Skip to main content

Targeted Therapies for Malignant Brain Tumors

  • Chapter
  • First Online:
  • 784 Accesses

Battling aggressive brain tumors represents a struggle endeavored by scientists and physicians across many different disciplines. The molecular and physiological abnormalities that accompany this fatal disease render malignant brain tumors arguably one of the most difficult pathologies to treat. For this reason, the efforts to combat this fatal disease are represented by a plethora of research. This chapter is organized to illustrate common themes in drug targeting for the treatment of brain tumors. Each section is organized based on the therapeutic approach: small molecules, local drug delivery, or biological therapy. In each subsection we discuss the rationale that has ushered each development to the ‘center stage’ in brain tumor therapy and provide illustrative examples using the most relevant and heretofore advanced developments. In this way, we hope to provide a discussion of brain tumor therapy that is all-encompassing yet detailed enough to give the reader a broad understanding of how researchers and clinicians attempt to improve the outcome of patients diagnosed with this debilitating disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Stupp R, Hegi ME, van den Bent MJ, Mason WP, Weller M, Mirimanoff RO et al. Changing paradigms – an update on the multidisciplinary management of malignant glioma. Oncologist 2006; 11: 165–180.

    Article  PubMed  CAS  Google Scholar 

  2. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352: 997–1003.

    Article  PubMed  CAS  Google Scholar 

  3. Sonabend AM, Lesniak MS. Oligodendrogliomas: clinical significance of 1p and 19q chromosomal deletions. Expert Rev Neurother 2005; 5: S25–S32.

    Article  PubMed  CAS  Google Scholar 

  4. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90: 1473–1479.

    Article  PubMed  CAS  Google Scholar 

  5. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. Nat Rev Mol Cell Biol 2006; 7: 505–516.

    Article  PubMed  CAS  Google Scholar 

  6. Humphrey PA, Wong AJ, Vogelstein B, Friedman HS, Werner MH, Bigner DD et al. Amplification and expression of the epidermal growth factor receptor gene in human glioma xenografts. Cancer Res 1988; 48: 2231–2238.

    PubMed  CAS  Google Scholar 

  7. Pelloski CE, Ballman KV, Furth AF, Zhang L, Lin E, Sulman EP et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol 2007; 25: 2288–2294.

    Article  PubMed  CAS  Google Scholar 

  8. Sarkaria JN, Yang L, Grogan PT, Kitange GJ, Carlson BL, Schroeder MA et al. Identification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel. Mol Cancer Ther 2007; 6: 1167–1174.

    Article  PubMed  CAS  Google Scholar 

  9. Van den Bent MJ, Brandes A, Rampling R, Kouwenhoven M, Kros JM, Carpentier A et al. Randomized phase II trial of erlotinib (E) versus temozolomide (TMZ) or BCNU in recurrent glioblastoma multiforme (GBM): EORTC 26034. 2007 ASCO Annual Meeting J Clin Oncol 2007, 18S.

    Google Scholar 

  10. Lassman AB, Rossi MR, Raizer JJ, Abrey LE, Lieberman FS, Grefe CN et al. Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01. Clin Cancer Res 2005; 11: 7841–7850.

    Article  PubMed  CAS  Google Scholar 

  11. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353: 2012–2024.

    Article  PubMed  CAS  Google Scholar 

  12. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353–364.

    Article  PubMed  CAS  Google Scholar 

  13. Sipos EP, Brem H. Local anti-angiogenic brain tumor therapies. J Neurooncol 2000; 50: 181–188.

    Article  PubMed  CAS  Google Scholar 

  14. Weingart JD, Laterra JJ, Brem H. Cerebral gliomas. Growth factors and angiogenesis. Baillieres Clin Neurol 1996; 5: 307–318.

    PubMed  CAS  Google Scholar 

  15. Fine HA. Promising new therapies for malignant gliomas. Cancer J 2007; 13: 349–354.

    Article  PubMed  CAS  Google Scholar 

  16. Rajaraman P, Wang SS, Rothman N, Brown MM, Black PM, Fine HA et al. Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults. Cancer Epidemiol Biomarkers Prev 2007; 16: 1655–1661.

    Article  PubMed  CAS  Google Scholar 

  17. Wang SI, Puc J, Li J, Bruce JN, Cairns P, Sidransky D et al. Somatic mutations of PTEN in glioblastoma multiforme. Cancer Res 1997; 57: 4183–4186.

    PubMed  CAS  Google Scholar 

  18. Boluyt MO, Li ZB, Loyd AM, Scalia AF, Cirrincione GM, Jackson RR. The mTOR/p70S6K signal transduction pathway plays a role in cardiac hypertrophy and influences expression of myosin heavy chain genes in vivo. Cardiovasc Drugs Ther 2004; 18: 257–267.

    Article  PubMed  CAS  Google Scholar 

  19. Brunn GJ, Fadden P, Haystead TA, Lawrence JC, Jr. The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-Pro motif and is activated by antibodies to a region near its COOH terminus. J Biol Chem 1997; 272: 32547–32550.

    Article  PubMed  CAS  Google Scholar 

  20. Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science 1997; 277: 99–101.

    Article  PubMed  CAS  Google Scholar 

  21. Chang SM, Wen P, Cloughesy T, Greenberg H, Schiff D, Conrad C et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 2005; 23: 357–361.

    Article  PubMed  CAS  Google Scholar 

  22. Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 2005; 23: 5294–5304.

    Article  PubMed  CAS  Google Scholar 

  23. Molnar-Kimber KL. Mechanism of action of rapamycin (Sirolimus, Rapamune). Transplant Proc 1996; 28: 964–969.

    PubMed  CAS  Google Scholar 

  24. Sehgal SN. Rapamune (Sirolimus, rapamycin): an overview and mechanism of action. Ther Drug Monit 1995; 17: 660–665.

    Article  PubMed  CAS  Google Scholar 

  25. Sehgal SN. Rapamune (RAPA, rapamycin, sirolimus): mechanism of action immunosuppressive effect results from blockade of signal transduction and inhibition of cell cycle progression. Clin Biochem 1998; 31: 335–340.

    Article  PubMed  CAS  Google Scholar 

  26. Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 2001; 98: 10314–10319.

    Article  PubMed  CAS  Google Scholar 

  27. Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc Natl Acad Sci USA 2001; 98: 10320–10325.

    Article  PubMed  CAS  Google Scholar 

  28. Gaillard PJ, van der Sandt IC, Voorwinden LH, Vu D, Nielsen JL, de Boer AG et al. Astrocytes increase the functional expression of P-glycoprotein in an in vitro model of the blood-brain barrier. Pharm Res 2000; 17: 1198–1205.

    Article  PubMed  CAS  Google Scholar 

  29. Janzer RC, Raff MC. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 1987; 325: 253–257.

    Article  PubMed  CAS  Google Scholar 

  30. Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999; 22: 11–28.

    Article  PubMed  CAS  Google Scholar 

  31. Fenstermacher J, Gross P, Sposito N, Acuff V, Pettersen S, Gruber K. Structural and functional variations in capillary systems within the brain. Ann N Y Acad Sci 1988; 529: 21–30.

    Article  PubMed  CAS  Google Scholar 

  32. Fenstermacher J, Kaye T. Drug ‘diffusion” within the brain. Ann N Y Acad Sci 1988; 531: 29–39.

    Article  PubMed  CAS  Google Scholar 

  33. Hutson SM, Fenstermacher D, Mahar C. Role of mitochondrial transamination in branched chain amino acid metabolism. J Biol Chem 1988; 263: 3618–3625.

    PubMed  CAS  Google Scholar 

  34. Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol 2005; 6: 79–87.

    Article  PubMed  CAS  Google Scholar 

  35. el-Bacha RS, Minn A. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cell Mol Biol (Noisy-le-grand) 1999; 45: 15–23.

    CAS  Google Scholar 

  36. Sedlakova R, Shivers RR, Del Maestro RF. Ultrastructure of the blood-brain barrier in the rabbit. J Submicrosc Cytol Pathol 1999; 31: 149–161.

    PubMed  CAS  Google Scholar 

  37. Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 2000; 20: 57–76.

    Article  PubMed  CAS  Google Scholar 

  38. Liebner S, Kniesel U, Kalbacher H, Wolburg H. Correlation of tight junction morphology with the expression of tight junction proteins in blood-brain barrier endothelial cells. Eur J Cell Biol 2000; 79: 707–717.

    Article  PubMed  CAS  Google Scholar 

  39. Borst P, Evers R, Kool M, Wijnholds J. The multidrug resistance protein family. Biochim Biophys Acta 1999; 1461: 347–357.

    Article  PubMed  CAS  Google Scholar 

  40. Cordon-Cardo C, O'Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR et al. Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 1989; 86: 695–698.

    Article  PubMed  CAS  Google Scholar 

  41. de Boer AG, Gaillard PJ. Drug targeting to the brain. Annu Rev Pharmacol Toxicol 2007; 47: 323–355.

    Article  PubMed  CAS  Google Scholar 

  42. de Boer AG, van der Sandt IC, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol 2003; 43: 629–656.

    Article  PubMed  CAS  Google Scholar 

  43. Deeken JF, Loscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 2007; 13: 1663–1674.

    Article  PubMed  CAS  Google Scholar 

  44. Lee G, Dallas S, Hong M, Bendayan R. Drug transporters in the central nervous system: brain barriers and brain parenchyma considerations. Pharmacol Rev 2001; 53: 569–596.

    PubMed  CAS  Google Scholar 

  45. Loscher W, Potschka H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 2005; 76: 22–76.

    Article  PubMed  CAS  Google Scholar 

  46. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 1995; 96: 1698–1705.

    Article  PubMed  CAS  Google Scholar 

  47. Johanson CE, Duncan JA, Stopa EG, Baird A. Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res 2005; 22: 1011–1037.

    Article  PubMed  CAS  Google Scholar 

  48. Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol 2000; 2: 45–59.

    PubMed  CAS  Google Scholar 

  49. Muldoon LL, Soussain C, Jahnke K, Johanson C, Siegal T, Smith QR et al. Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 2007; 25: 2295–2305.

    Article  PubMed  CAS  Google Scholar 

  50. Bates SF, Chen C, Robey R, Kang M, Figg WD, Fojo T. Reversal of multidrug resistance: lessons from clinical oncology. Novartis Found Symp 2002; 243: 83–96; discussion 96–102, 180–105.

    Article  PubMed  CAS  Google Scholar 

  51. Johanson CE. Permeability and vascularity of the developing brain: cerebellum vs cerebral cortex. Brain Res 1980; 190: 3–16.

    Article  PubMed  CAS  Google Scholar 

  52. Johanson CE, Woodbury DM. Uptake of [14C]urea by the in vivo choroid plexus--cerebrospinal fluid--brain system: identification of sites of molecular sieving. J Physiol 1978; 275: 167–176.

    PubMed  CAS  Google Scholar 

  53. Murphy VA, Johanson CE. Adrenergic-induced enhancement of brain barrier system permeability to small nonelectrolytes: choroid plexus versus cerebral capillaries. J Cereb Blood Flow Metab 1985; 5: 401–412.

    Article  PubMed  CAS  Google Scholar 

  54. Parandoosh Z, Johanson CE. Ontogeny of blood-brain barrier permeability to, and cerebrospinal fluid sink action on, [14C]urea. Am J Physiol 1982; 243: R400–R407.

    PubMed  CAS  Google Scholar 

  55. Boiardi A, Eoli M, Pozzi A, Salmaggi A, Broggi G, Silvani A. Locally delivered chemotherapy and repeated surgery can improve survival in glioblastoma patients. Ital J Neurol Sci 1999; 20: 43–48.

    Article  PubMed  CAS  Google Scholar 

  56. Boiardi A, Silvani A, Milanesi I, Munari L, Broggi G, Botturi M. Local immunotherapy (beta-IFN) and systemic chemotherapy in primary glial tumors. Ital J Neurol Sci 1991; 12: 163–168.

    Article  PubMed  CAS  Google Scholar 

  57. Lesniak MS, Brem H. Targeted therapy for brain tumours. Nat Rev Drug Discov 2004; 3: 499–508.

    Article  PubMed  CAS  Google Scholar 

  58. Lesniak MS, Langer R, Brem H. Drug delivery to tumors of the central nervous system. Curr Neurol Neurosci Rep 2001; 1: 210–216.

    Article  PubMed  CAS  Google Scholar 

  59. Morantz RA, Kimler BF, Vats TS, Henderson SD. Bleomycin and brain tumors. A review. J Neurooncol 1983; 1: 249–255.

    Article  PubMed  CAS  Google Scholar 

  60. Pardridge WM. Blood-brain barrier biology and methodology. J Neurovirol 1999; 5: 556–569.

    Article  PubMed  CAS  Google Scholar 

  61. Neuwelt EA. Mechanisms of disease: the blood-brain barrier. Neurosurgery 2004; 54: 131–140; discussion 141–132.

    Article  PubMed  Google Scholar 

  62. Neuwelt EA, Barnett PA, McCormick CI, Remsen LG, Kroll RA, Sexton G. Differential permeability of a human brain tumor xenograft in the nude rat: impact of tumor size and method of administration on optimizing delivery of biologically diverse agents. Clin Cancer Res 1998; 4: 1549–1555.

    PubMed  CAS  Google Scholar 

  63. Fortin D, Desjardins A, Benko A, Niyonsega T, Boudrias M. Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in malignant brain tumors: the Sherbrooke experience. Cancer 2005; 103: 2606–2615.

    Article  PubMed  Google Scholar 

  64. Fortin D, Gendron C, Boudrias M, Garant MP. Enhanced chemotherapy delivery by intraarterial infusion and blood-brain barrier disruption in the treatment of cerebral metastasis. Cancer 2007; 109: 751–760.

    Article  PubMed  CAS  Google Scholar 

  65. Hall WA, Doolittle ND, Daman M, Bruns PK, Muldoon L, Fortin D et al. Osmotic blood-brain barrier disruption chemotherapy for diffuse pontine gliomas. J Neurooncol 2006; 77: 279–284.

    Article  PubMed  CAS  Google Scholar 

  66. Kraemer DF, Fortin D, Doolittle ND, Neuwelt EA. Association of total dose intensity of chemotherapy in primary central nervous system lymphoma (human non-acquired immunodeficiency syndrome) and survival. Neurosurgery 2001; 48: 1033–1040; discussion 1040–1031.

    Article  PubMed  CAS  Google Scholar 

  67. Chang CH, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas. A joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study. Cancer 1983; 52: 997–1007.

    Article  PubMed  CAS  Google Scholar 

  68. Green SB, Byar DP, Walker MD, Pistenmaa DA, Alexander E, Jr, Batzdorf U et al. Comparisons of carmustine, procarbazine, and high-dose methylprednisolone as additions to surgery and radiotherapy for the treatment of malignant glioma. Cancer Treat Rep 1983; 67: 121–132.

    PubMed  CAS  Google Scholar 

  69. Selker RG, Shapiro WR, Burger P, Blackwood MS, Arena VC, Gilder JC et al. The Brain Tumor Cooperative Group NIH Trial 87-01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery 2002; 51: 343–355; discussion 355–347.

    PubMed  Google Scholar 

  70. Cohen RJ, Wiernik PH, Walker MD. Acute nonlymphocytic leukemia associated with nitrosourea chemotherapy: report of two cases. Cancer Treat Rep 1976; 60: 1257–1261.

    PubMed  CAS  Google Scholar 

  71. Crittenden D, Tranum BL, Haut A. Pulmonary fibrosis after prolonged therapy with 1,3-bis (2-chloroethyl)-1-nitrosourea. Chest 1977; 72: 372–373.

    Article  PubMed  CAS  Google Scholar 

  72. De Vita VT, Carbone PP, Owens AH, Jr, Gold GL, Krant MJ, Edmonson J. Clinical trials with 1,3-bis(2-chloroethyl)-1-nitrosourea, NSC-409962. Cancer Res 1965; 25: 1876–1881.

    PubMed  Google Scholar 

  73. Litam JP, Dail DH, Spitzer G, Vellekoop L, Verma DS, Zander AR et al. Early pulmonary toxicity after administration of high-dose BCNU. Cancer Treat Rep 1981; 65: 39–44.

    PubMed  CAS  Google Scholar 

  74. Michels SD, McKenna RW, Arthur DC, Brunning RD. Therapy-related acute myeloid leukemia and myelodysplastic syndrome: a clinical and morphologic study of 65 cases. Blood 1985; 65: 1364–1372.

    PubMed  CAS  Google Scholar 

  75. Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet 1995; 345: 1008–1012.

    Article  PubMed  CAS  Google Scholar 

  76. Bota DA, Desjardins A, Quinn JA, Affronti ML, Friedman HS. Interstitial chemotherapy with biodegradable BCNU (Gliadel) wafers in the treatment of malignant gliomas. Ther Clin Risk Manag 2007; 3: 707–715.

    PubMed  CAS  Google Scholar 

  77. Dang W, Daviau T, Brem H. Morphological characterization of polyanhydride biodegradable implant gliadel during in vitro and in vivo erosion using scanning electron microscopy. Pharm Res 1996; 13: 683–691.

    Article  PubMed  CAS  Google Scholar 

  78. Domb AJ, Rock M, Perkin C, Yipchuck G, Broxup B, Villemure JG. Excretion of a radiolabelled anticancer biodegradable polymeric implant from the rabbit brain. Biomaterials 1995; 16: 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  79. Grossman SA, Reinhard C, Colvin OM, Chasin M, Brundrett R, Tamargo RJ et al. The intracerebral distribution of BCNU delivered by surgically implanted biodegradable polymers. J Neurosurg 1992; 76: 640–647.

    Article  PubMed  CAS  Google Scholar 

  80. Judy KD, Olivi A, Buahin KG, Domb A, Epstein JI, Colvin OM et al. Effectiveness of controlled release of a cyclophosphamide derivative with polymers against rat gliomas. J Neurosurg 1995; 82: 481–486.

    Article  PubMed  CAS  Google Scholar 

  81. Meldorf MG, Riddle VD, Group GMT, Agarwal S. Long-term efficacy of local chemotherapy with biodegradable carmustine implants (Gliadel) in high-grade malignant gliomas. American Association of Neurological Surgeons. American Association of Neurological Surgeons (ASSN), 2003.

    Google Scholar 

  82. Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O et al. Interstitial chemotherapy with carmustine-loaded polymers for high-grade gliomas: a randomized double-blind study. Neurosurgery 1997; 41: 44–48; discussion 48–49.

    Article  PubMed  CAS  Google Scholar 

  83. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol 2003; 5: 79–88.

    PubMed  CAS  Google Scholar 

  84. Debinski W, Obiri NI, Powers SK, Pastan I, Puri RK. Human glioma cells overexpress receptors for interleukin 13 and are extremely sensitive to a novel chimeric protein composed of interleukin 13 and pseudomonas exotoxin. Clin Cancer Res 1995; 1: 1253–1258.

    PubMed  CAS  Google Scholar 

  85. Husain SR, Puri RK. Interleukin-13 receptor-directed cytotoxin for malignant glioma therapy: from bench to bedside. J Neurooncol 2003; 65: 37–48.

    Article  PubMed  Google Scholar 

  86. Kioi M, Husain SR, Croteau D, Kunwar S, Puri RK. Convection-enhanced delivery of interleukin-13 receptor-directed cytotoxin for malignant glioma therapy. Technol Cancer Res Treat 2006; 5: 239–250.

    PubMed  CAS  Google Scholar 

  87. Kunwar S, Prados MD, Chang SM, Berger MS, Lang FF, Piepmeier JM et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 2007; 25: 837–844.

    Article  PubMed  CAS  Google Scholar 

  88. Vogelbaum MA, Sampson JH, Kunwar S, Chang SM, Shaffrey M, Asher AL et al. Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 2007; 61: 1031–1037; discussion 1037–1038.

    Article  PubMed  Google Scholar 

  89. Sampson JH, Akabani G, Archer GE, Berger MS, Coleman RE, Friedman AH et al. Intracerebral infusion of an EGFR-targeted toxin in recurrent malignant brain tumors. Neuro Oncol 2008; 10: 320–329.

    Article  PubMed  CAS  Google Scholar 

  90. Vogelbaum MA. Convection enhanced delivery for treating brain tumors and selected neurological disorders: symposium review. J Neurooncol 2007; 83: 97–109.

    Article  PubMed  Google Scholar 

  91. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005; 23: 1147–1157.

    Article  PubMed  CAS  Google Scholar 

  92. Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 2006; 6: 714–727.

    Article  PubMed  CAS  Google Scholar 

  93. Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 2007; 6: 349–356.

    Article  PubMed  CAS  Google Scholar 

  94. Vredenburgh JJ, Desjardins A, Herndon JE, 2nd, Marcello J, Reardon DA, Quinn JA et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 2007; 25: 4722–4729.

    Article  PubMed  CAS  Google Scholar 

  95. Schiff D, Purow B. Bevacizumab in combination with irinotecan for patients with recurrent glioblastoma multiforme. Nat Clin Pract Oncol 2008; 5: 186–187.

    Article  PubMed  Google Scholar 

  96. Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials 2007; 28: 4947–4967.

    Article  PubMed  CAS  Google Scholar 

  97. Hallahan D, Geng L, Qu S, Scarfone C, Giorgio T, Donnelly E et al. Integrin-mediated targeting of drug delivery to irradiated tumor blood vessels. Cancer Cell 2003; 3: 63–74.

    Article  PubMed  CAS  Google Scholar 

  98. Barzon L, Zanusso M, Colombo F, Palu G. Clinical trials of gene therapy, virotherapy, and immunotherapy for malignant gliomas. Cancer Gene Ther 2006; 13: 539–554.

    Article  PubMed  CAS  Google Scholar 

  99. Pulkkanen KJ, Yla-Herttuala S. Gene therapy for malignant glioma: current clinical status. Mol Ther 2005; 12: 585–598.

    Article  PubMed  CAS  Google Scholar 

  100. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000; 11: 2389–2401.

    Article  PubMed  CAS  Google Scholar 

  101. Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 2008; 15: 739–752.

    Article  PubMed  CAS  Google Scholar 

  102. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97: 12846–12851.

    Article  PubMed  CAS  Google Scholar 

  103. Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res 2006; 12: 5550–5556.

    Article  PubMed  CAS  Google Scholar 

  104. Kim SU. Human neural stem cells genetically modified for brain repair in neurological disorders. Neuropathology 2004; 24: 159–171.

    Article  PubMed  Google Scholar 

  105. Shimato S, Natsume A, Takeuchi H, Wakabayashi T, Fujii M, Ito M et al. Human neural stem cells target and deliver therapeutic gene to experimental leptomeningeal medulloblastoma. Gene Ther 2007; 14: 1132–1142.

    Article  PubMed  CAS  Google Scholar 

  106. Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R. In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 2003; 14: 1247–1254.

    Article  PubMed  CAS  Google Scholar 

  107. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001; 358: 727–729.

    Article  PubMed  CAS  Google Scholar 

  108. Maclachlan I. siRNAs with guts. Nat Biotechnol 2008; 26: 403–405.

    Article  PubMed  CAS  Google Scholar 

  109. Peer D, Park EJ, Morishita Y, Carman CV, Shimaoka M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 2008; 319: 627–630.

    Article  PubMed  CAS  Google Scholar 

  110. Sonabend AM, Ulasov IV, Lesniak MS. Gene therapy trials for the treatment of high-grade gliomas. Gene Ther Mol Biol 2007; 11: 79–92.

    PubMed  Google Scholar 

  111. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004; 10: 967–972.

    Article  PubMed  CAS  Google Scholar 

  112. Sandmair AM, Loimas S, Puranen P, Immonen A, Kossila M, Puranen M et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther 2000; 11: 2197–2205.

    Article  PubMed  CAS  Google Scholar 

  113. Sandmair AM, Vapalahti M, Yla-Herttuala S. Adenovirus-mediated herpes simplex thymidine kinase gene therapy for brain tumors. Adv Exp Med Biol 2000; 465: 163–170.

    Article  PubMed  CAS  Google Scholar 

  114. Trask TW, Trask RP, Aguilar-Cordova E, Shine HD, Wyde PR, Goodman JC et al. Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol Ther 2000; 1: 195–203.

    Article  PubMed  CAS  Google Scholar 

  115. Odaka M, Sterman DH, Wiewrodt R, Zhang Y, Kiefer M, Amin KM et al. Eradication of intraperitoneal and distant tumor by adenovirus-mediated interferon-beta gene therapy is attributable to induction of systemic immunity. Cancer Res 2001; 61: 6201–6212.

    PubMed  CAS  Google Scholar 

  116. Chiocca EA, Smith KM, McKinney B, Palmer CA, Rosenfeld S, Lillehei K et al. A phase I trial of Ad.hIFN-beta gene therapy for glioma. Mol Ther 2008; 16: 618–626.

    Article  PubMed  CAS  Google Scholar 

  117. Chiocca EA, Abbed KM, Tatter S, Louis DN, Hochberg FH, Barker F et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004; 10: 958–966.

    Article  PubMed  CAS  Google Scholar 

  118. Markert JM. Biologic warfare for a good cause: HSV-1 anti-tumor therapy. Clin Neurosurg 2004; 51: 73–80.

    PubMed  Google Scholar 

  119. Fueyo J, Gomez-Manzano C, Yung WK, Liu TJ, Alemany R, Bruner JM et al. Suppression of human glioma growth by adenovirus-mediated Rb gene transfer. Neurology 1998; 50: 1307–1315.

    PubMed  CAS  Google Scholar 

  120. Lamfers ML, Grill J, Dirven CM, Van Beusechem VW, Geoerger B, Van Den Berg J et al. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 2002; 62: 5736–5742.

    PubMed  CAS  Google Scholar 

  121. Stolarek R, Gomez-Manzano C, Jiang H, Suttle G, Lemoine MG, Fueyo J. Robust infectivity and replication of Delta-24 adenovirus induce cell death in human medulloblastoma. Cancer Gene Ther 2004; 11: 713–720.

    Article  PubMed  CAS  Google Scholar 

  122. Ulasov IV, Rivera AA, Nettelbeck DM, Rivera LB, Mathis JM, Sonabend AM et al. An oncolytic adenoviral vector carrying the tyrosinase promoter for glioma gene therapy. Int J Oncol 2007; 31: 1177–1185.

    PubMed  CAS  Google Scholar 

  123. Ulasov IV, Rivera AA, Sonabend AM, Rivera LB, Wang M, Zhu ZB et al. Comparative evaluation of survivin, midkine and CXCR4 promoters for transcriptional targeting of glioma gene therapy. Cancer Biol Ther 2007; 6: 679–685.

    Article  PubMed  CAS  Google Scholar 

  124. Ulasov IV, Zhu ZB, Tyler MA, Han Y, Rivera AA, Khramtsov A et al. Survivin-driven and fiber-modified oncolytic adenovirus exhibits potent antitumor activity in established intracranial glioma. Hum Gene Ther 2007; 18: 589–602.

    Article  PubMed  CAS  Google Scholar 

  125. Gomez-Manzano C, Yung WK, Alemany R, Fueyo J. Genetically modified adenoviruses against gliomas: from bench to bedside. Neurology 2004; 63: 418–426.

    PubMed  CAS  Google Scholar 

  126. Jiang H, Gomez-Manzano C, Aoki H, Alonso MM, Kondo S, McCormick F et al. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death. J Natl Cancer Inst 2007; 99: 1410–1414.

    Article  PubMed  CAS  Google Scholar 

  127. Tyler MA, Sonabend AM, Ulasov IV, Lesniak MS. Vector therapies for malignant glioma: shifting the clinical paradigm. Expert Opin Drug Deliv 2008; 5: 445–458.

    Article  PubMed  CAS  Google Scholar 

  128. Tyler MA, Ulasov IV, Borovjagin A, Sonabend AM, Khramtsov A, Han Y et al. Enhanced transduction of malignant glioma with a double targeted Ad5/3-RGD fiber-modified adenovirus. Mol Cancer Ther 2006; 5: 2408–2416.

    Article  PubMed  CAS  Google Scholar 

  129. Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst 2007; 99: 1768–1781.

    Article  PubMed  CAS  Google Scholar 

  130. Lamfers ML, Fulci G, Gianni D, Tang Y, Kurozumi K, Kaur B et al. Cyclophosphamide increases transgene expression mediated by an oncolytic adenovirus in glioma-bearing mice monitored by bioluminescence imaging. Mol Ther 2006; 14: 779–788.

    Article  PubMed  CAS  Google Scholar 

  131. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS. Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008; 26: 831–841.

    Google Scholar 

  132. Wang C, Pham PT. Polymers for viral gene delivery. Expert Opin Drug Deliv 2008; 5: 385–401.

    Article  PubMed  CAS  Google Scholar 

  133. Chiocca EA. The host response to cancer virotherapy. Curr Opin Mol Ther 2008; 10: 38–45.

    PubMed  Google Scholar 

  134. Alonso MM, Gomez-Manzano C, Jiang H, Bekele NB, Piao Y, Yung WK et al. Combination of the oncolytic adenovirus ICOVIR-5 with chemotherapy provides enhanced anti-glioma effect in vivo. Cancer Gene Ther 2007; 14: 756–761.

    Article  PubMed  CAS  Google Scholar 

  135. Alonso MM, Jiang H, Yokoyama T, Xu J, Bekele NB, Lang FF et al. Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 2008; 16: 487–493.

    Article  PubMed  CAS  Google Scholar 

  136. Cascallo M, Alonso MM, Rojas JJ, Perez-Gimenez A, Fueyo J, Alemany R. Systemic toxicity-efficacy profile of ICOVIR-5, a potent and selective oncolytic adenovirus based on the pRB pathway. Mol Ther 2007; 15: 1607–1615.

    Article  PubMed  CAS  Google Scholar 

  137. Nandi S, Ulasov IV, Tyler MA, Sugihara AQ, Molinero L, Han Y et al. Low-dose radiation enhances survivin-mediated virotherapy against malignant glioma stem cells. Cancer Res 2008; 68: 5778–5784.

    Article  PubMed  CAS  Google Scholar 

  138. Medawar P. Immunity to homologous grafted skin. Brit J Exp Path 1948; 28.

    Google Scholar 

  139. Galea I, Bechmann I, Perry VH. What is immune privilege (not)? Trends Immunol 2007; 28: 12–18.

    Article  PubMed  CAS  Google Scholar 

  140. Carpentier AF, Meng Y. Recent advances in immunotherapy for human glioma. Curr Opin Oncol 2006; 18: 631–636.

    Article  PubMed  Google Scholar 

  141. Matyszak MK, Perry VH. The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 1996; 74: 599–608.

    Article  PubMed  CAS  Google Scholar 

  142. Hatterer E, Davoust N, Didier-Bazes M, Vuaillat C, Malcus C, Belin MF et al. How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 2006; 107: 806–812.

    Article  PubMed  CAS  Google Scholar 

  143. Harling-Berg CJ, Park TJ, Knopf PM. Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. J Neuroimmunol 1999; 101: 111–127.

    Article  PubMed  CAS  Google Scholar 

  144. Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends Immunol 2007; 28: 5–11.

    Article  PubMed  CAS  Google Scholar 

  145. Perry VH. A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J Neuroimmunol 1998; 90: 113–121.

    Article  PubMed  CAS  Google Scholar 

  146. Ridley A, Cavanagh JB. Lymphocytic infiltration in gliomas: evidence of possible host resistance. Brain 1971; 94: 117–124.

    Article  PubMed  CAS  Google Scholar 

  147. Brooks WH, Markesbery WR, Gupta GD, Roszman TL. Relationship of lymphocyte invasion and survival of brain tumor patients. Ann Neurol 1978; 4: 219–224.

    Article  PubMed  CAS  Google Scholar 

  148. Palma L, Di Lorenzo N, Guidetti B. Lymphocytic infiltrates in primary glioblastomas and recidivous gliomas. Incidence, fate, and relevance to prognosis in 228 operated cases. J Neurosurg 1978; 49: 854–861.

    Article  PubMed  CAS  Google Scholar 

  149. Burger PC, Vogel FS, Green SB, Strike TA. Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications. Cancer 1985; 56: 1106–1111.

    Article  PubMed  CAS  Google Scholar 

  150. Rossi ML, Hughes JT, Esiri MM, Coakham HB, Brownell DB. Immunohistological study of mononuclear cell infiltrate in malignant gliomas. Acta Neuropathol 1987; 74: 269–277.

    Article  PubMed  CAS  Google Scholar 

  151. Tang J, Flomenberg P, Harshyne L, Kenyon L, Andrews DW. Glioblastoma patients exhibit circulating tumor-specific CD8+ T cells. Clin Cancer Res 2005; 11: 5292–5299.

    Article  PubMed  CAS  Google Scholar 

  152. Gomez GG, Kruse CA. Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 2006; 10: 133–146.

    PubMed  Google Scholar 

  153. Dick SJ, Macchi B, Papazoglou S, Oldfield EH, Kornblith PL, Smith BH et al. Lymphoid cell-glioma cell interaction enhances cell coat production by human gliomas: novel suppressor mechanism. Science 1983; 220: 739–742.

    Article  PubMed  CAS  Google Scholar 

  154. Schiltz PM, Gomez GG, Read SB, Kulprathipanja NV, Kruse CA. Effects of IFN-gamma and interleukin-1beta on major histocompatibility complex antigen and intercellular adhesion molecule-1 expression by 9L gliosarcoma: relevance to its cytolysis by alloreactive cytotoxic T lymphocytes. J Interferon Cytokine Res 2002; 22: 1209–1216.

    Article  PubMed  CAS  Google Scholar 

  155. Facoetti A, Nano R, Zelini P, Morbini P, Benericetti E, Ceroni M et al. Human leukocyte antigen and antigen processing machinery component defects in astrocytic tumors. Clin Cancer Res 2005; 11: 8304–8311.

    Article  PubMed  CAS  Google Scholar 

  156. Bodey B, Bodey B, Jr, Siegel SE, Kaiser HE. Fas (Apo-1, CD95) receptor expression in childhood astrocytomas. Is it a marker of the major apoptotic pathway or a signaling receptor for immune escape of neoplastic cells? In Vivo 1999; 13: 357–373.

    PubMed  CAS  Google Scholar 

  157. Chen TC, Hinton DR, Sippy BD, Hofman FM. Soluble TNF-alpha receptors are constitutively shed and downregulate adhesion molecule expression in malignant gliomas. J Neuropathol Exp Neurol 1997; 56: 541–550.

    Article  PubMed  CAS  Google Scholar 

  158. Rahaman SO, Harbor PC, Chernova O, Barnett GH, Vogelbaum MA, Haque SJ. Inhibition of constitutively active Stat3 suppresses proliferation and induces apoptosis in glioblastoma multiforme cells. Oncogene 2002; 21: 8404–8413.

    Article  PubMed  CAS  Google Scholar 

  159. Husain N, Chiocca EA, Rainov N, Louis DN, Zervas NT. Co-expression of Fas and Fas ligand in malignant glial tumors and cell lines. Acta Neuropathol 1998; 95: 287–290.

    Article  PubMed  CAS  Google Scholar 

  160. Wiendl H, Mitsdoerffer M, Hofmeister V, Wischhusen J, Bornemann A, Meyermann R et al. A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J Immunol 2002; 168: 4772–4780.

    PubMed  CAS  Google Scholar 

  161. Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12: 171–181.

    Article  PubMed  CAS  Google Scholar 

  162. Ranges GE, Figari IS, Espevik T, Palladino MA, Jr. Inhibition of cytotoxic T cell development by transforming growth factor beta and reversal by recombinant tumor necrosis factor alpha. J Exp Med 1987; 166: 991–998.

    Article  PubMed  CAS  Google Scholar 

  163. Czarniecki CW, Chiu HH, Wong GH, McCabe SM, Palladino MA. Transforming growth factor-beta 1 modulates the expression of class II histocompatibility antigens on human cells. J Immunol 1988; 140: 4217–4223.

    PubMed  CAS  Google Scholar 

  164. Suzumura A, Sawada M, Yamamoto H, Marunouchi T. Transforming growth factor-beta suppresses activation and proliferation of microglia in vitro. J Immunol 1993; 151: 2150–2158.

    PubMed  CAS  Google Scholar 

  165. Smyth MJ, Strobl SL, Young HA, Ortaldo JR, Ochoa AC. Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor-beta. J Immunol 1991; 146: 3289–3297.

    PubMed  CAS  Google Scholar 

  166. Thomas DA, Massague J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005; 8: 369–380.

    Article  PubMed  CAS  Google Scholar 

  167. Hishii M, Nitta T, Ishida H, Ebato M, Kurosu A, Yagita H et al. Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 1995; 37: 1160–1166; discussion 1166–1167.

    Article  PubMed  CAS  Google Scholar 

  168. Grutz G. New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol 2005; 77: 3–15.

    PubMed  Google Scholar 

  169. Wang D, Dubois RN. Prostaglandins and cancer. Gut 2006; 55: 115–122.

    Article  PubMed  CAS  Google Scholar 

  170. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998; 10: 1969–1980.

    Article  PubMed  CAS  Google Scholar 

  171. El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 2006; 8: 234–243.

    Article  PubMed  Google Scholar 

  172. Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 2006; 66: 3294–3302.

    Article  PubMed  CAS  Google Scholar 

  173. El Andaloussi A, Lesniak MS. CD4+ CD25+ FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor grade in human gliomas. J Neurooncol 2007; 83: 145–152.

    Article  PubMed  CAS  Google Scholar 

  174. Garcia de Palazzo IE, Adams GP, Sundareshan P, Wong AJ, Testa JR, Bigner DD et al. Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res 1993; 53: 3217–3220.

    Google Scholar 

  175. Moscatello DK, Holgado-Madruga M, Godwin AK, Ramirez G, Gunn G, Zoltick PW et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 1995; 55: 5536–5539.

    PubMed  CAS  Google Scholar 

  176. Wikstrand CJ, Hale LP, Batra SK, Hill ML, Humphrey PA, Kurpad SN et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 1995; 55: 3140–3148.

    PubMed  CAS  Google Scholar 

  177. Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP. Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 1991; 51: 2164–2172.

    PubMed  CAS  Google Scholar 

  178. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 2005; 11: 1462–1466.

    Article  PubMed  CAS  Google Scholar 

  179. Ciesielski MJ, Kazim AL, Barth RF, Fenstermaker RA. Cellular antitumor immune response to a branched lysine multiple antigenic peptide containing epitopes of a common tumor-specific antigen in a rat glioma model. Cancer Immunol Immunother 2005; 54: 107–119.

    Article  PubMed  CAS  Google Scholar 

  180. Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res 2003; 9: 4247–4254.

    PubMed  CAS  Google Scholar 

  181. Moscatello DK, Ramirez G, Wong AJ. A naturally occurring mutant human epidermal growth factor receptor as a target for peptide vaccine immunotherapy of tumors. Cancer Res 1997; 57: 1419–1424.

    PubMed  CAS  Google Scholar 

  182. Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Bigner DD. Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol 2008; 20: 267–275.

    Google Scholar 

  183. Yajima N, Yamanaka R, Mine T, Tsuchiya N, Homma J, Sano M et al. Immunologic evaluation of personalized peptide vaccination for patients with advanced malignant glioma. Clin Cancer Res 2005; 11: 5900–5911.

    Article  PubMed  CAS  Google Scholar 

  184. Barnett JA, Urbauer DL, Murray GI, Fuller GN, Heimberger AB. Cytochrome P450 1B1 expression in glial cell tumors: an immunotherapeutic target. Clin Cancer Res 2007; 13: 3559–3567.

    Article  PubMed  CAS  Google Scholar 

  185. Komata T, Kanzawa T, Kondo Y, Kondo S. Telomerase as a therapeutic target for malignant gliomas. Oncogene 2002; 21: 656–663.

    Article  PubMed  CAS  Google Scholar 

  186. Tsuda N, Nonaka Y, Shichijo S, Yamada A, Ito M, Maeda Y et al. UDP-Gal: betaGlcNAc beta1, 3-galactosyltransferase, polypeptide 3 (GALT3) is a tumour antigen recognised by HLA-A2-restricted cytotoxic T lymphocytes from patients with brain tumour. Br J Cancer 2002; 87: 1006–1012.

    Article  PubMed  CAS  Google Scholar 

  187. Yamada Y, Kuroiwa T, Nakagawa T, Kajimoto Y, Dohi T, Azuma H et al. Transcriptional expression of survivin and its splice variants in brain tumors in humans. J Neurosurg 2003; 99: 738–745.

    Article  PubMed  CAS  Google Scholar 

  188. Ventimiglia JB, Wikstrand CJ, Ostrowski LE, Bourdon MA, Lightner VA, Bigner DD. Tenascin expression in human glioma cell lines and normal tissues. J Neuroimmunol 1992; 36: 41–55.

    Article  PubMed  CAS  Google Scholar 

  189. Kurpad SN, Zhao XG, Wikstrand CJ, Batra SK, McLendon RE, Bigner DD. Tumor antigens in astrocytic gliomas. Glia 1995; 15: 244–256.

    Article  PubMed  CAS  Google Scholar 

  190. Imaizumi T, Kuramoto T, Matsunaga K, Shichijo S, Yutani S, Shigemori M et al. Expression of the tumor-rejection antigen SART1 in brain tumors. Int J Cancer 1999; 83: 760–764.

    Article  PubMed  CAS  Google Scholar 

  191. Zuber P, Kuppner MC, De Tribolet N. Transforming growth factor-beta 2 down-regulates HLA-DR antigen expression on human malignant glioma cells. Eur J Immunol 1988; 18: 1623–1626.

    Article  PubMed  CAS  Google Scholar 

  192. Kehrl JH, Roberts AB, Wakefield LM, Jakowlew S, Sporn MB, Fauci AS. Transforming growth factor beta is an important immunomodulatory protein for human B lymphocytes. J Immunol 1986; 137: 3855–3860.

    PubMed  CAS  Google Scholar 

  193. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R et al. Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 1986; 163: 1037–1050.

    Article  PubMed  CAS  Google Scholar 

  194. Rook AH, Kehrl JH, Wakefield LM, Roberts AB, Sporn MB, Burlington DB et al. Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J Immunol 1986; 136: 3916–3920.

    PubMed  CAS  Google Scholar 

  195. Fakhrai H, Mantil JC, Liu L, Nicholson GL, Murphy-Satter CS, Ruppert J et al. Phase I clinical trial of a TGF-beta antisense-modified tumor cell vaccine in patients with advanced glioma. Cancer Gene Ther 2006; 13: 1052–1060.

    Article  PubMed  CAS  Google Scholar 

  196. Hau P, Jachimczak P, Schlingensiepen R, Schulmeyer F, Jauch T, Steinbrecher A et al. Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 2007; 17: 201–212.

    Article  PubMed  CAS  Google Scholar 

  197. El Andaloussi A, Han Y, Lesniak MS. Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 2006; 105: 430–437.

    Article  PubMed  CAS  Google Scholar 

  198. Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res 2006; 12: 4294–4305.

    Article  PubMed  CAS  Google Scholar 

  199. Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE et al. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 2007; 13: 2158–2167.

    Article  PubMed  CAS  Google Scholar 

  200. Jordan JT, Sun W, Hussain SF, DeAngulo G, Prabhu SS, Heimberger AB. Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol Immunother 2008; 57: 123–131.

    Article  PubMed  CAS  Google Scholar 

  201. Grauer OM, Sutmuller RP, van Maren W, Jacobs JF, Bennink E, Toonen LW et al. Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 2008; 122: 1794–1802.

    Article  PubMed  CAS  Google Scholar 

  202. Curtin JF, Candolfi M, Fakhouri TM, Liu C, Alden A, Edwards M et al. Treg depletion inhibits efficacy of cancer immunotherapy: implications for clinical trials. PLoS ONE 2008; 3: e1983.

    Article  PubMed  CAS  Google Scholar 

  203. Mitchell DA. REGULATory T-Cell Inhibition With Daclizumab (Zenapax®) During Recovery From Therapeutic Temozolomide-Induced Lymphopenia During Antitumor Immunotherapy Targeted Against Cytomegalovirus in Patients With Newly-Diagnosed Glioblastoma Multiforme [REGULATe], 2008. URL: http://clinicaltrials.gov/ct/show/NCT00626483

  204. De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 2008; 14: 3098–3104.

    Article  PubMed  Google Scholar 

  205. Lasky, J. Phase I Dose Escalation Study of Autologous Tumor Lysate-Pulsed Dendritic Cell Immunotherapy for Malignant Gliomas in Pediatric Patients, 2005.

    Google Scholar 

  206. Liau LM. Phase I Dose Escalation Study of Autologous Tumor Lysate-Pulsed Dendritic Cell Immunotherapy for Malignant Gliomas. National Library of Medicine, 2003.

    Google Scholar 

  207. Yu JS. Phase II Trial of Tumor Lysate-Pulsed Dendritic Cell Immunotherapy for Patients With Atypical or Malignant, Primary or Metastatic Brain Tumors of the Central Nervous System, 2001.

    Google Scholar 

  208. Fadul C. DMS-0536: A Phase II Feasibility Study of Adjuvant Intra-Nodal Autologous Dendritic Cell Vaccination for Newly Diagnosed Glioblastoma Multiforme, 2006.

    Google Scholar 

  209. Ferstenberg L. A Phase II Clinical Trial Evaluating DCVax®-Brain, Autologous Dendritic Cells Pulsed With Tumor Lysate Antigen For The Treatment Of Glioblastoma Multiforme (GBM), 2002.

    Google Scholar 

  210. Witham TF, Erff ML, Okada H, Chambers WH, Pollack IF. 7-Hydroxystaurosporine-induced apoptosis in 9L glioma cells provides an effective antigen source for dendritic cells and yields a potent vaccine strategy in an intracranial glioma model. Neurosurgery 2002; 50: 1327–1334; discussion 1334–1325.

    PubMed  Google Scholar 

  211. Kobayashi T, Yamanaka R, Homma J, Tsuchiya N, Yajima N, Yoshida S et al. Tumor mRNA-loaded dendritic cells elicit tumor-specific CD8(+) cytotoxic T cells in patients with malignant glioma. Cancer Immunol Immunother 2003; 52: 632–637.

    Article  PubMed  CAS  Google Scholar 

  212. Amano T, Kajiwara K, Yoshikawa K, Morioka J, Nomura S, Fujisawa H et al. Antitumor effects of vaccination with dendritic cells transfected with modified receptor for hyaluronan-mediated motility mRNA in a mouse glioma model. J Neurosurg 2007; 106: 638–645.

    Article  PubMed  CAS  Google Scholar 

  213. Yoshida S, Tanaka R. Generation of a human leukocyte antigen-A24-restricted antitumor cell with the use of SART-1 peptide and dendritic cells in patients with malignant brain tumors. J Lab Clin Med 2004; 144: 201–207.

    Article  PubMed  CAS  Google Scholar 

  214. Zhang JG, Eguchi J, Kruse CA, Gomez GG, Fakhrai H, Schroter S et al. Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res 2007; 13: 566–575.

    Article  PubMed  CAS  Google Scholar 

  215. Parajuli P, Mathupala S, Sloan AE. Systematic comparison of dendritic cell-based immunotherapeutic strategies for malignant gliomas: in vitro induction of cytolytic and natural killer-like T cells. Neurosurgery 2004; 55: 1194–1204.

    Article  PubMed  Google Scholar 

  216. Rosenberg SA. Immunotherapy of cancer by systemic administration of lymphoid cells plus interleukin-2. J Biol Response Mod 1984; 3: 501–511.

    PubMed  CAS  Google Scholar 

  217. Rayner AA, Grimm EA, Lotze MT, Chu EW, Rosenberg SA. Lymphokine-activated killer (LAK) cells. Analysis of factors relevant to the immunotherapy of human cancer. Cancer 1985; 55: 1327–1333.

    Article  PubMed  CAS  Google Scholar 

  218. Barba D, Saris SC, Holder C, Rosenberg SA, Oldfield EH. Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J Neurosurg 1989; 70: 175–182.

    Article  PubMed  CAS  Google Scholar 

  219. Blancher A, Roubinet F, Grancher AS, Tremoulet M, Bonate A, Delisle MB et al. Local immunotherapy of recurrent glioblastoma multiforme by intracerebral perfusion of interleukin-2 and LAK cells. Eur Cytokine Netw 1993; 4: 331–341.

    PubMed  CAS  Google Scholar 

  220. Boiardi A, Silvani A, Ruffini PA, Rivoltini L, Parmiani G, Broggi G et al. Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunol Immunother 1994; 39: 193–197.

    Article  PubMed  CAS  Google Scholar 

  221. Jacobs SK, Wilson DJ, Kornblith PL, Grimm EA. Interleukin-2 or autologous lymphokine-activated killer cell treatment of malignant glioma: phase I trial. Cancer Res 1986; 46: 2101–2104.

    PubMed  CAS  Google Scholar 

  222. Merchant RE, Grant AJ, Merchant LH, Young HF. Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer 1988; 62: 665–671.

    Article  PubMed  CAS  Google Scholar 

  223. Sankhla SK, Nadkarni JS, Bhagwati SN. Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors. J Neurooncol 1996; 27: 133–140.

    Article  PubMed  CAS  Google Scholar 

  224. Hayes RL, Koslow M, Hiesiger EM, Hymes KB, Hochster HS, Moore EJ et al. Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 1995; 76: 840–852.

    Article  PubMed  CAS  Google Scholar 

  225. Hayes RL, Arbit E, Odaimi M, Pannullo S, Scheff R, Kravchinskiy D et al. Adoptive cellular immunotherapy for the treatment of malignant gliomas. Crit Rev Oncol Hematol 2001; 39: 31–42.

    Article  PubMed  CAS  Google Scholar 

  226. Dillman RO, Duma CM, Schiltz PM, DePriest C, Ellis RA, Okamoto K et al. Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J Immunother 2004; 27: 398–404.

    Article  PubMed  Google Scholar 

  227. Sipos L, Afra D. Re-operations of supratentorial anaplastic astrocytomas. Acta Neurochir (Wien) 1997; 139: 99–104.

    Article  CAS  Google Scholar 

  228. Salcman M, Scholtz H, Kaplan RS, Kulik S. Long-term survival in patients with malignant astrocytoma. Neurosurgery 1994; 34: 213–219; discussion 219–220.

    Article  PubMed  CAS  Google Scholar 

  229. Tsurushima H, Liu SQ, Tsuboi K, Yoshii Y, Nose T, Ohno T. Induction of human autologous cytotoxic T lymphocytes against minced tissues of glioblastoma multiforme. J Neurosurg 1996; 84: 258–263.

    Article  PubMed  CAS  Google Scholar 

  230. Quattrocchi KB, Miller CH, Cush S, Bernard SA, Dull ST, Smith M et al. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol 1999; 45: 141–157.

    Article  PubMed  CAS  Google Scholar 

  231. Miescher S, Whiteside TL, de Tribolet N, von Fliedner V. In situ characterization, clonogenic potential, and antitumor cytolytic activity of T lymphocytes infiltrating human brain cancers. J Neurosurg 1988; 68: 438–448.

    Article  PubMed  CAS  Google Scholar 

  232. Elliott LH, Brooks WH, Roszman TL. Cytokinetic basis for the impaired activation of lymphocytes from patients with primary intracranial tumors. J Immunol 1984; 132: 1208–1215.

    PubMed  CAS  Google Scholar 

  233. Elliott LH, Brooks WH, Roszman TL. Inability of mitogen-activated lymphocytes obtained from patients with malignant primary intracranial tumors to express high affinity interleukin 2 receptors. J Clin Invest 1990; 86: 80–86.

    Article  PubMed  CAS  Google Scholar 

  234. Chang AE, Yoshizawa H, Sakai K, Cameron MJ, Sondak VK, Shu S. Clinical observations on adoptive immunotherapy with vaccine-primed T-lymphocytes secondarily sensitized to tumor in vitro. Cancer Res 1993; 53: 1043–1050.

    PubMed  CAS  Google Scholar 

  235. Holladay FP, Heitz T, Chen YL, Chiga M, Wood GW. Successful treatment of a malignant rat glioma with cytotoxic T lymphocytes. Neurosurgery 1992; 31: 528–533.

    Article  PubMed  CAS  Google Scholar 

  236. Kitahara T, Watanabe O, Yamaura A, Makino H, Watanabe T, Suzuki G et al. Establishment of interleukin 2 dependent cytotoxic T lymphocyte cell line specific for autologous brain tumor and its intracranial administration for therapy of the tumor. J Neurooncol 1987; 4: 329–336.

    Article  PubMed  CAS  Google Scholar 

  237. Wood GW, Holladay FP, Turner T, Wang YY, Chiga M. A pilot study of autologous cancer cell vaccination and cellular immunotherapy using anti-CD3 stimulated lymphocytes in patients with recurrent grade III/IV astrocytoma. J Neurooncol 2000; 48: 113–120.

    Article  PubMed  CAS  Google Scholar 

  238. Plautz GE, Barnett GH, Miller DW, Cohen BH, Prayson RA, Krauss JC et al. Systemic T cell adoptive immunotherapy of malignant gliomas. J Neurosurg 1998; 89: 42–51.

    Article  PubMed  CAS  Google Scholar 

  239. Plautz GE, Miller DW, Barnett GH, Stevens GH, Maffett S, Kim J et al. T cell adoptive immunotherapy of newly diagnosed gliomas. Clin Cancer Res 2000; 6: 2209–2218.

    PubMed  CAS  Google Scholar 

  240. Kronik N, Kogan Y, Vainstein V, Agur Z. Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics. Cancer Immunol Immunother 2008; 57: 425–439.

    Article  PubMed  Google Scholar 

  241. Kruse CA, Cepeda L, Owens B, Johnson SD, Stears J, Lillehei KO. Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2. Cancer Immunol Immunother 1997; 45: 77–87.

    Article  PubMed  CAS  Google Scholar 

  242. Wheeler CJ, Black KL, Liu G, Ying H, Yu JS, Zhang W et al. Thymic CD8+ T cell production strongly influences tumor antigen recognition and age-dependent glioma mortality. J Immunol 2003; 171: 4927–4933.

    PubMed  CAS  Google Scholar 

  243. Miller G. Drug targeting. Breaking down barriers. Science 2002; 297: 1116–1118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tyler, M.A., Sugihara, A.Q., Ulasov, I.V., Lesniak, M.S. (2009). Targeted Therapies for Malignant Brain Tumors. In: Lu, Y., Mahato, R. (eds) Pharmaceutical Perspectives of Cancer Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0131-6_15

Download citation

Publish with us

Policies and ethics