Skip to main content

MicroRNAs as Therapeutic Targets for Cancer

  • Chapter
  • First Online:
Book cover Pharmaceutical Perspectives of Cancer Therapeutics

MicroRNAs (miRNAs) are a recently discovered family of endogenous, non-coding RNA molecules approximately 22 nt in length [1]. They negatively modulate gene expression post-transcriptionally by binding to the complementary sequence in the 3′ untranslated region of target messenger RNAs (mRNAs) [1]. miRNAs are transcribed from genomic DNA by RNA polymerase II but not further translated into protein (non-coding RNA). Eventually, they are processed from primary transcripts known as pri-miRNAs to short stem-loop structures called pre-miRNA and finally to become functionally mature miRNA. Mature miRNA molecules are partially complimentary to target mRNA where they either repress translation or direct destructive cleavage [2]. The first miRNA was described in 1993 by Lee and colleagues, who found miRNA-lin-4 is essential for the normal temporal control of diverse post-embryonic development in Caenorhabditis elegans by negatively regulating the level of LIN-14 protein via antisense RNA–RNA interaction [3]. miRNAs have a large-scale effect as a new layer of gene regulation mechanism. It has been estimated that the vertebrate genome encodes up to 1000 unique miRNAs, which can regulate expression of at least 30% of genes [4,5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297.

    Article  PubMed  CAS  Google Scholar 

  2. Pasquinelli AE, Ruvkun G 2002. Control of developmental timing by micrornas and their targets. Annu Rev Cell Dev Biol 18:495–513.

    Article  PubMed  CAS  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V 1993. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854.

    Article  PubMed  CAS  Google Scholar 

  4. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E 2005. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120(1):21–24.

    Article  PubMed  CAS  Google Scholar 

  5. Lewis BP, Burge CB, Bartel DP 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20.

    Article  PubMed  CAS  Google Scholar 

  6. Meltzer PS 2005. Cancer genomics: small RNAs with big impacts. Nature 435:745–746.

    Article  PubMed  CAS  Google Scholar 

  7. Cheng AM, Byrom MW, Shelton J, Ford LP 2005. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33(4):1290–1297.

    Article  PubMed  CAS  Google Scholar 

  8. He L, Hannon GJ 2004. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531.

    Article  PubMed  CAS  Google Scholar 

  9. Ellington AD, Szostak JW 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822.

    Article  PubMed  CAS  Google Scholar 

  10. Kumar SA, Beach TA, Dickerman HW 1980. Specificity of oligodeoxynucleotide binding of mouse uterine cytosol estradiol receptors. Proc Natl Acad Sci USA 77(6):3341–3345.

    Article  PubMed  CAS  Google Scholar 

  11. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811.

    Article  PubMed  CAS  Google Scholar 

  12. Mahato RI, Cheng K, Guntaka RV 2005. Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opin Drug Deliv 2(1):3–28.

    Article  PubMed  CAS  Google Scholar 

  13. Lee Y, Jeon K, Lee JT, Kim S, Kim VN 2002. MicroRNA maturation: stepwise oricessing and subcellular localization. Eur Mol Biol Organization J 21:4663–4670.

    CAS  Google Scholar 

  14. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ 2004. Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235.

    Article  PubMed  CAS  Google Scholar 

  15. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419.

    Article  PubMed  CAS  Google Scholar 

  16. Yi R, Qin Y, Macara IG, Cullen BR 2003. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17(24):3011–3016.

    Article  PubMed  CAS  Google Scholar 

  17. Zeng Y, Cullen BR 2004. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res 32(16):4776–4785.

    Article  PubMed  CAS  Google Scholar 

  18. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U 2004. Nuclear export of microRNA precursors. Science 303(5654):95–98.

    Article  PubMed  CAS  Google Scholar 

  19. Khvorova A, Reynolds A, Jayasena SD 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216.

    Article  PubMed  CAS  Google Scholar 

  20. Guarnieri DJ, DiLeone RJ 2008. MicroRNAs: a new class of gene regulators. Ann Med 40(3):197–208.

    Article  PubMed  CAS  Google Scholar 

  21. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906.

    Article  PubMed  CAS  Google Scholar 

  22. Wightman B, Ha I, Ruvkun G 1993. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862.

    Article  PubMed  CAS  Google Scholar 

  23. Johnston RJ, Hobert O 2003. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426(6968):845–849.

    Article  PubMed  CAS  Google Scholar 

  24. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM 2003. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113(1):25–36.

    Article  PubMed  CAS  Google Scholar 

  25. Chen CZ, Li L, Lodish HF, Bartel DP 2004. MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86.

    Article  PubMed  CAS  Google Scholar 

  26. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M 2004. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432(7014):226–230.

    Article  PubMed  CAS  Google Scholar 

  27. Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Pure E, Agami R 2008. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210.

    Article  PubMed  CAS  Google Scholar 

  28. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB 2003. Prediction of mammalian microRNA targets. Cell 115(7):787–798.

    Article  PubMed  CAS  Google Scholar 

  29. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS 2003. MicroRNA targets in Drosophila. Genome Biol 5(1):R1.

    Article  PubMed  Google Scholar 

  30. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS 2004. Human MicroRNA targets. PLoS Biol 2(11):e363.

    Article  PubMed  CAS  Google Scholar 

  31. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R 2004. Fast and effective prediction of microRNA/target duplexes. RNA 10(10):1507–1517.

    Article  PubMed  CAS  Google Scholar 

  32. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N 2005. Combinatorial microRNA target predictions. Nat Genet 37(5):495–500.

    Article  PubMed  CAS  Google Scholar 

  33. Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK 2007. Naive Bayes for microRNA target predictions – machine learning for microRNA targets. Bioinformatics 23(22):2987–2992.

    Article  PubMed  CAS  Google Scholar 

  34. Long D, Lee R, Williams P, Chan CY, Ambros V, Ding Y 2007. Potent effect of target structure on microRNA function. Nat Struct Mol Biol 14(4):287–294.

    Article  PubMed  CAS  Google Scholar 

  35. Betel D, Wilson M, Gabow A, Marks DS, Sander C 2008. The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database issue):D149–D153.

    PubMed  CAS  Google Scholar 

  36. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ 2006. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(Database issue):D140–D144.

    Article  PubMed  CAS  Google Scholar 

  37. Megraw M, Sethupathy P, Corda B, Hatzigeorgiou AG 2007. miRGen: a database for the study of animal microRNA genomic organization and function. Nucleic Acids Res 35(Database issue):D149–D155.

    Article  PubMed  CAS  Google Scholar 

  38. Shahi P, Loukianiouk S, Bohne-Lang A, Kenzelmann M, Kuffer S, Maertens S, Eils R, Grone HJ, Gretz N, Brors B 2006. Argonaute – a database for gene regulation by mammalian microRNAs. Nucleic Acids Res 34(Database issue):D115–D118.

    Article  PubMed  CAS  Google Scholar 

  39. Hsu PW, Huang HD, Hsu SD, Lin LZ, Tsou AP, Tseng CP, Stadler PF, Washietl S, Hofacker IL 2006. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res 34(Database issue):D135–D139.

    Article  PubMed  CAS  Google Scholar 

  40. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T 2007. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414.

    Article  PubMed  CAS  Google Scholar 

  41. Burgler C, Macdonald PM 2005. Prediction and verification of microRNA targets by MovingTargets, a highly adaptable prediction method. BMC Genomics 6(1):88.

    Article  PubMed  CAS  Google Scholar 

  42. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A 2004. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18(10):1165–1178.

    Article  PubMed  CAS  Google Scholar 

  43. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I 2006. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217.

    Article  PubMed  CAS  Google Scholar 

  44. Brennecke J, Stark A, Russell RB, Cohen SM 2005. Principles of microRNA-target recognition. PLoS Biol 3(3):e85.

    Article  PubMed  CAS  Google Scholar 

  45. Stark A, Brennecke J, Russell RB, Cohen SM 2003. Identification of Drosophila MicroRNA targets. PLoS Biol 1(3):E60.

    Article  PubMed  Google Scholar 

  46. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM 2005. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123(6):1133–1146.

    Article  PubMed  CAS  Google Scholar 

  47. Jones-Rhoades MW, Bartel DP 2004. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799.

    Article  PubMed  CAS  Google Scholar 

  48. Tian Z, Greene AS, Pietrusz JL, Matus IR, Liang M 2008. MicroRNA-target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18(3):404–411.

    Article  PubMed  CAS  Google Scholar 

  49. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773.

    Article  PubMed  CAS  Google Scholar 

  50. German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers BC, Green PJ 2008. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 26(8): 941–946.

    Google Scholar 

  51. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM 2002. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529.

    Article  PubMed  CAS  Google Scholar 

  52. Castoldi M, Benes V, Hentze MW, Muckenthaler MU 2007. miChip: a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods 43(2):146–152.

    Article  PubMed  CAS  Google Scholar 

  53. Liang RQ, Li W, Li Y, Tan CY, Li JX, Jin YX, Ruan KC 2005. An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33(2):e17.

    Article  PubMed  CAS  Google Scholar 

  54. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR 2005. MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838.

    Article  PubMed  CAS  Google Scholar 

  55. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, Chiappetta G, Liu CG, Santoro M, Negrini M, Croce CM, Fusco A 2006. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13(2):497–508.

    Article  PubMed  CAS  Google Scholar 

  56. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM 2007. MicroRNA signatures in human ovarian cancer. Cancer Res 67(18):8699–8707.

    Article  PubMed  CAS  Google Scholar 

  57. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T 2007. MicroRNA expression profiling in prostate cancer. Cancer Res 67(13):6130–6135.

    Article  PubMed  CAS  Google Scholar 

  58. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M, Garcia-Foncillas J 2006. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29.

    Article  PubMed  CAS  Google Scholar 

  59. Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ 2003. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1(12):882–891.

    PubMed  CAS  Google Scholar 

  60. Lanza G, Ferracin M, Gafa R, Veronese A, Spizzo R, Pichiorri F, Liu CG, Calin GA, Croce CM, Negrini M 2007. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer 6:54.

    Article  PubMed  CAS  Google Scholar 

  61. Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Falcao RP, Zago MA, Silva-Jr WA 2007. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40(11):1435–1440.

    Article  PubMed  CAS  Google Scholar 

  62. Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva-Jr WA 2007. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40(11):1435–1440.

    Article  PubMed  CAS  Google Scholar 

  63. Fulci V, Chiaretti S, Goldoni M, Azzalin G, Carucci N, Tavolaro S, Castellano L, Magrelli A, Citarella F, Messina M, Maggio R, Peragine N, Santangelo S, Mauro FR, Landgraf P, Tuschl T, Weir DB, Chien M, Russo JJ, Ju J, Sheridan R, Sander C, Zavolan M, Guarini A, Foa R, Macino G 2007. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109(11):4944–4951.

    Article  PubMed  CAS  Google Scholar 

  64. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ 2005. RAS is regulated by the let-7 microRNA family. Cell 120(5):635–647.

    Article  PubMed  CAS  Google Scholar 

  65. Schultz J, Lorenz P, Gross G, Ibrahim S, Kunz M 2008. MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth. Cell Res 18(5): 549–557.

    Google Scholar 

  66. Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA, Feig C, Lengyel E, Peter ME 2007. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA 104(27):11400–11405.

    Article  PubMed  CAS  Google Scholar 

  67. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T 2008. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 105(10):3903–3908.

    Article  PubMed  CAS  Google Scholar 

  68. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V 2004. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13.

    Article  PubMed  Google Scholar 

  69. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM 2005. A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833.

    Article  PubMed  CAS  Google Scholar 

  70. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT 2005. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843.

    Article  PubMed  CAS  Google Scholar 

  71. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT 2008. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50.

    Article  PubMed  CAS  Google Scholar 

  72. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T 2005. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632.

    Article  PubMed  CAS  Google Scholar 

  73. Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ, Li X 2008. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 105(8):2889–2894.

    Article  PubMed  CAS  Google Scholar 

  74. Tagawa H, Karube K, Tsuzuki S, Ohshima K, Seto M 2007. Synergistic action of the microRNA-17 polycistron and Myc in aggressive cancer development. Cancer Sci 98(9):1482–1490.

    Article  PubMed  CAS  Google Scholar 

  75. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL 2007. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310(2):442–453.

    Article  PubMed  CAS  Google Scholar 

  76. Hashimoto N, Ichikawa D, Arakawa Y, Date K, Ueda S, Nakagawa Y, Horii A, Nakamura Y, Abe T, Inazawa J 1995. Frequent deletions of material from chromosome arm 1p in oligodendroglial tumors revealed by double-target fluorescence in situ hybridization and microsatellite analysis. Genes Chromosomes Cancer 14(4):295–300.

    Article  PubMed  CAS  Google Scholar 

  77. Bieche I, Khodja A, Lidereau R 1998. Deletion mapping in breast tumor cell lines points to two distinct tumor-suppressor genes in the 1p32-pter region, one of deleted regions (1p36.2) being located within the consensus region of LOH in neuroblastoma. Oncol Rep 5(1):267–272.

    PubMed  CAS  Google Scholar 

  78. Cheung TH, Lo KW, Yim SF, Poon CS, Cheung AY, Chung TK, Wong YF 2005. Clinicopathologic significance of loss of heterozygosity on chromosome 1 in cervical cancer. Gynecol Oncol 96(2):510–515.

    Article  PubMed  CAS  Google Scholar 

  79. Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J, Khan J 2008. The MYCN oncogene is a direct target of miR-34a. Oncogene 27(39):5204–5213.

    Google Scholar 

  80. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER 2007. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307.

    Article  PubMed  CAS  Google Scholar 

  81. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY 2007. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18):8433–8438.

    Article  PubMed  CAS  Google Scholar 

  82. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M 2007. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743.

    Article  PubMed  CAS  Google Scholar 

  83. Welch C, Chen Y, Stallings RL 2007. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022.

    Article  PubMed  CAS  Google Scholar 

  84. Dutta KK, Zhong Y, Liu YT, Yamada T, Akatsuka S, Hu Q, Yoshihara M, Ohara H, Takehashi M, Shinohara T, Masutani H, Onuki J, Toyokuni S 2007. Association of microRNA-34a overexpression with proliferation is cell type-dependent. Cancer Sci 98(12):1845–1852.

    Article  PubMed  CAS  Google Scholar 

  85. Lujambio A, Esteller M 2007. CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle 6(12):1455–1459.

    Article  PubMed  CAS  Google Scholar 

  86. Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T 2008. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132.

    Article  PubMed  CAS  Google Scholar 

  87. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, Sultmann H, Lyko F 2007. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67(4):1419–1423.

    Article  PubMed  CAS  Google Scholar 

  88. Gartel AL, Kandel ES 2008. miRNAs: Little known mediators of oncogenesis. Semin Cancer Biol 18(2):103–110.

    Article  PubMed  CAS  Google Scholar 

  89. Tam W, Ben-Yehuda D, Hayward WS 1997. bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol 17(3):1490–1502.

    PubMed  CAS  Google Scholar 

  90. Tam W, Hughes SH, Hayward WS, Besmer P 2002. Avian bic, a gene isolated from a common retroviral site in avian leukosis virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol 76(9):4275–4286.

    Article  PubMed  CAS  Google Scholar 

  91. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM 2006. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103(18):7024–7029.

    Article  PubMed  CAS  Google Scholar 

  92. Ma L, Teruya-Feldstein J, Weinberg RA 2007. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688.

    Article  PubMed  CAS  Google Scholar 

  93. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY 2007. miR-21-mediated tumor growth. Oncogene 26(19):2799–2803.

    Article  PubMed  CAS  Google Scholar 

  94. Meng F, Henson R, Lang M, Wehbe H, Maheshwari S, Mendell JT, Jiang J, Schmittgen TD, Patel T 2006. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130(7):2113–2129.

    Article  PubMed  CAS  Google Scholar 

  95. Zhu S, Si ML, Wu H, Mo YY 2007. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19):14328–14336.

    Article  PubMed  CAS  Google Scholar 

  96. Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D, Abdellatif M 2008. MicroRNA-21 targets sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19(8):3272–3282.

    Google Scholar 

  97. Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA, Farace MG 2007. miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282(32):23716–23724.

    Article  PubMed  CAS  Google Scholar 

  98. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R 2006. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181.

    Article  PubMed  CAS  Google Scholar 

  99. Landais S, Landry S, Legault P, Rassart E 2007. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res 67(12):5699–5707.

    Article  PubMed  CAS  Google Scholar 

  100. Akao Y, Nakagawa Y, Naoe T 2006. let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29(5):903–906.

    Article  PubMed  CAS  Google Scholar 

  101. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E 2007. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123.

    Article  PubMed  CAS  Google Scholar 

  102. Peng Y, Laser J, Shi G, Mittal K, Melamed J, Lee P, Wei JJ 2008. Antiproliferative effects by let-7 repression of high-mobility group A2 in uterine leiomyoma. Mol Cancer Res 6(4):663–673.

    Article  PubMed  CAS  Google Scholar 

  103. Mayr C, Hemann MT, Bartel DP 2007. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315(5818):1576–1579.

    Article  PubMed  CAS  Google Scholar 

  104. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ 2008. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7(6).

    Google Scholar 

  105. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM 2005. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39):13944–13949.

    Article  PubMed  CAS  Google Scholar 

  106. Mott JL, Kobayashi S, Bronk SF, Gores GJ 2007. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 26(42):6133–6140.

    Article  PubMed  CAS  Google Scholar 

  107. Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, Choung S, Kim YJ, Choi YC 2008. MicroRNA miR-199A* regulates the Met proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem 283(26):18158–18166.

    Google Scholar 

  108. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B 2008. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10):3566–3572.

    Article  PubMed  CAS  Google Scholar 

  109. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM 2007. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104(40):15805–15810.

    Article  PubMed  CAS  Google Scholar 

  110. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T 2003. New microRNAs from mouse and human. RNA 9(2):175–179.

    Article  PubMed  CAS  Google Scholar 

  111. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M, Croce CM 2004. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101(26):9740–9744.

    Article  PubMed  CAS  Google Scholar 

  112. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z 2004. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1(2):155–161.

    Article  PubMed  CAS  Google Scholar 

  113. Babak T, Zhang W, Morris Q, Blencowe BJ, Hughes TR 2004. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10(11):1813–1819.

    Article  PubMed  CAS  Google Scholar 

  114. Chan SH, Wu CW, Li AF, Chi CW, Lin WC 2008. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res 28(2A):907–911.

    PubMed  Google Scholar 

  115. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM 2005. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16):7065–7070.

    Article  PubMed  CAS  Google Scholar 

  116. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM 2005. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801.

    Article  PubMed  CAS  Google Scholar 

  117. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC 2008. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299(4):425–436.

    Article  PubMed  CAS  Google Scholar 

  118. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T, Flomenberg N, Marcucci G, Calin GA, Kornblau SM, Kantarjian H, Bloomfield CD, Andreeff M, Croce CM 2008. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111(6):3183–3189.

    Article  PubMed  CAS  Google Scholar 

  119. Guo Y, Chen Z, Zhang L, Zhou F, Shi S, Feng X, Li B, Meng X, Ma X, Luo M, Shao K, Li N, Qiu B, Mitchelson K, Cheng J, He J 2008. Distinctive microRNA profiles relating to patient survival in esophageal squamous cell carcinoma. Cancer Res 68(1):26–33.

    Article  PubMed  CAS  Google Scholar 

  120. Patil SD, Rhodes DG, Burgess DJ 2005. DNA-based therapeutics and DNA delivery systems: a comprehensive review. Aaps J 7(1):E61–E77.

    Article  PubMed  CAS  Google Scholar 

  121. Boutla A, Delidakis C, Tabler M 2003. Developmental defects by antisense-mediated inactivation of micro-RNAs 2 and 13 in Drosophila and the identification of putative target genes. Nucleic Acids Res 31(17):4973–4980.

    Article  PubMed  CAS  Google Scholar 

  122. Opalinska JB, Gewirtz AM 2002. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 1(7):503–514.

    Article  PubMed  CAS  Google Scholar 

  123. Tonkinson JL, Stein CA 1996. Antisense oligodeoxynucleotides as clinical therapeutic agents. Cancer Invest 14(1):54–65.

    Article  PubMed  CAS  Google Scholar 

  124. Verma S, Eckstein F 1998. Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem 67:99–134.

    Article  PubMed  CAS  Google Scholar 

  125. Gryaznov SM, Winter H 1998. RNA mimetics: oligoribonucleotide N3'-->P5' phosphoramidates. Nucleic Acids Res 26(18):4160–4167.

    Article  PubMed  CAS  Google Scholar 

  126. Hutvagner G, Simard MJ, Mello CC, Zamore PD 2004. Sequence-specific inhibition of small RNA function. PLoS Biol 2(4):E98.

    Article  PubMed  Google Scholar 

  127. Davis S, Lollo B, Freier S, Esau C 2006. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34(8):2294–2304.

    Article  PubMed  CAS  Google Scholar 

  128. Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S, Havelda Z 2004. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res 32(22):e175.

    Article  PubMed  CAS  Google Scholar 

  129. Naguibneva I, Ameyar-Zazoua M, Nonne N, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Pritchard LL, Harel-Bellan A 2006. An LNA-based loss-of-function assay for micro-RNAs. Biomed Pharmacother 60(9):633–638.

    Article  PubMed  CAS  Google Scholar 

  130. Orom UA, Kauppinen S, Lund AH 2006. LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372:137–141.

    Article  PubMed  CAS  Google Scholar 

  131. Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M, Boldrini R, Donfrancesco A, Federici V, Giacomini P, Peschle C, Fruci D 2008. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS ONE 3(5):e2236.

    Article  PubMed  CAS  Google Scholar 

  132. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH 2007. Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development. PLoS Biol 5(8):e203.

    Article  PubMed  CAS  Google Scholar 

  133. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M 2005. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438(7068):685–689.

    Article  PubMed  CAS  Google Scholar 

  134. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP 2006. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98.

    Article  PubMed  CAS  Google Scholar 

  135. Dass CR 2002. Liposome-mediated delivery of oligodeoxynucleotides in vivo. Drug Deliv 9(3):169–180.

    Article  PubMed  CAS  Google Scholar 

  136. Dritschilo A, Huang CH, Rudin CM, Marshall J, Collins B, Dul JL, Zhang C, Kumar D, Gokhale PC, Ahmad A, Ahmad I, Sherman JW, Kasid UN 2006. Phase I study of liposome-encapsulated c-raf antisense oligodeoxyribonucleotide infusion in combination with radiation therapy in patients with advanced malignancies. Clin Cancer Res 12(4):1251–1259.

    Article  PubMed  CAS  Google Scholar 

  137. Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, Bacallado SA, Nguyen DN, Fuller J, Alvarez R, Borodovsky A, Borland T, Constien R, de Fougerolles A, Dorkin JR, Narayanannair Jayaprakash K, Jayaraman M, John M, Koteliansky V, Manoharan M, Nechev L, Qin J, Racie T, Raitcheva D, Rajeev KG, Sah DW, Soutschek J, Toudjarska I, Vornlocher HP, Zimmermann TS, Langer R, Anderson DG 2008. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26(5):561–569.

    Article  PubMed  CAS  Google Scholar 

  138. Soifer HS, Rossi JJ, Saetrom P 2007. MicroRNAs in disease and potential therapeutic applications. Mol Ther 15(12):2070–2079.

    Article  PubMed  CAS  Google Scholar 

  139. Cerritelli SM, Frolova EG, Feng C, Grinberg A, Love PE, Crouch RJ 2003. Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol Cell 11(3):807–815.

    Article  PubMed  CAS  Google Scholar 

  140. Wu H, Lima WF, Zhang H, Fan A, Sun H, Crooke ST 2004. Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 279(17):17181–17189.

    Article  PubMed  CAS  Google Scholar 

  141. Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R, Baker BF, Swayze EE, Griffey RH, Bhat B 2005. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem 48(13):4247–4253.

    Article  PubMed  CAS  Google Scholar 

  142. Chiu YL, Rana TM 2003. siRNA function in RNAi: a chemical modification analysis. RNA 9(9):1034–1048.

    Article  PubMed  CAS  Google Scholar 

  143. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese K, Kaufmann J 2003. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31(11):2705–2716.

    Article  PubMed  CAS  Google Scholar 

  144. Xia H, Mao Q, Paulson HL, Davidson BL 2002. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20(10):1006–1010.

    Article  PubMed  CAS  Google Scholar 

  145. Uprichard SL, Boyd B, Althage A, Chisari FV 2005. Clearance of hepatitis B virus from the liver of transgenic mice by short hairpin RNAs. Proc Natl Acad Sci USA 102(3):773–778.

    Article  PubMed  CAS  Google Scholar 

  146. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell'Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM 2004. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101(32):11755–11760.

    Article  PubMed  CAS  Google Scholar 

  147. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG 2005. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358.

    Article  PubMed  CAS  Google Scholar 

  148. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K 2006. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 25(17):2537–2545.

    Article  PubMed  CAS  Google Scholar 

  149. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC 2006. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3):189–198.

    Article  PubMed  CAS  Google Scholar 

  150. Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC 2007. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210(2):370–377.

    Article  PubMed  CAS  Google Scholar 

  151. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD 2007. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120(5):1046–1054.

    Article  PubMed  CAS  Google Scholar 

  152. Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A, Volinia S, Coluzzi S, Leone V, Borbone E, Liu CG, Petrocca F, Troncone G, Calin GA, Scarpa A, Colato C, Tallini G, Santoro M, Croce CM, Fusco A 2007. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 26(54):7590–7595.

    Article  PubMed  CAS  Google Scholar 

  153. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, Sevignani C, Byrne D, Negrini M, Pagano F, Gomella LG, Croce CM, Baffa R 2007. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25(5):387–392.

    Article  PubMed  CAS  Google Scholar 

  154. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A 2005. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102(52):19075–19080.

    Article  PubMed  CAS  Google Scholar 

  155. Lee DY, Deng Z, Wang CH, Yang BB 2007. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104(51):20350–20355.

    Article  PubMed  CAS  Google Scholar 

  156. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R, Liu YP, van Duijse J, Drost J, Griekspoor A, Zlotorynski E, Yabuta N, De Vita G, Nojima H, Looijenga LH, Agami R 2007. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Adv Exp Med Biol 604:17–46.

    Article  PubMed  Google Scholar 

  157. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ 2008. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5): 593–601.

    Google Scholar 

  158. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG, Erickson PF, Shellman YG, Robinson WA 2008. MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 68(5):1362–1368.

    Article  PubMed  CAS  Google Scholar 

  159. le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A, Anile C, Maira G, Mercatelli N, Ciafre SA, Farace MG, Agami R 2007. Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. Embo J 26(15):3699–3708.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram I. Mahato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cheng, G., Danquah, M., Mahato, R.I. (2009). MicroRNAs as Therapeutic Targets for Cancer. In: Lu, Y., Mahato, R. (eds) Pharmaceutical Perspectives of Cancer Therapeutics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0131-6_14

Download citation

Publish with us

Policies and ethics