et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.

    Article  PubMed  CAS  Google Scholar 

  41. Hersh EM, Metch BS, Muggia FM et al. Phase II studies of recombinant human tumor necrosis factor alpha in patients with malignant disease: a summary of the Southwest Oncology Group experience. J Immunother 1991; 10: 426–431.

    Article  PubMed  CAS  Google Scholar 

  42. Ogasawara J, Watanabe-Fukunaga R, Adachi M et al. Lethal effect of the anti-Fas antibody in mice. Nature 1993; 364: 806–809.

    Article  PubMed  CAS  Google Scholar 

  43. Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell Res 2000; 256: 58–66.

    Article  CAS  Google Scholar 

  44. Lienard D, Ewalenko P, Delmotte JJ et al. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J Clin Oncol 1992; 10: 52–60.

    PubMed  CAS  Google Scholar 

  45. Renard N, Lienard D, Lespagnard L et al. Early endothelium activation and polymorphonuclear cell invasion precede specific necrosis of human melanoma and sarcoma treated by intravascular high-dose tumour necrosis factor alpha (rTNF alpha). Int J Cancer 1994; 57: 656–663.

    Article  PubMed  CAS  Google Scholar 

  46. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  PubMed  CAS  Google Scholar 

  47. Lawrence D, Shahrokh Z, Marsters SA et al. Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 2001; 7: 383–385.

    Article  PubMed  CAS  Google Scholar 

  48. Pollack IF, Erff M, Ashkenazi A. Direct stimulation of apoptotic signaling by soluble Apo2l/tumor necrosis factor-related apoptosis-inducing ligand leads to selective killing of glioma cells. Clin Cancer Res. 2001; 7: 1362–1369.

    PubMed  CAS  Google Scholar 

  49. Jo M, Kim TH, Seol DW et al. Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 2000; 6: 564–567.

    Article  PubMed  CAS  Google Scholar 

  50. Nitsch R, Bechmann I, Deisz RA et al. Human brain-cell death induced by tumour-necrosis-factor-related apoptosis-inducing ligand (TRAIL). Lancet 2000; 356: 827–828.

    Article  PubMed  CAS  Google Scholar 

  51. Chuntharapai A, Dodge K, Grimmer K et al. Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J Immunol 2001; 166: 4891–4898.

    PubMed  CAS  Google Scholar 

  52. Ichikawa K, Liu W, Zhao L et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte toxicity. Nat Med 2001; 7: 954–960.

    Article  PubMed  CAS  Google Scholar 

  53. Shigeno M, Nakao K, Ichikawa T, Suzuki K, Kawakami A, Abiru S, Miyazoe S, Nakagawa Y, Ishikawa H, Hamasaki K et al. Interferon-alpha sensitizes human hepatoma cells to TRAIL-induced apoptosis through DR5 upregulation and NF-kappa B inactivation. Oncogene 2003; 22: 1653–1662.

    Article  PubMed  CAS  Google Scholar 

  54. Miao L, Yi P, Wang Y, Wu M. Etoposide upregulates Bax-enhancing tumour necrosis factor-related apoptosis inducing ligand-mediated apoptosis in the human hepatocellular carcinoma cell line QGY-7703. Eur J Biochem 2003; 270: 2721–2731.

    Article  PubMed  CAS  Google Scholar 

  55. Hotta T, Suzuki H, Nagai S, Yamamoto K, Imakiire A, Takada E, Itoh M, Mizuguchi J. Chemotherapeutic agents sensitize sarcoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand-induced caspase-8 activation, apoptosis and loss of mitochondrial membrane potential. J Orthop Res 2003; 21: 949–957.

    Article  PubMed  CAS  Google Scholar 

  56. Ramp U, Caliskan E, Mahotka C, Krieg A, Heikaus S, Gabbert HE, Gerharz CD. Apoptosis induction in renal cell carcinoma by TRAIL and gamma-radiation is impaired by deficient caspase-9 cleavage. Br J Cancer 2003; 88: 1800–1807.

    Article  PubMed  CAS  Google Scholar 

  57. Totzke G, Schultze-Osthoff K, Jänicke RU. Cyclooxygenase-2 (cox-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene 2003; 22: 8021–8030.

    Article  PubMed  CAS  Google Scholar 

  58. Meng RD, McDonald ER, Sheikh MS, Fornace AJ, El-Deiry WS. The TRAIL decoy receptor TRUNDD (DcR2, TRAIL-R4) is induced by adenovirus-p53 overexpression and can delay TRAIL-, p53-, and KILLER/DR5-dpendent colon cancer apoptosis. Mol Ther 2000; 1: 130–144.

    Article  PubMed  CAS  Google Scholar 

  59. Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O et al. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Cancer Res 2004; 64: 3593–3598.

    Article  PubMed  CAS  Google Scholar 

  60. Olsson A, Diaz T, Aguilar-Santelises M. Sensitization to TRAIL-induced apoptosis and modulation of FLICE-inhibitory protein in B chronic lymphocytic leukemia by actinomycin D. Leukemia 2001; 15: 1868–1877.

    Article  PubMed  CAS  Google Scholar 

  61. Micheau O, Hammann A, Solary E, Dimanche-boitrel MT. STAT-1-independent upregulation of FADD and procaspase-3 and -8 in cancer cells treated with cytotoxic drugs. Biophys Res Commun 1999; 256: 603–611.

    Article  CAS  Google Scholar 

  62. Singh TR, Shankar S, Chen X, Asim M, Srivastava RK. Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res. 2003; 63(17): 5390–5400.

    PubMed  CAS  Google Scholar 

  63. Singh TR, Shankar S, Srivastava RK. HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene 2005; 24(29): 4609–4623.

    Article  PubMed  CAS  Google Scholar 

  64. Fandy TE, Ross DD, Gore SD, Srivastava RK. Flavopiridol synergizes TRAIL cytotoxicity by downregulation of FLIPL. Cancer Chemother Pharmacol. 2007; 60(3): 313–319.

    Article  PubMed  CAS  Google Scholar 

  65. Fandy TE, Shankar S, Srivastava RK. Smac/DIABLO enhances the therapeutic potential of chemotherapeutic drugs and irradiation, and sensitizes TRAIL-resistant breast cancer cells. Mol Cancer 2008; 7: 60.

    Article  PubMed  CAS  Google Scholar 

  66. Fulda S, Meyer E, Debatin KM. Metabolic inhibitors sensitize for CD95 (APO-1/Fas)-induced apoptosis by down-regulating Fas-associated death domain-like interleukin 1-converting enzyme inhibitory protein expression, Cancer Res 2000; 60: 3947–3956.

    PubMed  CAS  Google Scholar 

  67. Kim Y, Suh N, Sporn M, Reed JC. An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 2002; 277: 22320–22329.

    Article  PubMed  CAS  Google Scholar 

  68. Sayers TJ, Brooks AD, Koh CY, Ma W, Seki N, Raziuddin A, Blazar BR, Zhang X, Elliott PJ, Murphy WJ. The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 2003; 102: 303–310.

    Article  PubMed  CAS  Google Scholar 

  69. Hengartner MO. (1997) Programmed cell death. In: C. elegans II. Riddle, DL et al. (eds.), pp. 383–496. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  70. Conradt B, Xue D. Programmed cell death. WormBook 2005; 6: 1–13.

    Google Scholar 

  71. Lamkanfi M, Declercq W, Kalai M et al. Alice in caspase land: a phylogenetic analysis of caspases from worm to man. Cell Death Differ 2002; 9: 358–361.

    Article  PubMed  CAS  Google Scholar 

  72. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004; 5: 897–907.

    Article  PubMed  CAS  Google Scholar 

  73. Salvesen GS, Duckett CS. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002; 3: 401–410.

    Article  PubMed  CAS  Google Scholar 

  74. Vaux DL, Silke J. IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 2005; 6: 287–297.

    Article  PubMed  CAS  Google Scholar 

  75. Zhivotovsky B, Orrenius S. Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis 2006; 27: 1939–1945.

    Article  PubMed  CAS  Google Scholar 

  76. Nakagawara A, Nakamura Y, Ikeda H et al. High levels of expression and nuclear localization of interleukin-1 beta converting enzyme (ICE) and CPP32 in favorable human neuroblastomas. Cancer Res 1997; 57: 4578–4584.

    PubMed  CAS  Google Scholar 

  77. Fujikawa K, Shiraki K, Sugimoto K. Reduced expression of ICE/caspase1 and CPP32/caspase3 in human hepatocellular carcinoma. Anticancer Res 2000; 20: 1927–1932.

    PubMed  CAS  Google Scholar 

  78. Satoh K, Kaneko K, Hirota M et al. The pattern of CPP32/caspase-3 expression reflects the biological behavior of the human pancreatic duct cell tumors. Pancreas 2000; 21: 352–357.

    Article  PubMed  CAS  Google Scholar 

  79. Volm M, Koomagi R. Prognostic relevance of c-Myc and caspase-3 for patients with non-small cell lung cancer. Oncol Rep 2000; 7: 95–98.

    PubMed  CAS  Google Scholar 

  80. Koomagi R, Volm M. Relationship between the expression of caspase-3 and the clinical outcome of patients with non-small cell lung cancer. Anticancer Res 2000; 20: 493–496.

    PubMed  CAS  Google Scholar 

  81. Jonges LE, Nagelkerke JF, Ensink NG et al. Caspase-3 activity as a prognostic factor in colorectal carcinoma. Lab Invest 2001; 81: 681–688.

    Article  PubMed  CAS  Google Scholar 

  82. Isobe N, Onodera H, Mori A et al. Caspase-3 expression in human gastric carcinoma and its clinical significance. Oncology 2004; 66: 201–209.

    Article  PubMed  CAS  Google Scholar 

  83. Joseph B, Ekedahl J, Sirzen F et al. Differences in expression of pro-caspases in small cell and non-small cell lung carcinoma. Biochem Biophys Res Commun 1999; 262: 381–387.

    Article  PubMed  CAS  Google Scholar 

  84. Teitz T, Wei T, Valentine MB et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6: 529–535.

    Article  PubMed  CAS  Google Scholar 

  85. Fulda S, Kufer MU, Meyer E et al. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 2001; 20: 5865–5877.

    Article  PubMed  CAS  Google Scholar 

  86. Mandruzzato S, Brasseur F, Andry G et al. A CASP-8 mutation recognized by cytolytic T lymphocytes on a human head and neck carcinoma. J Exp Med 1997; 186: 785–793.

    Article  PubMed  CAS  Google Scholar 

  87. Takita J, Yang HW, Chen YY et al. Allelic imbalance on chromosome 2q and alterations of the caspase 8 gene in neuroblastoma. Oncogene 2001; 20: 4424–4432.

    Article  PubMed  CAS  Google Scholar 

  88. Liu B, Peng D, Lu Y et al. A novel single amino acid deletion caspase-8 mutant in cancer cells that lost proapoptotic activity. J Biol Chem 2002; 277: 30159–30164.

    Article  PubMed  CAS  Google Scholar 

  89. Fischer U, Schulze-Osthoff K. New approaches and therapeutic targeting apoptosis in disease. Pharmacol Rev 2005; 57: 187–215.

    Article  PubMed  CAS  Google Scholar 

  90. MacCorkle RA, Freeman KW, Spencer DM. Synthetic activation of caspases: artificial death switches. Proc Natl Acad Sci USA 1998; 95: 3655–3660.

    Article  PubMed  CAS  Google Scholar 

  91. Shariat SF, Desai S, Song W, Khan T, Zhao J, Nguyen C, Foster BA, Greenberg N, Spencer DM, Slavin KM. Adenovirus-mediated transfer of inducible caspases: a novel “death switch” gene therapeutic approach to prostate cancer. Cancer Res 2001; 61: 2562–2571.

    PubMed  CAS  Google Scholar 

  92. Xie X, Zhao X, Liu Y, Zhang J, Matusik RJ, Slavin KM, Spencer DM. Adenovirus-mediated tissue-targeted expression of a caspase-9-based artificial death switch for the treatment of prostate cancer. Cancer Res 2001; 61: 6795–6804.

    PubMed  CAS  Google Scholar 

  93. Nor JE, Hu Y, Song W, Spencer DM, Nunez G. Ablation of microvessels in vivo upon dimerization of icaspase-9. Gene Therap 2002; 9: 444–451.

    Article  CAS  Google Scholar 

  94. Komata T, Kondo Y, Kanzawa T, Hirohata S, Koga S, Sumiyoshi H, Srinivasula SM, Barna BP, Germano IM, Takakura M et al. Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Res 2001; 61: 5796–5802.

    PubMed  CAS  Google Scholar 

  95. Jia JT, Zhang LH, Yu CJ, Zhao J, Xu YM, Gui JH, Jin M, Ji ZL, Wen WH, Wang CJ, et al. Specific tumoricidal activity of a secreted proapoptotic protein consisting of HER2 antibody and constitutively active caspase-3. Cancer Res 2003; 63: 3257–3262.

    PubMed  CAS  Google Scholar 

  96. Xu YM, Wang LF, Jia JT, Qiu XC, Zhao J, Yu CJ, Zhang R, Zhu F, Wang CJ, Jin BQ et al. A caspase-6 and anti-human epidermal growth factor receptor-2 antibody chimeric molecule suppresses the growth of HER2-overexpressing tumors. J Immunol 2004; 173: 61–67.

    PubMed  CAS  Google Scholar 

  97. Tse E, Rabbitts TH. Intracellular antibody-caspase-mediated cell killing: an approach for application in cancer therapy. Proc Natl Acad Sci USA 2000; 97: 12266–12271.

    Article  PubMed  CAS  Google Scholar 

  98. Buckley CD, Pilling D, Henriquez NV, Parsonage G, Threlfall K, Scheel-Tollner D, Simmons DL, Akbar AN, Lord JM, Salmon M. RGD peptide induces apoptosis by direct caspase-3 activation. Nature (London) 1999; 397: 534–539.

    Article  CAS  Google Scholar 

  99. Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, Donnelly J, Burns D, Ng SC, Rosenberg S, Wang X. Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science (Washington, DC) 2003; 299: 223–226.

    Article  CAS  Google Scholar 

  100. Nguyen JT, Wells JA. Direct activation of the apoptosis machinery as a mechanism to target cancer cells. Proc Natl Acad Sci USA 2003; 100: 7533–7538.

    Article  PubMed  CAS  Google Scholar 

  101. Zhang HZ, Kasibhatla S, Wang Y, Herich J, Guastella J, Tseng B, Drewe J, Cai SX. Discovery, characterization and SAR of gambogic acid as a potent apoptosis inducer by a HTS assay. Bioorg Med Chem 2004; 12: 309–317.

    Article  PubMed  CAS  Google Scholar 

  102. Clem RJ, Fechheimer M, Miller LK. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 1991; 254: 1388–1390.

    Article  PubMed  CAS  Google Scholar 

  103. Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev 1999; 13: 239–252.

    Article  PubMed  CAS  Google Scholar 

  104. Ashhab Y, Alian A, Polliack A, Panet A, Yehuda DB. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett 2001; 495: 56–60.

    Article  PubMed  CAS  Google Scholar 

  105. Vucic D, Stennicke HR, Pisabarro MT, Salvesen GS, Dixit VM. ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 2000; 10: 1359–1366.

    Article  PubMed  CAS  Google Scholar 

  106. Yang YL, Li XM. The IAP family: endogenous caspase inhibitors with multiple biological activities. Cell Res 2000; 10: 169–177.

    Article  PubMed  CAS  Google Scholar 

  107. Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs. Genome Biol 2001; 2: 1–10.

    Article  Google Scholar 

  108. Roy N, Mahadevan MS, McLean M, et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell 1995; 80: 167–178.

    Article  PubMed  CAS  Google Scholar 

  109. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 1997; 3: 917–921.

    Article  PubMed  CAS  Google Scholar 

  110. Hinds MG, Norton RS, Vaux DL. Solution structure of a baculoviral inhibitor of apoptosis (IAP) repeat. Nat Struct Biol 1999; 6: 648–651.

    Article  PubMed  CAS  Google Scholar 

  111. Sun C, Cai M, Meadows RP. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem 2000; 275: 33777–33781.

    Article  PubMed  CAS  Google Scholar 

  112. Sun C, Cai M, Gunasekera AH. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 1999; 401: 818–822.

    Article  PubMed  CAS  Google Scholar 

  113. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 2002; 9: 459–470.

    Article  PubMed  CAS  Google Scholar 

  114. Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M, Salvesen GS. XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 2005; 24: 645–655.

    Article  PubMed  CAS  Google Scholar 

  115. Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R. X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem 2001; 276: 27058–27063.

    Article  PubMed  CAS  Google Scholar 

  116. Zapata JM, Takahashi R, Salvesen GS, Reed JC. Granzyme release and caspase activation in activated human T-lymphocytes. J Biol Chem 1998; 273: 6916–6920.

    Article  PubMed  CAS  Google Scholar 

  117. Wu G, Chai J, Suber TL, et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000; 408: 1008–1012.

    Article  PubMed  CAS  Google Scholar 

  118. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 2000; 406: 855–862.

    Article  PubMed  CAS  Google Scholar 

  119. Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 2006; 7: 988–994.

    Article  PubMed  CAS  Google Scholar 

  120. Shiozaki EN, Shi Y. Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem Sci 2004; 29: 486–494.

    Article  PubMed  CAS  Google Scholar 

  121. Lu M, Lin SC, Huang Y. XIAP induces NF-kappaB activation via the BIR1/TAB1 interaction and BIR1 dimerization. Mol Cell 2007; 26: 689–702.

    Article  PubMed  CAS  Google Scholar 

  122. Duffy MJ, O'Donovan N, Brennan DJ. Survivin: a promising tumor biomarker. Cancer Lett 2007; 249: 49–60.

    Article  PubMed  CAS  Google Scholar 

  123. Altieri DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003; 22: 8581–8589.

    Article  PubMed  CAS  Google Scholar 

  124. Danson S, Dean E, Dive C. IAPs as a target for anticancer therapy. Curr Cancer Drug Targets 2007; 7: 785–794.

    Article  PubMed  CAS  Google Scholar 

  125. Sasaki H, Sheng Y, Kotsuji F et al. Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res 2000; 60: 5659–5666.

    PubMed  CAS  Google Scholar 

  126. Holcik M, Yeh C, Korneluk RG et al. Translational upregulation of X-linked inhibitor of apoptosis (XIAP) increases resistance to radiation induced cell death. Oncogene 2000; 19: 4174–4177.

    Article  PubMed  CAS  Google Scholar 

  127. Chawla-Sarkar M, Bae SI, Reu FJ et al. Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 2004; 11: 915–923.

    Article  PubMed  CAS  Google Scholar 

  128. McManus DC, Lefebvre CA, Cherton-Horvat G et al. Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 2004; 23: 8105–8117.

    Article  PubMed  CAS  Google Scholar 

  129. Mesri M, Wall NR, Li J, Kim RW, Altieri DC. Cancer gene therapy using a survivin mutant adenovirus. J Clin Invest 2004; 108: 981–990.

    Google Scholar 

  130. Hu Y, Cherton-Horvat G, Dragowska V, et al. Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res 2003; 9: 2826–2836.

    PubMed  CAS  Google Scholar 

  131. Bilim V, Kasahara T, Hara N, Takahashi K, Tomita Y. Role of XIAP in malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of IAP antisense oligonucleotides against multidrug-resistant TCC in vitro. Int J Cancer 2003; 103: 29–37.

    Article  PubMed  CAS  Google Scholar 

  132. Patel B, Carrasco R, Stamm N et al. Antisense inhibition of survivin expression as a cancer therapeutic [abstract]. Clin Cancer Res 2003; 9: S16.

    Google Scholar 

  133. Izquierdo M. Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther 2005; 12: 217–227.

    Article  PubMed  CAS  Google Scholar 

  134. Pennati M, Folini M, Zaffaroni N. Targeting survivin in cancer therapy: fulfilled promises and open questions. Carcinogenesis 2007; 28: 1133–1139.

    Article  PubMed  CAS  Google Scholar 

  135. Oost TK, Sun C, Armstrong RC et al. Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem 2004; 47: 4417–4426.

    Article  PubMed  CAS  Google Scholar 

  136. Sun H, Nikolovska-Coleska Z, Yang CY et al. Structure-based design, synthesis, and evaluation of conformationally constrained mimetics of the second mitochondria-derived activator of caspase that target the X-linked inhibitor of apoptosis protein/caspase-9 interaction site. J Med Chem 2004; 47: 4147–4150.

    Article  PubMed  CAS  Google Scholar 

  137. Li L, Thomas RM, Suzuki H et al. A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 2004; 305: 1471–1474.

    Article  PubMed  CAS  Google Scholar 

  138. Wu TY, Wagner KW, Bursulaya B, Schultz PG, Deveraux QL. Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem Biol 2003; 10: 759–767.

    Article  PubMed  CAS  Google Scholar 

  139. Nikolovska-Coleska Z, Xu L, Hu Z et al. Discovery of embelin as a cell-permeable, small-molecular weight inhibitor of XIAP through structure-based computational screening of a traditional herbal medicine three-dimensional structure database. J Med Chem 2004; 47: 2430–2440.

    Article  PubMed  CAS  Google Scholar 

  140. Schimmer AD, Welsh K, Pinilla C, Wang Z, Krajewska M, Bonneau MJ, Pedersen IM, Kitada S, Scott FL, Bailly-Maitre B et al. Small molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 2004; 5: 25–35.

    Article  PubMed  CAS  Google Scholar 

  141. Nikolovska-Coleska Z, Meagher JL, Jiang S. Design and characterization of bivalent Smac-based peptides as antagonists of XIAP and development and validation of a fluorescence polarization assay for XIAP containing both BIR2 and BIR3 domains. Anal Biochem 2008; 374: 87–98.

    Article  PubMed  CAS  Google Scholar 

  142. Srinivasula SM, Datta P, Fan XJ. Molecular determinants of the caspase-promoting activity of Smac/DIABLO and its role in the death receptor pathway. J Biol Chem 2000; 275: 36152–36157.

    Article  PubMed  CAS  Google Scholar 

  143. Fulda S, Wick W, Weller M. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8: 808–815.

    PubMed  CAS  Google Scholar 

  144. Grossman D, McNiff JM, Li F et al. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Invest Dermatol 1999; 113: 1076–1081.

    Article  PubMed  CAS  Google Scholar 

  145. Yan H, Thomas J, Liu T et al. Induction of melanoma cell apoptosis and inhibition of tumor growth using a cell-permeable survivin antagonist. Oncogene 2006; 25: 6968–6974.

    Article  PubMed  CAS  Google Scholar 

  146. Chen JS, Liu JC, Shen L et al. Cancer-specific activation of the survivin promoter and its potential use in gene therapy. Cancer Gene Ther 2004; 11: 740–747.

    Article  PubMed  CAS  Google Scholar 

  147. Van Houdt WJ, Haviv YS, Lu B et al. The human survivin promoter: a novel transcriptional targeting strategy for treatment of glioma. J Neurosurg 2006; 104: 583–592.

    Article  PubMed  Google Scholar 

  148. Andersen MH, Thor SP. Survivin – a universal tumor antigen. Histol Histopathol 2002; 17: 669–675.

    PubMed  CAS  Google Scholar 

  149. Rohayem J, Diestelkoetter P, Weigle B et al. Antibody response to the tumor-associated inhibitor of apoptosis protein in cancer patients. Cancer Res 2000; 60: 1815–1817.

    PubMed  CAS  Google Scholar 

  150. Schmidt SM, Schag K, Müller MR et al. Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 2003; 102: 571–576.

    Article  PubMed  CAS  Google Scholar 

  151. Schmitz M, Diestelkoetter P, Weigle B et al. Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 2000; 60: 4845–4849.

    PubMed  CAS  Google Scholar 

  152. Otto K, Andersen MH, Eggert A et al. Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine 2005; 23: 884–889.

    Article  PubMed  CAS  Google Scholar 

  153. Bakhshi A, Jensen JP, Goldman P et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 1985; 41: 899–906.

    Article  PubMed  CAS  Google Scholar 

  154. Cleary ML, Sklar J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 1985; 82: 7439–7443.

    Article  PubMed  CAS  Google Scholar 

  155. Tsujimoto Y, Cossman J, Jaffe E et al. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985; 228: 1440–1443.

    Article  PubMed  CAS  Google Scholar 

  156. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 1988; 335: 440–442.

    Article  PubMed  CAS  Google Scholar 

  157. Vaux DL. CED-4--the third horseman of apoptosis. Cell 1997; 90: 389–390.

    Article  PubMed  CAS  Google Scholar 

  158. Hengartner MO, Horvitz HR. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 1994; 76: 665–676.

    Article  PubMed  CAS  Google Scholar 

  159. Huang CSD, Adams JM, Cory S. The conserved N-terminal BH4 domain of homologues is essential for inhibition of apoptosis and interaction with CED-4. EMBO J 1998; 17: 1029–1039.

    Article  PubMed  CAS  Google Scholar 

  160. Lee LC, Hunter JJ, Mujeeb A et al. Evidence for alpha helical conformation of an essential N-terminal region in the human Bcl-2 protein. J Biol Chem 1996; 271: 23284–23288.

    Article  PubMed  CAS  Google Scholar 

  161. Huang DC, Strasser A. BH3-only proteins – essential initiators of apoptotic cell death. Cell 2000; 103: 839–842.

    Article  PubMed  CAS  Google Scholar 

  162. Muchmore SW, Sattler M, Liang H, et al. X-ray and NMR structure of human Bcl-XL, an inhibitor of programmed cell death. Nature 1996; 381: 335–341.

    Article  PubMed  CAS  Google Scholar 

  163. Fesik SW. Insights into programmed cell death through structural biology. Cell 2000; 103: 273–282.

    Article  PubMed  CAS  Google Scholar 

  164. Minn AJ, Velez P, Schendel SL et al. Bcl-xL forms an ion channel in synthetic lipid membranes. Nature 1997; 385: 353–357.

    Article  PubMed  CAS  Google Scholar 

  165. Schendel SL, Xie Z, Montal MO et al. Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 1997; 94: 5113–5118.

    Article  PubMed  CAS  Google Scholar 

  166. Antonsson B, Conti F, Ciavatta A et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997; 277: 370–372.

    Article  PubMed  CAS  Google Scholar 

  167. Vander Heiden MG, Chandel NS, Williamson EK et al. Thompson, Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 1997; 91: 627–637.

    Article  PubMed  CAS  Google Scholar 

  168. Zha J, Harada J, Yang E et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not Bcl-xL. Cell 1996; 87: 619–628.

    Article  PubMed  CAS  Google Scholar 

  169. Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol 2007; 292: C45–C51.

    Article  PubMed  CAS  Google Scholar 

  170. Finucane DM, Bossy-Wetzel E, Waterhouse NJ et al. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 1999; 274: 2225–2233.

    Article  PubMed  CAS  Google Scholar 

  171. Cartron PF, Gallenne T, Bougras G et al. The first α-helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell 2004; 16: 807–818.

    Article  PubMed  CAS  Google Scholar 

  172. Cheng EH, Wei MC, Weiler S et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001; 8: 705–711.

    Article  PubMed  CAS  Google Scholar 

  173. Cheng EH, Kirsch DG, Clem RJ et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 1997; 278: 1966–1968.

    Article  PubMed  CAS  Google Scholar 

  174. Clem RJ, Cheng EH, Karp CL et al. Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci USA 1998; 95: 554–559.

    Article  PubMed  CAS  Google Scholar 

  175. Lin B, Kolluri SK, Lin F et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nurr77/R3. Cell 2004; 116: 527–540.

    Article  PubMed  CAS  Google Scholar 

  176. Rosse T, Olivier R, Monney L et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 1998; 391: 496–499.

    Article  PubMed  CAS  Google Scholar 

  177. Pastorino JG, Chen ST, Tafani M et al. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 1998; 273: 7770–7775.

    Article  PubMed  CAS  Google Scholar 

  178. Liu X, Kim CN, Yang J et al. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–157.

    Article  PubMed  CAS  Google Scholar 

  179. Zou H, Henzel WJ, Liu X et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405–413.

    Article  PubMed  CAS  Google Scholar 

  180. Li P, Nijhawan D, Budihardjo I et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489.

    Article  PubMed  CAS  Google Scholar 

  181. Pan G, Humke EW, Dixit VM. Activation of caspases triggered by cytochrome c in vitro. FEBS Lett 1998; 426: 151–154.

    Article  PubMed  CAS  Google Scholar 

  182. Thomadaki H, Scorilas A. BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 2006; 43: 1–67.

    Article  PubMed  CAS  Google Scholar 

  183. Letai A. Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest 2005; 115: 2648–2655.

    Article  PubMed  CAS  Google Scholar 

  184. Armstrong JS. Mitochondrial Medicine: Pharmacological targeting of mitochondria in disease. Br J Pharmacol 2007; 151: 1154–1165.

    Article  PubMed  CAS  Google Scholar 

  185. Zamzami N, Marzo I, Susin SA et al. The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 1998; 16: 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  186. Armstrong JS, Jones DP. Glutathione depletion enforces the mitochondrial permeability transition and causes cell death in Bcl-2 overexpressing HL60 cells. FASEB J 2002; 16: 1263–1265.

    PubMed  CAS  Google Scholar 

  187. Hirsch T, Decaudin D, Susin SA et al. PK11195, a ligand of the mitochondrial benzodiazepine receptor, facilitates the induction of apoptosis and reverses Bcl-2-mediated cytoprotection. Exp Cell Res 1998; 241: 426–434.

    Article  PubMed  CAS  Google Scholar 

  188. Ackermann EJ, Taylor JK, Narayana R et al. The role of antiapoptotic Bcl-2 family members in endothelial apoptosis elucidated with antisense oligonucleotides. J Biol Chem 1999; 274: 11245–11252.

    Article  PubMed  CAS  Google Scholar 

  189. O'Brien S, Moore JO, Boyd TE et al. Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 2007; 25: 1114–1120.

    Article  PubMed  CAS  Google Scholar 

  190. Zangemeister-Wittke U, Leech SH, Olie RA, Simoes-Wust AP, Gautschi O, Leudke GH, Natt F, Haner R, Martin P, Hall J et al. A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin Cancer Res 2000; 6: 2547–2555.

    PubMed  CAS  Google Scholar 

  191. Taylor JK, Zhang QQ, Wyatt JR, Dean NM. Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat Biotechnol 1999; 17: 1097–1100.

    Article  PubMed  CAS  Google Scholar 

  192. Bedikian AY, Millward M, Pehamberger H et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: The Oblimersen Melanoma Study. J Clin Oncol 2006; 24: 4738–4745.

    Article  PubMed  CAS  Google Scholar 

  193. Kagawa S, Pearson SA, Ji L et al. A binary adenoviral vector system for expressing high levels of the proapoptotic gene bax. Gene Ther 2000; 7: 75–79.

    Article  PubMed  CAS  Google Scholar 

  194. Xiang J, Gomez-navarro J, Arafat W et al. Pro-apoptotic treatment with an adenovirus encoding Bax enhances the effect of chemotherapy in ovarian cancer. J Gene Med 2000; 2: 97–106.

    Article  PubMed  CAS  Google Scholar 

  195. Li X, Marani M, Yu J et al. Adenovirus-mediated Bax overexpression for the induction of therapeutic apoptosis in prostate cancer. Cancer Res 2001; 61: 186–191.

    PubMed  CAS  Google Scholar 

  196. Walensky LD, Kung AL, Escher I et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 2004; 305: 1466–1470.

    Article  PubMed  CAS  Google Scholar 

  197. Holinger EP, Chittenden T, Lutz RJ. Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J Biol Chem 1999; 274: 13298–13304.

    Article  PubMed  CAS  Google Scholar 

  198. Wang JL, Zhang ZJ, Choski S, Shan S, Lu Z, Croce CM, Alnemri ES, Korngold R, Huang Z. Cell permeable Bcl-2 binding peptides: a chemical approach to apoptosis induction in tumor cells. Cancer Res 2000b; 60: 1498–1502.

    PubMed  CAS  Google Scholar 

  199. Nakashima T, Miura M, Hara M. Tetrocarcin A inhibits mitochondrial functions of Bcl-2 and suppresses its anti-apoptotic activity. Cancer Res 2000; 60: 1229–1235.

    PubMed  CAS  Google Scholar 

  200. Wang JL, Liu D, Zhang ZJ, Shan S, Han X, Srinivasula SM, Croce CM, Alnemri ES, Huang Z. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells. Proc Natl Acad Sci USA 2000a; 97: 7124–7129.

    Article  PubMed  CAS  Google Scholar 

  201. Tzung SP, Kim KM, Basanez G, Diedt CD, Simon J., Zimmerberg J., Zhang, KY, Hockenbery DM. Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3. Nat. Cell Biol. 2001; 3: 183–191.

    Article  PubMed  CAS  Google Scholar 

  202. Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J. Identification of small-molecule-inhibitors of interaction between the BH3 domain and Bcl-xL. Nat Cell Biol 2001; 3: 173–182.

    Article  PubMed  CAS  Google Scholar 

  203. Chan SL, Lee MC, Tan KO, Yang LK, Lee AS, Flotow H, Fu NY, Butler MS, Soejarto DD, Buss AD, Yu VC. Identification of Chelerythrine as an inhibitor of BclXL function. J Biol Chem 2003; 278: 20453–20456.

    Article  PubMed  CAS  Google Scholar 

  204. Meng XW, Sun-Hee L, Kaufmann SH. Apoptosis in the treatment of cancer: A promise kept? Curr Opin Cell Biol 2006; 18: 668–676.

    Article  PubMed  CAS  Google Scholar 

  205. Oltersdorf T, Elmore SW, Shoemaker AR et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  PubMed  CAS  Google Scholar 

  206. Trudel S, Li ZH, Rauw J et al. Preclinical studies of the pan-Bcl inhibitor obatoclax (GX015-070) in multiple myeloma. Blood 2007; 109: 5430–5438.

    Article  PubMed  CAS  Google Scholar 

  207. Levine AJ, Momand J, Finley CA. The p53 tumour suppressor gene. Nature 1991; 351: 453–456.

    Article  PubMed  CAS  Google Scholar 

  208. Maurici D, Monti P, Campomenosi P et al. Amifostine (WR2721) restores transcriptional activity of specific p53 mutant proteins in a yeast functional assay. Oncogene 2001; 20: 3533–3540.

    Article  PubMed  CAS  Google Scholar 

  209. Selivanova G, Ryabchenko L, Jansson E, Iotsova V, Wiman KG. Reactivation of mutant p53 through interaction of a C-terminal peptide with the core domain. Mol Cell Biol 1999; 19: 3395–3402.

    PubMed  CAS  Google Scholar 

  210. Kim AL, Raffo AJ, Brandt-Rauf PW, Pincus MR, Monaco R, Abarzua P, Fine RL. Conformational and molecular basis for induction of apoptosis by a p53 C-terminal peptide in human cancer cells. J Biol Chem 1999; 274: 34924–34931.

    Article  PubMed  CAS  Google Scholar 

  211. Ryu J, Lee HJ, Kim KA, et al. Intracellular delivery of p53 fused to the basic domain of HIV-1 Tat. Mol Cells 2004; 17: 353–359.

    PubMed  CAS  Google Scholar 

  212. Takenobu T, Tomizawa K, Matsushita M, et al. Development of p53 protein transduction therapy using membrane-permeable peptides and the application to oral cancer cells. Mol Cancer Ther 2002; 1: 1043–1049.

    PubMed  CAS  Google Scholar 

  213. Weisbart RH, Hansen JE, Chan G, et al. Antibody-mediated transduction of p53 selectively kills cancer cells. Int J Oncol 2004; 25: 1867–1873.

    PubMed  CAS  Google Scholar 

  214. Hansen JE, Fischer LK, Chan G, Chang SS, Baldwin SW, Aragon RJ, Carter JJ, Lilly M, Nishimura RN, Weisbart RH, Reeves ME. Antibody-mediated p53 protein therapy prevents liver metastasis in vivo. Cancer Res 2007; 67(4): 1769–1774.

    Article  PubMed  CAS  Google Scholar 

  215. Butz K, Denk C, Ullmann A, Scheffner M, Hoppe-Seyler F. Induction of apoptosis in human papillomaviruspositive cancer cells by peptide aptamers targeting the viral E6 oncoprotein. Proc Natl Acad Sci USA 2000; 97: 6693–6697.

    Article  PubMed  CAS  Google Scholar 

  216. Buolamwini JK, Addo J, Kamath S, Patil S, Mason D, Ores M. Small molecule antagonists of the MDM2 oncoprotein as anticancer agents. Curr Cancer Drug Targets 2005; 5: 57–68.

    Article  PubMed  CAS  Google Scholar 

  217. Chene P. Inhibition of p53–MDM2 interaction: Targeting a protein–protein interface. Mol Cancer Res 2004; 2: 20–28.

    PubMed  CAS  Google Scholar 

  218. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  PubMed  CAS  Google Scholar 

  219. Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H, Zhao X, Vu BT, Qing W, Packman K, Myklebost O, Heimbrook DC, Vassilev LT. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 2006; 103(6): 1888–1893.

    Article  PubMed  CAS  Google Scholar 

  220. Grasberger BL, Lu T, Schubert C et al. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem 2005; 48(4): 909–912.

    Article  PubMed  CAS  Google Scholar 

  221. Ding K, Lu Y, Nikolovska-Coleska Z et al. Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 2005; 127(29): 10130–10131.

    Article  PubMed  CAS  Google Scholar 

  222. Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LG, Masucci M, Pramanik A, Selivanova G. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004; 10: 1321–1328.

    Article  PubMed  CAS  Google Scholar 

  223. Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 2000; 77: 81–137.

    Article  PubMed  CAS  Google Scholar 

  224. Moll UM, Marchenko N, Zhang X-K. p53 and Nur77/TR3-transcription factors that directly target mitochondria for cell death induction. Oncogene 2006; 25: 4725–4743.

    Article  PubMed  CAS  Google Scholar 

  225. Blagosklonny MV, Toretsky J, Neckers L. Geldanamycin selectively destabilizes and conformationally alters mutated p53. Oncogene 1995; 11(5): 933–939.

    PubMed  CAS  Google Scholar 

  226. Kastan MB, Berkovich E. p53: A two-faced cancer gene. Nat Cell Biol 2007; 9: 489–491.

    Article  PubMed  CAS  Google Scholar 

  227. Kastner P, Mark M, Chambon, P. Nonsteroid nuclear receptors: What are genetic studies telling us about their role in real life? Cell 1995; 83: 859–869.

    Article  PubMed  CAS  Google Scholar 

  228. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM. The nuclear receptor superfamily: The second decade. Cell 1995; 83: 835–839.

    Article  PubMed  CAS  Google Scholar 

  229. Baker KD, Shewchuk LM, Kozlova T et al. The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell 2003; 113(6): 731–742.

    Article  PubMed  CAS  Google Scholar 

  230. Wang Z, Benoit G, Liu J, Prasad S, Aarnisalo P, Liu X, Xu H, Walker NP, Perlmann T. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 2003; 423: 555–560.

    Article  PubMed  CAS  Google Scholar 

  231. Uemura H, Chang C. Antisense TR3 orphan receptor can increase prostate cancer cell viability with etoposide treatment. Endocrinology 1998; 139(5): 2329–2334.

    Article  PubMed  CAS  Google Scholar 

  232. Chen GQ, Lin B, Dawson MI, Zhang XK. Nicotine modulates the effects of retinoids on growth inhibition and RAR beta expression in lung cancer cells. Int J Cancer 2002; 99(2): 171–178.

    Article  PubMed  CAS  Google Scholar 

  233. Ke N, Claassen G, Yu DH, Albers A, Fan W, Tan P, Grifman M, Hu X, Defife K, Nguy V, Meyhack B, Brachat A, Wong-Staal F, Li QX. Nuclear hormone receptor NR4A2 is involved in cell transformation and apoptosis. Cancer Res 2004; 64(22): 8208–8212.

    Article  PubMed  CAS  Google Scholar 

  234. Woronicz JD, Calnan B, Ngo V, Winoto A. Requirement for the orphan steroid receptor Nur77 in apoptosis of T-cell hybridomas. Nature 1994; 367: 277–281.

    Article  PubMed  CAS  Google Scholar 

  235. Cheng LE, Chan FK, Cado D, Winoto A. Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis. EMBO J 1997; 16(8): 1865–1875.

    Article  PubMed  CAS  Google Scholar 

  236. Kuang A, Cado D, Winoto A. Nur77 transcription activity correlates with its apoptotic function in vivo. Eur J Immunol 1999; 29: 3722–3728.

    Article  PubMed  CAS  Google Scholar 

  237. Li Y, Lin B, Agadir A et al. Molecular determinants of AHPN (CD437)-induced growth arrest and apoptosis in human lung cancer cell lines. Mol Cell Biol 1998; 18: 4719–4731.

    PubMed  CAS  Google Scholar 

  238. Holmes WF, Soprano DR, Soprano KJ. Early events in the induction of apoptosis in ovarian carcinoma cells by CD437: activation of the p38 MAP kinase signal pathway. Oncogene 2003; 22: 6377–6386.

    Article  PubMed  CAS  Google Scholar 

  239. Chintharlapalli S, Burghardt R, Papineni S et al. Activation of Nur77 by selected 1,1-Bis(3′-indolyl)-1-(p-substituted phenyl)methanes induces apoptosis through nuclear pathways. J Biol Chem 2005; 280: 24903–24914.

    Article  PubMed  CAS  Google Scholar 

  240. Chinnaiyan P, Varambally S, Tomlins SA et al. Enhancing the antitumor activity of ErbB blockade with histone deacetylase (HDAC) inhibition. Int J Cancer 2006; 118: 1041–1050.

    Article  PubMed  CAS  Google Scholar 

  241. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW, Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  PubMed  CAS  Google Scholar 

  242. Li H, Kolluri SK, Gu J et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 2000; 289: 1159–1164.

    Article  PubMed  CAS  Google Scholar 

  243. Luciano F, Krajewska M, Oritz-Rubio P et al. Nur77 converts phenotype of Bcl-B, an anti-apoptotic protein expressed in plasm cells and myeloma. Blood 2007; 109(9): 3849–3855.

    Article  PubMed  CAS  Google Scholar 

  244. Wilson AJ, Arango D, Mariadason JM, Heerdt BG, Augenlicht LH. TR3/Nur77 in colon cancer cell apoptosis. Cancer Res 2003; 63: 5401–5407.

    PubMed  CAS  Google Scholar 

  245. Jacobs CM, Boldingh KA, Slagsvold HH, Thoresen GH, Paulsen RE. ERK2 prohibits apoptosis-induced subcellular translocation of orphan nuclear receptor NGFI-B/TR3. J Biol Chem 2004; 279: 50097–50101.

    Article  PubMed  CAS  Google Scholar 

  246. Kolluri SK, Corr M, James SY et al. The R-enantiomer of the nonsteroidal antiinflammatory drug etodolac binds retinoid X receptor and induces tumor-selective apoptosis. Proc Natl Acad Sci USA 2005; 102: 2525–2530.

    Article  PubMed  CAS  Google Scholar 

  247. Lee KW, Ma L, Yan X, Liu B, Zhang XK, Cohen P. Rapid apoptosis induction by IGFBP-3 involves an insulin-like growth factor-independent nucleomitochondrial translocation of RXRalpha/Nur77. J Biol Chem 2005; 280: 16942–16948.

    Article  PubMed  CAS  Google Scholar 

  248. Yip KW, Godoi PH, Zhai D, Garcia X, Cellitti JF, Cuddy M, Gerlic M, Chen Y, Satterthwait A, Vasile S, Sergienko E, Reed JC. A TR3/Nur77 peptide-based high-throughput fluorescence polarization screen for small molecule Bcl-B inhibitors. J Biomol Screen 2008; 13: 665–673.

    Google Scholar 

  249. Rishi AK, Zhang L, Boyanapalli M, Wali A, Mohammad RM, Yu Y, Fontana JA, Hatfield JS, Dawson MI, Majumdar APN, Reichert U. Identification and characterization of a Cell-Cycle and Apoptosis Regulatory Protein (CARP)-1 as a novel mediator of apoptosis signaling by Retinoid CD437. J Biol Chem 2003; 278: 33422–33435.

    Article  PubMed  CAS  Google Scholar 

  250. Rishi AK, Zhang L, Yu Y, Jiang Y, Nautiyal J, Wali A, Fontana JA, Levi E, Majumdar APN. Cell cycle and apoptosis regulatory protein (CARP)-1 is involved in apoptosis signaling by epidermal growth factor receptor. J Biol Chem 2006; 281: 13188–13198.

    Article  PubMed  CAS  Google Scholar 

  251. Zhang L, Levi E, Majumder P, Yu Y, Aboukameel A, Du J, Xu H, Mohammad RM, Hatfield JS, Wali A, Adsay V, Majumdar APN, Rishi AK. Transactivator of transcription-tagged Cell Cycle and Apoptosis Regulatory Protein-1 peptides suppress growth of human breast cancer cells in vitro and in vivo. Mol Cancer Ther. 2007; 6: 1661–1672.

    Article  PubMed  CAS  Google Scholar 

  252. Yoo AS, Bais C, Greenwald I. Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science 2004; 303: 663–666.

    Article  PubMed  CAS  Google Scholar 

  253. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li J, Cohn MA, Cantley LC, Gygi SP. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 2004; 101: 12130–12135.

    Article  PubMed  CAS  Google Scholar 

  254. Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M. A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nat Biotechnol 2003; 21: 315–318.

    Article  PubMed  CAS  Google Scholar 

  255. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007; 316: 1160–1166.

    Article  PubMed  CAS  Google Scholar 

  256. Bouwmeester T, Bauch A, Ruffner H et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004; 6: 97–105.

    Article  PubMed  CAS  Google Scholar 

  257. Kim JH, Yang CK, Heo K, Roeder RG, An W, Stallcup MR. CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Mol Cell 2008; 31: 510–519.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the grants support from the Department of Veterans Affairs Merit Review (AKR, AW) and the Susan G Komen Breast Cancer Foundation (AKR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Rishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rishi, A.K., Zhang, X., Wali, A. (2009). Targeting of Apoptosis Signaling Pathways and Their Mediators for Cancer Therapy. In: Lu, Y., Mahato, R. (eds) Pharmaceutical Perspectives of Cancer Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0131-6_5

Download citation

Publish with us

Policies and ethics