Skip to main content

Role of Imaging Techniques in Discerning Neurobehavioral Changes in Ischemic, Neurodegenerative and Demyelinating Disorders

  • Chapter
The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes

Abstract

Magnetic resonance imaging (MRI) is the most important paraclinical measure for assessing and monitoring the pathologic changes implicated in the onset and progression of demyelinating and ischemic disorders. Conventional MRI sequences, such as T2-weighted imaging are unable to provide full details about the degree of inflammation and underlying neu- rodegenerative changes. Newer non-conventional MRI techniques have the potential to detect clinical impairment, disease progression, accumulation of disability, and the neuroprotective effects of treatment. The measurement of brain atrophy seems to be of growing clinical relevance as a biomarker of the disease process. Atrophy should now be included as a secondary end- point in trials of therapies aimed at limiting disease progression. Magnetization transfer imaging is increasingly used to characterize the evolution of lesions and normal-appearing brain tissue. Magnetic resonance spec-troscopy, which provides details on tissue biochemistry, metabolism, and function, also has the capacity to reveal neurodegeneration and neuroprotective mechanisms. By measuring the motion of water, diffusion imaging can provide information about the orientation, size, and geometry of tissue damage in white and gray matter. Functional MRI and other nuclear functional techniques may help clarify the brain's plasticity- and receptor-dependent compensatory mechanisms in patients with a variety of neurologic disorders. New techniques that might bring new information to the field include studies of microglial activation and studies using multiple single photon emission computed tomography (SPECT) and positron emission tomography (PET) tracers. All these techniques are useful in establishing diagnosis, monitoring disease activity, measuring therapeutic effect and explaining the development of disability in the short-and long-term. The role of these techniques in discerning neurobehavioral and neuropsychiatric symptoms in neurodegenerative (emphasizing Parkinson's Disease and Dementia with Lewy Bodies), ischemic and demyelinating disorders will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zivadinov R, Bakshi R. Role of MRI in multiple sclerosis I: inflammation and lesions. Front Biosci 2004;9:665–683.

    PubMed  Google Scholar 

  2. Zivadinov R, Cox JL. Neuroimaging in multiple sclerosis. Int Rev Neurobiol 2007;79:449–474.

    PubMed  Google Scholar 

  3. Zivadinov R, Leist TP. Clinical-Magnetic Resonance Imaging Correlations in Multiple Sclerosis. J Neuroimaging 2005;15(Suppl 4):10S–21S.

    PubMed  Google Scholar 

  4. Zivadinov R, Bakshi R. Role of MRI in multiple sclerosis II: brain and spinal cord atrophy. Front Biosci 2004;9:647–664.

    PubMed  Google Scholar 

  5. Filippi M, Rocca MA. Magnetization transfer magnetic resonance imaging in the assessment of neurological diseases. J Neuroimaging 2004;14(4):303–313.

    PubMed  Google Scholar 

  6. Horsfield MA, Barker GJ, Barkhof F, Miller DH, Thompson AJ, Filippi M. Guidelines for using quantitative magnetization transfer magnetic resonance imaging for monitoring treatment of multiple sclerosis. J Magn Reson Imaging 2003;17(4):389–397.

    PubMed  Google Scholar 

  7. van Buchem MA, McGowan JC, Kolson DL, Polansky M, Grossman RI. Quantitative volumetric magnetization transfer analysis in multiple sclerosis: estimation of macroscopic and microscopic disease burden. Magn Reson Med 1996;36(4):632–636.

    PubMed  Google Scholar 

  8. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH. Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 2004;56(3): 407–415.

    PubMed  Google Scholar 

  9. Narayanan S, Francis SJ, Sled JG, Santos AC, Antel S, Levesque I, et al. Axonal injury in the cerebral normal- appearing white matter of patients with multiple sclerosis is related to concurrent demyelination in lesions but not to concurrent demyelination in normal-appearing white matter. Neuroimage 2006;29(2):637–642.

    PubMed  Google Scholar 

  10. Inglese M, Grossman RI, Filippi M. Magnetic resonance imaging monitoring of multiple sclerosis lesion evolution. J Neuroimaging 2005;15(4 Suppl):22S–29S.

    PubMed  Google Scholar 

  11. Camicioli RM, Hanstock CC, Bouchard TP, Gee M, Fisher NJ, Martin WR. Magnetic resonance spectroscopic evidence for presupplementary motor area neuronal dysfunction in Parkinson's disease. Mov Disord 2007;22(3):382–386.

    PubMed  Google Scholar 

  12. Narayana PA. Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J Neuroimaging 2005;15(4 Suppl):46S–57S.

    PubMed  Google Scholar 

  13. Vrenken H, Barkhof F, Uitdehaag BM, Castelijns JA, Polman CH, Pouwels PJ. MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 2005;53(2):256–266.

    PubMed  CAS  Google Scholar 

  14. Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G. Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 2001;56(3):304–311.

    PubMed  CAS  Google Scholar 

  15. Rovaris M, Gass A, Bammer R, Hickman SJ, Ciccarelli O, Miller DH, et al. Diffusion MRI in multiple sclerosis. Neurology 2005;65(10):1526–1532.

    PubMed  CAS  Google Scholar 

  16. Frankle WG, Slifstein M, Talbot PS, Laruelle M. Neuroreceptor imaging in psychiatry: theory and applications. Int Rev Neurobiol 2005;67:385–440.

    PubMed  CAS  Google Scholar 

  17. Saha G. Physics and Radiobiology of Nuclear Medicine. 3rd ed. New York: Springer, 2006.

    Google Scholar 

  18. Garcia-Alloza M, Bacskai BJ. Techniques for brain imaging in vivo. Neuromolecular Med 2004;6(1):65–78.

    PubMed  CAS  Google Scholar 

  19. Bybel B, Brunken RC, Shah SN, Wu G, Turbiner E, Neumann DR. PET and PET/CT imaging: what clinicians need to know. Cleve Clin J Med 2006;73(12):1075–1087.

    PubMed  Google Scholar 

  20. Lobo A, Launer LJ, Fratiglioni L, Andersen K, Di Carlo A, Breteler MM, et al. Prevalence of dementia and major subtypes in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 2000;54(11 Suppl 5):S4–9.

    PubMed  CAS  Google Scholar 

  21. Qiu C, De Ronchi D, Fratiglioni L. The epidemiology of the dementias: an update. Curr Opin Psychiatry 2007;20(4):380–385.

    PubMed  Google Scholar 

  22. Roman GC. Vascular dementia may be the most common form of dementia in the elderly. J Neurol Sci 2002;203–204:7–10.

    PubMed  Google Scholar 

  23. O'Brien JT. Vascular cognitive impairment. Am J Geriatr Psychiatry 2006;14(9):724–733.

    PubMed  Google Scholar 

  24. O'Brien JT, Erkinjuntti T, Reisberg B, Roman G, Sawada T, Pantoni L, et al. Vascular cognitive impairment. Lancet Neurol 2003;2(2):89–98.

    PubMed  Google Scholar 

  25. Williamson JB, Nyenhuis DL, Pedelty L, Byrd S, Jhaveri M, Wang C, et al. Baseline differences between Vascular Cognitive Impairment No Dementia reverters and nonrevert- ers. J Neurol Neurosurg Psychiatry 2008.

    Google Scholar 

  26. O'Brien J. Behavioral symptoms in vascular cognitive impairment and vascular dementia. Int Psychogeriatr 2003;15(Suppl 1):133–138.

    PubMed  Google Scholar 

  27. Schmidt R, Petrovic K, Ropele S, Enzinger C, Fazekas F. Progression of leukoaraiosis and cognition. Stroke 2007;38(9):2619–2625.

    PubMed  Google Scholar 

  28. Mendez M, Cummings JL. Dementia: A Clinical Approach. 3rd ed. Philadelphia: Butterworth-Heinemann, 2003.

    Google Scholar 

  29. Roman GC, Sachdev P, Royall DR, Bullock RA, Orgogozo JM, Lopez-Pousa S, et al. Vascular cognitive disorder: a new diagnostic category updating vascular cognitive impairment and vascular dementia. J Neurol Sci 2004;226(1–2):81–87.

    PubMed  Google Scholar 

  30. Rockwood K, Howard K, MacKnight C, Darvesh S. Spectrum of disease in vascular cognitive impairment. Neuroepidemiology 1999;18(5):248–254.

    PubMed  CAS  Google Scholar 

  31. Chui HC. Subcortical ischemic vascular dementia. Neurol Clin 2007;25(3):717–740, vi.

    PubMed  Google Scholar 

  32. Erkinjuntti T, Inzitari D, Pantoni L, Wallin A, Scheltens P, Rockwood K, et al. Research criteria for subcortical vascular dementia in clinical trials. J Neural Transm Suppl 2000;59:23–30.

    PubMed  CAS  Google Scholar 

  33. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. Washington, DC, 1994.

    Google Scholar 

  34. Chui HC, Victoroff JI, Margolin D, Jagust W, Shankle R, Katzman R. Criteria for the diagnosis of ischemic vascular dementia proposed by the State of California Alzheimer's Disease Diagnostic and Treatment Centers. Neurology 1992;42(3 Pt 1):473–480.

    PubMed  CAS  Google Scholar 

  35. Hachinski VC, Iliff LD, Zilhka E, Du Boulay GH, McAllister VL, Marshall J, et al. Cerebral blood flow in dementia. Arch Neurol 1975;32(9):632–637.

    PubMed  CAS  Google Scholar 

  36. Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 1993;43(2):250–260.

    PubMed  CAS  Google Scholar 

  37. Pohjasvaara T, Mantyla R, Ylikoski R, Kaste M, Erkinjuntti T. Comparison of different clinical criteria (DSM-III, ADDTC, ICD-10, NINDS-AIREN, DSM-IV) for the diagnosis of vascular dementia. National Institute of Neurological Disorders and Stroke-Association Internationale pour la Recherche et l'Enseignement en Neurosciences. Stroke 2000;31(12):2952–2957.

    PubMed  CAS  Google Scholar 

  38. World Health Organization. The ICD-10 classification of mental and behavioral disorders, 1993.

    Google Scholar 

  39. Enzinger C, Fazekas F, Matthews PM, Ropele S, Schmidt H, Smith S, et al. Risk factors for progression of brain atrophy in aging: six-year follow-up of normal subjects. Neurology 2005;64(10):1704–1711.

    PubMed  CAS  Google Scholar 

  40. Schmidtke K, Hull M. Cerebral small vessel disease: how does it progress? J Neurol Sci 2005;229–230:13–20.

    PubMed  Google Scholar 

  41. Leys D, Henon H, Mackowiak-Cordoliani MA, Pasquier F. Poststroke dementia. Lancet Neurol 2005;4(11):752–759.

    PubMed  Google Scholar 

  42. Rockwood K, Wentzel C, Hachinski V, Hogan DB, MacKnight C, McDowell I. Prevalence and outcomes of vascular cognitive impairment. Vascular Cognitive Impairment Investigators of the Canadian Study of Health and Aging. Neurology 2000;54(2):447–451.

    PubMed  CAS  Google Scholar 

  43. Gorelick PB. William M. Feinberg Lecture: Cognitive vitality and the role of stroke and cardiovascular disease risk factors. Stroke 2005;36(4):875–879.

    PubMed  Google Scholar 

  44. Kalaria RN, Viitanen M, Kalimo H, Dichgans M, Tabira T. The pathogenesis of CADASIL: an update. J Neurol Sci 2004;226(1–2):35–39.

    PubMed  CAS  Google Scholar 

  45. Maia LF, Mackenzie IR, Feldman HH. Clinical phenotypes of Cerebral Amyloid Angiopathy. J Neurol Sci 2007;257(1–2):23–30.

    PubMed  Google Scholar 

  46. Troncoso JC, Zonderman AB, Resnick SM, Crain B, Pletnikova O, O'Brien RJ. Effect of infarcts on dementia in the Baltimore longitudinal study of aging. Ann Neurol 2008 64(2):168–176.

    PubMed  Google Scholar 

  47. Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 2006;37(6):1391–1398.

    PubMed  Google Scholar 

  48. Brown WR, Moody DM, Thore CR, Challa VR, Anstrom JA. Vascular dementia in leukoaraiosis may be a consequence of capillary loss not only in the lesions, but in normal-appearing white matter and cortex as well. J Neurol Sci 2007;257(1–2):62–66.

    PubMed  Google Scholar 

  49. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993;43(9):1683–1689.

    PubMed  CAS  Google Scholar 

  50. Jellinger KA. The enigma of vascular cognitive disorder and vascular dementia. Acta Neuropathol 2007;113(4):349–388.

    PubMed  Google Scholar 

  51. Ishii N, Nishihara Y, Imamura T. Why do frontal lobe symptoms predominate in vascular dementia with lacunes? Neurology 1986;36(3):340–345.

    PubMed  CAS  Google Scholar 

  52. Gold G, Kovari E, Herrmann FR, Canuto A, Hof PR, Michel JP, et al. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. Stroke 2005;36(6):1184–1188.

    PubMed  Google Scholar 

  53. Kovari E, Gold G, Herrmann FR, Canuto A, Hof PR, Michel JP, et al. Cortical microinfarcts and demyelination signifi-cantly affect cognition in brain aging. Stroke 2004;35(2):410–414.

    PubMed  Google Scholar 

  54. Gold G, Giannakopoulos P, Herrmann FR, Bouras C, Kovari E. Identification of Alzheimer and vascular lesion thresholds for mixed dementia. Brain 2007;130(Pt 11):2830–2836.

    PubMed  Google Scholar 

  55. Gold G, Kovari E, Hof PR, Bouras C, Giannakopoulos P. Sorting out the clinical consequences of ischemic lesions in brain aging: a clinicopathological approach. J Neurol Sci 2007;257(1–2):17–22.

    PubMed  Google Scholar 

  56. Bronge L, Wahlund LO. White matter changes in dementia: does radiology matter? Br J Radiol 2007;80 Spec No 2:S115–120.

    PubMed  CAS  Google Scholar 

  57. Jagust WJ, Zheng L, Harvey DJ, Mack WJ, Vinters HV, Weiner MW, et al. Neuropathological basis of magnetic resonance images in aging and dementia. Ann Neurol 2008;63(1):72–80.

    PubMed  Google Scholar 

  58. O'Sullivan M, Morris RG, Huckstep B, Jones DK, Williams SC, Markus HS. Diffusion tensor MRI correlates with executive dysfunction in patients with ischaemic leukoaraiosis. J Neurol Neurosurg Psychiatry 2004;75(3):441–447.

    PubMed  Google Scholar 

  59. Ross AJ, Sachdev PS, Wen W, Brodaty H, Joscelyne A, Lorentz LM. Prediction of cognitive decline after stroke using proton magnetic resonance spectroscopy. J Neurol Sci 2006;251(1–2):62–69.

    PubMed  Google Scholar 

  60. Spilt A, Goekoop R, Westendorp RG, Blauw GJ, de Craen AJ, van Buchem MA. Not all age-related white matter hyperintensities are the same: a magnetization transfer imaging study. AJNR Am J Neuroradiol 2006;27(9):1964–1968.

    PubMed  CAS  Google Scholar 

  61. Steffens DC. Establishing diagnostic criteria for vascular depression. J Neurol Sci 2004;226(1–2):59–62.

    PubMed  Google Scholar 

  62. Dieguez S, Staub F, Bruggimann L, Bogousslavsky J. Is poststroke depression a vascular depression? J Neurol Sci 2004;226(1–2):53–58.

    PubMed  Google Scholar 

  63. Pohjasvaara T, Leppavuori A, Siira I, Vataja R, Kaste M, Erkinjuntti T. Frequency and clinical determinants of post- stroke depression. Stroke 1998;29(11):2311–2317.

    PubMed  CAS  Google Scholar 

  64. Gabaldon L, Fuentes B, Frank-Garcia A, Diez-Tejedor E. Poststroke depression: importance of its detection and treatment. Cerebrovasc Dis 2007;24(Suppl 1):181–188.

    PubMed  Google Scholar 

  65. van Straaten EC, Scheltens P, Barkhof F. MRI and CT in the diagnosis of vascular dementia. J Neurol Sci 2004;226(1–2):9–12.

    PubMed  Google Scholar 

  66. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 2001;70(1):9–14.

    Google Scholar 

  67. Liao D, Cooper L, Cai J, Toole J, Bryan N, Burke G, et al. The prevalence and severity of white matter lesions, their relationship with age, ethnicity, gender, and cardiovascular disease risk factors: the ARIC Study. Neuroepidemiology 1997;16(3):149–162.

    PubMed  CAS  Google Scholar 

  68. Wen W, Sachdev P. The topography of white matter hyperin-tensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage 2004;22(1):144–154.

    PubMed  Google Scholar 

  69. Sachdev PS, Parslow R, Wen W, Anstey KJ, Easteal S. Sex differences in the causes and consequences of white matter hyperintensities. Neurobiol Aging 2007.

    Google Scholar 

  70. van den Heuvel DM, Admiraal-Behloul F, ten Dam VH, Olofsen H, Bollen EL, Murray HM, et al. Different progression rates for deep white matter hyperinte-nsities in elderly men and women. Neurology 2004;63(9): 1699–1701.

    PubMed  Google Scholar 

  71. Murray AD, Staff RT, Shenkin SD, Deary IJ, Starr JM, Whalley LJ. Brain white matter hyperintensities: relative importance of vascular risk factors in nondemented elderly people. Radiology 2005;237(1):251–257.

    PubMed  Google Scholar 

  72. Korf ES, White LR, Scheltens P, Launer LJ. Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study. Diabetes Care 2006;29(10):2268–2274.

    PubMed  Google Scholar 

  73. Wiseman RM, Saxby BK, Burton EJ, Barber R, Ford GA, O'Brien JT. Hippocampal atrophy, whole brain volume, and white matter lesions in older hypertensive subjects. Neurology 2004;63(10):1892–1897.

    PubMed  CAS  Google Scholar 

  74. Firbank MJ, Wiseman RM, Burton EJ, Saxby BK, O'Brien J T, Ford GA. Brain atrophy and white matter hyperintensity change in older adults and relationship to blood pressure: Brain atrophy, WMH change and blood pressure. J Neurol 2007;254(6):713–721.

    PubMed  Google Scholar 

  75. Sachdev P, Wen W, Chen X, Brodaty H. Progression of white matter hyperintensities in elderly individuals over 3 years. Neurology 2007;68(3):214–222.

    PubMed  Google Scholar 

  76. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol 1987;149(2): 351–356.

    PubMed  CAS  Google Scholar 

  77. Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauta JJ, Vermersch P, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. J Neurol Sci 1993;114(1):7–12.

    PubMed  CAS  Google Scholar 

  78. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001;32(6):1318–1322.

    PubMed  CAS  Google Scholar 

  79. van Straaten EC, Fazekas F, Rostrup E, Scheltens P, Schmidt R, Pantoni L, et al. Impact of white matter hyperintensities scoring method on correlations with clinical data: the LADIS study. Stroke 2006;37(3):836–840.

    PubMed  Google Scholar 

  80. Benson RR, Guttmann CR, Wei X, Warfield SK, Hall C, Schmidt JA, et al. Older people with impaired mobility have specific loci of periventricular abnormality on MRI. Neurology 2002;58(1):48–55.

    PubMed  CAS  Google Scholar 

  81. Tiehuis AM, Vincken KL, Mali WP, Kappelle LJ, Anbeek P, Algra A, et al. Automated and Visual Scoring Methods of Cerebral White Matter Hyperintensities: Relation with Age and Cognitive Function. Cerebrovasc Dis 2007;25(1–2):59–66.

    PubMed  Google Scholar 

  82. Gouw AA, Van der Flier WM, van Straaten EC, Barkhof F, Ferro JM, Baezner H, et al. Simple versus complex assessment of white matter hyperintensities in relation to physical performance and cognition: the LADIS study. J Neurol 2006;253(9):1189–1196.

    PubMed  CAS  Google Scholar 

  83. Yoshita M, Fletcher E, DeCarli C. Current concepts of analysis of cerebral white matter hyperintensities on magnetic resonance imaging. Top Magn Reson Imaging 2005;16(6):399–407.

    PubMed  Google Scholar 

  84. van der Flier WM, van Straaten EC, Barkhof F, Verdelho A, Madureira S, Pantoni L, et al. Small vessel disease and general cognitive function in nondisabled elderly: the LADIS study. Stroke 2005;36(10):2116–2120.

    PubMed  Google Scholar 

  85. Verdelho A, Madureira S, Ferro JM, Basile AM, Chabriat H, Erkinjuntti T, et al. Differential impact of cerebral white matter changes, diabetes, hypertension and stroke on cognitive performance among non-disabled elderly. The LADIS study. J Neurol Neurosurg Psychiatry 2007;78(12):1325–1330.

    PubMed  Google Scholar 

  86. Fernando MS, Ince PG. Vascular pathologies and cognition in a population-based cohort of elderly people. J Neurol Sci 2004;226(1–2):13–17.

    PubMed  Google Scholar 

  87. Cohen RA, Paul RH, Ott BR, Moser DJ, Zawacki TM, Stone W, et al. The relationship of subcortical MRI hyperintensities and brain volume to cognitive function in vascular dementia. J Int Neuropsychol Soc 2002;8(6):743–752.

    PubMed  Google Scholar 

  88. Libon DJ, Price CC, Giovannetti T, Swenson R, Bettcher BM, Heilman KM, et al. Linking MRI hyperintensities with patterns of neuropsychological impairment: evidence for a threshold effect. Stroke 2008;39(3):806–813.

    PubMed  Google Scholar 

  89. Wright CB, Festa JR, Paik MC, Schmiedigen A, Brown TR, Yoshita M, et al. White matter hyperintensities and subclinical infarction: associations with psychomotor speed and cognitive flexibility. Stroke 2008;39(3):800–805.

    PubMed  Google Scholar 

  90. Sweet LH, Paul RH, Cohen RA, Moser D, Ott BR, Gordon N, et al. Neuroimaging correlates of dementia rating scale performance at baseline and 12-month follow-up among patients with vascular dementia. J Geriatr Psychiatry Neurol 2003;16(4):240–244.

    PubMed  Google Scholar 

  91. Meyer JS, Xu G, Thornby J, Chowdhury MH, Quach M. Is mild cognitive impairment prodromal for vascular dementia like Alzheimer's disease? Stroke 2002;33(8):1981–1985.

    PubMed  Google Scholar 

  92. Debette S, Bombois S, Bruandet A, Delbeuck X, Lepoittevin S, Delmaire C, et al. Subcortical hyperintensities are associated with cognitive decline in patients with mild cognitive impairment. Stroke 2007;38(11):2924–2930.

    PubMed  Google Scholar 

  93. Sachdev PS, Brodaty H, Valenzuela MJ, Lorentz L, Looi JC, Berman K, et al. Clinical determinants of dementia and mild cognitive impairment following ischaemic stroke: the Sydney Stroke Study. Dement Geriatr Cogn Disord 2006;21(5–6):275–283.

    PubMed  CAS  Google Scholar 

  94. Yoshita M, Fletcher E, Harvey D, Ortega M, Martinez O, Mungas DM, et al. Extent and distribution of white matter hyperintensities in normal aging, MCI, and AD. Neurology 2006;67(12):2192–2198.

    PubMed  CAS  Google Scholar 

  95. Bombois S, Debette S, Delbeuck X, Bruandet A, Lepoittevin S, Delmaire C, et al. Prevalence of subcortical vascular lesions and association with executive function in mild cognitive impairment subtypes. Stroke 2007;38(9):2595–2597.

    PubMed  Google Scholar 

  96. Bombois S, Debette S, Bruandet A, Delbeuck X, Delmaire C, Leys D, et al. Vascular subcortical hyperintensities predict conversion to vascular and mixed dementia in MCI patients. Stroke 2008;39(7):2046–2051.

    PubMed  Google Scholar 

  97. de Groot JC, de Leeuw FE, Oudkerk M, Hofman A, Jolles J, Breteler MM. Cerebral white matter lesions and depressive symptoms in elderly adults. Arch Gen Psychiatry 2000;57(11):1071–1076.

    PubMed  Google Scholar 

  98. Krishnan MS, O'Brien JT, Firbank MJ, Pantoni L, Carlucci G, Erkinjuntti T, et al. Relationship between periventricular and deep white matter lesions and depressive symptoms in older people. The LADIS Study. Int J Geriatr Psychiatry 2006;21(10):983–989.

    PubMed  Google Scholar 

  99. O'Brien JT, Firbank MJ, Krishnan MS, van Straaten EC, van der Flier WM, Petrovic K, et al. White matter hyperin- tensities rather than lacunar infarcts are associated with depressive symptoms in older people: the LADIS study. Am J Geriatr Psychiatry 2006;14(10):834–841.

    PubMed  Google Scholar 

  100. O'Brien J, Perry R, Barber R, Gholkar A, Thomas A. The association between white matter lesions on magnetic resonance imaging and noncognitive symptoms. Ann N Y Acad Sci 2000;903:482–489.

    PubMed  Google Scholar 

  101. Rainer MK, Mucke HA, Zehetmayer S, Krampla W, Kuselbauer T, Weissgram S, et al. Data from the VITA Study do not support the concept of vascular depression. Am J Geriatr Psychiatry 2006;14(6):531–537.

    PubMed  Google Scholar 

  102. Herrmann LL, Le Masurier M, Ebmeier KP. White matter hyperintensities in late life depression: a systematic review. J Neurol Neurosurg Psychiatry 2008;79(6):619–624.

    PubMed  CAS  Google Scholar 

  103. Hachinski VC, Lassen NA, Marshall J. Multi-infarct dementia. A cause of mental deterioration in the elderly. Lancet 1974;2(7874):207–210.

    PubMed  CAS  Google Scholar 

  104. Erkinjuntti T. Vascular cognitive deterioration and stroke. Cerebrovasc Dis 2007;24 Suppl 1:189–194.

    PubMed  Google Scholar 

  105. Vataja R, Pohjasvaara T, Mantyla R, Ylikoski R, Leppavuori A, Leskela M, et al. MRI correlates of executive dysfunction in patients with ischaemic stroke. Eur J Neurol 2003;10(6):625–631.

    PubMed  CAS  Google Scholar 

  106. Kramer JH, Reed BR, Mungas D, Weiner MW, Chui HC. Executive dysfunction in subcortical ischaemic vascular disease. J Neurol Neurosurg Psychiatry 2002;72(2):217–220.

    PubMed  CAS  Google Scholar 

  107. Carey CL, Kramer JH, Josephson SA, Mungas D, Reed BR, Schuff N, et al. Subcortical lacunes are associated with executive dysfunction in cognitively normal elderly. Stroke 2008;39(2):397–402.

    PubMed  Google Scholar 

  108. Liem MK, van der Grond J, Haan J, van den Boom R, Ferrari MD, Knaap YM, et al. Lacunar infarcts are the main correlate with cognitive dysfunction in CADASIL. Stroke 2007;38(3):923–928.

    PubMed  Google Scholar 

  109. Viswanathan A, Gschwendtner A, Guichard JP, Buffon F, Cumurciuc R, O'Sullivan M, et al. Lacunar lesions are independently associated with disability and cognitive impairment in CADASIL. Neurology 2007;69(2):172–179.

    PubMed  CAS  Google Scholar 

  110. Fein G, Di Sclafani V, Tanabe J, Cardenas V, Weiner MW, Jagust WJ, et al. Hippocampal and cortical atrophy predict dementia in subcortical ischemic vascular disease. Neurology 2000;55(11):1626–1635.

    PubMed  CAS  Google Scholar 

  111. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 2003;348(13):1215–1222.

    PubMed  Google Scholar 

  112. Wen W, Sachdev PS, Chen X, Anstey K. Gray matter reduction is correlated with white matter hyperintensity volume: a voxel-based morphometric study in a large epidemiological sample. Neuroimage 2006;29(4):1031–1039.

    PubMed  Google Scholar 

  113. Firbank MJ, Burton EJ, Barber R, Stephens S, Kenny RA, Ballard C, et al. Medial temporal atrophy rather than white matter hyperintensities predict cognitive decline in stroke survivors. Neurobiol Aging 2007;28(11):1664–1669.

    PubMed  Google Scholar 

  114. Pohjasvaara T, Mantyla R, Salonen O, Aronen HJ, Ylikoski R, Hietanen M, et al. How complex interactions of ischemic brain infarcts, white matter lesions, and atrophy relate to poststroke dementia. Arch Neurol 2000;57(9):1295–1300.

    PubMed  CAS  Google Scholar 

  115. O'Sullivan M, Ngo E, Viswanathan A, Jouvent E, Gschwendtner A, Saemann PG, et al. Hippocampal volume is an independent predictor of cognitive performance in CADASIL. Neurobiol Aging 2007 Epub ahead of print, In Press.

    Google Scholar 

  116. Peters N, Holtmannspotter M, Opherk C, Gschwendtner A, Herzog J, Samann P, et al. Brain volume changes in CADASIL: a serial MRI study in pure subcortical ischemic vascular disease. Neurology 2006;66(10):1517–1522.

    PubMed  CAS  Google Scholar 

  117. Rovaris M, Iannucci G, Cercignani M, Sormani MP, De Stefano N, Gerevini S, et al. Age-related changes in conventional, magnetization transfer, and diffusion-tensor MR imaging findings: study with whole-brain tissue histogram analysis. Radiology 2003;227(3):731–738.

    PubMed  Google Scholar 

  118. Nagata K, Saito H, Ueno T, Sato M, Nakase T, Maeda T, et al. Clinical diagnosis of vascular dementia. J Neurol Sci 2007;257(1–2):44–48.

    PubMed  Google Scholar 

  119. Kerrouche N, Herholz K, Mielke R, Holthoff V, Baron JC. 18FDG PET in vascular dementia: differentiation from Alzheimer's disease using voxel-based multivariate analysis. J Cereb Blood Flow Metab 2006;26(9):1213–1221.

    PubMed  CAS  Google Scholar 

  120. Mielke R, Pietrzyk U, Jacobs A, Fink GR, Ichimiya A, Kessler J, et al. HMPAO SPET and FDG PET in Alzheimer's disease and vascular dementia: comparison of perfusion and metabolic pattern. Eur J Nucl Med 1994;21(10):1052–1060.

    PubMed  CAS  Google Scholar 

  121. Nagata K, Maruya H, Yuya H, Terashi H, Mito Y, Kato H, et al. Can PET data differentiate Alzheimer's disease from vascular dementia? Ann N Y Acad Sci 2000;903:252–261.

    PubMed  CAS  Google Scholar 

  122. Lojkowska W, Ryglewicz D, Jedrzejczak T, Sienkiewicz-Jarosz H, Minc S, Jakubowska T, et al. SPECT as a diagnostic test in the investigation of dementia. J Neurol Sci 2002;203–204:215–219.

    PubMed  Google Scholar 

  123. Clarke S, Assal G, Bogousslavsky J, Regli F, Townsend DW, Leenders KL, et al. Pure amnesia after unilateral left polar thalamic infarct: topographic and sequential neurop-sychological and metabolic (PET) correlations. J Neurol Neurosurg Psychiatry 1994;57(1):27–34.

    PubMed  CAS  Google Scholar 

  124. Takahashi W, Takagi S, Ide M, Shohtsu A, Shinohara Y. Global reduction of cerebral glucose metabolism in persons with symptomatic as well as asymptomatic lacunar infarction. Keio J Med 2000;49(Suppl 1):A98–100.

    PubMed  Google Scholar 

  125. Sultzer DL, Mahler ME, Cummings JL, Van Gorp WG, Hinkin CH, Brown C. Cortical abnormalities associated with subcortical lesions in vascular dementia. Clinical and position emission tomographic findings. Arch Neurol 1995;52(8):773–780.

    CAS  Google Scholar 

  126. Takahashi W, Takagi S, Ide M, Shohtsu A, Shinohara Y. Reduced cerebral glucose metabolism in subjects with incidental hyperintensities on magnetic resonance imaging. J Neurol Sci 2000;176(1):21–27.

    PubMed  CAS  Google Scholar 

  127. Reed BR, Eberling JL, Mungas D, Weiner M, Kramer JH, Jagust WJ. Effects of white matter lesions and lacunes on cortical function. Arch Neurol 2004;61(10):1545–1550.

    PubMed  Google Scholar 

  128. Yang DW, Kim BS, Park JK, Kim SY, Kim EN, Sohn HS. Analysis of cerebral blood flow of subcortical vascular dementia with single photon emission computed tomography: adaptation of statistical parametric mapping. J Neurol Sci 2002;203–204:199–205.

    PubMed  Google Scholar 

  129. Cummings JL. Toward a molecular neuropsychiatry of neu-rodegenerative diseases. Ann Neurol 2003;54(2):147–154.

    PubMed  CAS  Google Scholar 

  130. Doudet DJ. Neurodegenerative disease. Mol Imaging Biol 2007;9(4):159–160.

    PubMed  CAS  Google Scholar 

  131. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002;297(5580):353–356.

    PubMed  CAS  Google Scholar 

  132. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 1996;47(5):1113–1124.

    PubMed  CAS  Google Scholar 

  133. Jellinger KA. The morphological basis of mental dysfunction in Parkinson's disease. J Neurol Sci 2006;248(1–2):167–172.

    PubMed  CAS  Google Scholar 

  134. Mrak RE, Griffin WS. Common inflammatory mechanisms in Lewy body disease and Alzheimer disease. J Neuropathol Exp Neurol 2007;66(8):683–686.

    PubMed  CAS  Google Scholar 

  135. Cummings JL. Dementia with lewy bodies: molecular pathogenesis and implications for classification. J Geriatr Psychiatry Neurol 2004;17(3):112–119.

    PubMed  Google Scholar 

  136. Ballard C, Ziabreva I, Perry R, Larsen JP, O'Brien J, McKeith I, et al. Differences in neuropathologic characteristics across the Lewy body dementia spectrum. Neurology 2006;67(11):1931–1934.

    PubMed  CAS  Google Scholar 

  137. Aarsland D, Ballard CG, Halliday G. Are Parkinson's disease with dementia and dementia with Lewy bodies the same entity? J Geriatr Psychiatry Neurol 2004;17(3):137–145.

    PubMed  Google Scholar 

  138. Lippa CF, Duda JE, Grossman M, Hurtig HI, Aarsland D, Boeve BF, et al. DLB and PDD boundary issues: diagnosis, treatment, molecular pathology, and biomarkers. Neurology 2007;68(11):812–819.

    PubMed  CAS  Google Scholar 

  139. Andlin-Sobocki P, Jonsson B, Wittchen HU, Olesen J. Cost of disorders of the brain in Europe. Eur J Neurol 2005;12(Suppl 1):1–27.

    PubMed  Google Scholar 

  140. Olesen J, Leonardi M. The burden of brain diseases in Europe. Eur J Neurol 2003;10(5):471–477.

    PubMed  CAS  Google Scholar 

  141. Fahn S. Description of Parkinson's disease as a clinical syndrome. Ann N Y Acad Sci 2003;991:1–14.

    PubMed  CAS  Google Scholar 

  142. Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 2006;7(4): 306–318.

    PubMed  CAS  Google Scholar 

  143. Sethi KD. Clinical aspects of Parkinson disease. Curr Opin Neurol 2002;15(4):457–460.

    PubMed  Google Scholar 

  144. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clin-ico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55(3):181–184.

    PubMed  CAS  Google Scholar 

  145. Hughes AJ, Daniel SE, Lees AJ. Improved accuracy of clinical diagnosis of Lewy body Parkinson's disease. Neurology 2001;57(8):1497–1499.

    PubMed  CAS  Google Scholar 

  146. Lang AE, Obeso JA. Time to move beyond nigrostriatal dopamine deficiency in Parkinson's disease. Ann Neurol 2004;55(6):761–765.

    PubMed  Google Scholar 

  147. Aarsland D, Andersen K, Larsen JP, Lolk A, Kragh-Sorensen P. Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch Neurol 2003;60(3):387–392.

    PubMed  Google Scholar 

  148. Janvin C, Aarsland D, Larsen JP, Hugdahl K. Neurops-ychological profile of patients with Parkinson's disease without dementia. Dement Geriatr Cogn Disord 2003;15(3): 126–131.

    PubMed  Google Scholar 

  149. Alves G, Larsen JP, Emre M, Wentzel-Larsen T, Aarsland D. Changes in motor subtype and risk for incident dementia in Parkinson's disease. Mov Disord 2006;21(8):1123–1130.

    PubMed  Google Scholar 

  150. Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA. Evolution of cognitive dysfunction in an incident Parkinson's disease cohort. Brain 2007;130(Pt 7):1787–1798.

    PubMed  CAS  Google Scholar 

  151. Camicioli R, Fisher N. Progress in clinical neurosciences: Parkinson's disease with dementia and dementia with Lewy bodies. Can J Neurol Sci 2004;31(1):7–21.

    PubMed  Google Scholar 

  152. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med 2004;256(3):183–194.

    PubMed  CAS  Google Scholar 

  153. Dubois B, Pillon B. Cognitive deficits in Parkinson's disease. J Neurol 1997;244(1):2–8.

    PubMed  CAS  Google Scholar 

  154. Foltynie T, Brayne CE, Robbins TW, Barker RA. The cognitive ability of an incident cohort of Parkinson's patients in the UK. The CamPaIGN study. Brain 2004;127 (Pt 3):550–560.

    PubMed  Google Scholar 

  155. Janvin CC, Larsen JP, Aarsland D, Hugdahl K. Subtypes of mild cognitive impairment in Parkinson's disease: progression to dementia. Mov Disord 2006;21(9):1343–1349.

    PubMed  Google Scholar 

  156. Braak H, Rub U, Jansen Steur EN, Del Tredici K, de Vos RA. Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 2005;64(8):1404–1410.

    PubMed  CAS  Google Scholar 

  157. Emre M. What causes mental dysfunction in Parkinson's disease? Mov Disord 2003;18(Suppl 6):S63–71.

    PubMed  Google Scholar 

  158. Leentjens AF. Depression in Parkinson's disease: conceptual issues and clinical challenges. J Geriatr Psychiatry Neurol 2004;17(3):120–126.

    PubMed  Google Scholar 

  159. Boeve BF, Silber MH, Ferman TJ. REM sleep behavior disorder in Parkinson's disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol 2004;17(3):146–157.

    PubMed  Google Scholar 

  160. Herlofson K, Larsen JP. The influence of fatigue on health-related quality of life in patients with Parkinson's disease. Acta Neurol Scand 2003;107(1):1–6.

    PubMed  CAS  Google Scholar 

  161. Lou JS, Kearns G, Oken B, Sexton G, Nutt J. Exacerbated physical fatigue and mental fatigue in Parkinson's disease. Mov Disord 2001;16(2):190–196.

    PubMed  CAS  Google Scholar 

  162. Wint DP, Okun MS, Fernandez HH. Psychosis in Parkinson's disease. J Geriatr Psychiatry Neurol 2004;17(3):127–136.

    PubMed  Google Scholar 

  163. Braak H, Bohl JR, Muller CM, Rub U, de Vos RA, Del Tredici K. Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson's disease reconsidered. Mov Disord 2006;21(12):2042–2051.

    PubMed  Google Scholar 

  164. McKeith IG, Dickson DW, Lowe J, Emre M, O'Brien JT, Feldman H, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 2005;65(12):1863–1872.

    PubMed  CAS  Google Scholar 

  165. Aarsland D, Ballard C, Larsen JP, McKeith I. A comparative study of psychiatric symptoms in dementia with Lewy bodies and Parkinson's disease with and without dementia. Int J Geriatr Psychiatry 2001;16(5):528–536.

    PubMed  CAS  Google Scholar 

  166. Tiraboschi P, Salmon DP, Hansen LA, Hofstetter RC, Thal LJ, Corey-Bloom J. What best differentiates Lewy body from Alzheimer's disease in early-stage dementia? Brain 2006;129(Pt 3):729–735.

    PubMed  Google Scholar 

  167. Metzler-Baddeley C. A review of cognitive impairments in dementia with Lewy bodies relative to Alzheimer's disease and Parkinson's disease with dementia. Cortex 2007;43(5):583–600.

    PubMed  Google Scholar 

  168. Colosimo C, Hughes AJ, Kilford L, Lees AJ. Lewy body cortical involvement may not always predict dementia in Parkinson's disease. J Neurol Neurosurg Psychiatry 2003;74(7):852–856.

    PubMed  CAS  Google Scholar 

  169. Tsuboi Y, Dickson DW. Dementia with Lewy bodies and Parkinson's disease with dementia: are they different? Parkinsonism Relat Disord 2005;11(Suppl 1):S47–51.

    PubMed  Google Scholar 

  170. Jellinger KA. Morphological substrates of parkinsonism with and without dementia: a retrospective clinico-patho-logical study. J Neural Transm Suppl 2007(72):91–104.

    PubMed  Google Scholar 

  171. Ballard C, Grace J, McKeith I, Holmes C. Neuroleptic sensitivity in dementia with Lewy bodies and Alzheimer's disease. Lancet 1998;351(9108):1032–1033.

    PubMed  CAS  Google Scholar 

  172. McKeith I, Fairbairn A, Perry R, Thompson P, Perry E. Neuroleptic sensitivity in patients with senile dementia of Lewy body type. BMJ 1992;305(6855):673–678.

    PubMed  CAS  Google Scholar 

  173. Olichney JM, Galasko D, Salmon DP, Hofstetter CR, Hansen LA, Katzman R, et al. Cognitive decline is faster in Lewy body variant than in Alzheimer's disease. Neurology 1998;51(2):351–357.

    PubMed  CAS  Google Scholar 

  174. Alves G, Wentzel-Larsen T, Aarsland D, Larsen JP. Progression of motor impairment and disability in Parkinson disease: a population-based study. Neurology 2005;65(9):1436–1441.

    PubMed  Google Scholar 

  175. Mueller SG, Schuff N, Weiner MW. Evaluation of treatment effects in Alzheimer's and other neurodegenerative diseases by MRI and MRS. NMR Biomed 2006;19(6):655–668.

    PubMed  CAS  Google Scholar 

  176. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage 2000;11(6 Pt 1):805–821.

    PubMed  CAS  Google Scholar 

  177. Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 2001;14(1 Pt 1):21–36.

    PubMed  CAS  Google Scholar 

  178. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33(3):341–355.

    PubMed  CAS  Google Scholar 

  179. Berg D. Marker for a preclinical diagnosis of Parkinson's disease as a basis for neuroprotection. J Neural Transm Suppl 2006(71):123–132.

    PubMed  Google Scholar 

  180. Colloby S, O'Brien J. Functional imaging in Parkinson's disease and dementia with Lewy bodies. J Geriatr Psychiatry Neurol 2004;17(3):158–163.

    PubMed  Google Scholar 

  181. Dagher A, Nagano-Saito A. Functional and anatomical magnetic resonance imaging in Parkinson's disease. Mol Imaging Biol 2007;9(4):234–242.

    PubMed  Google Scholar 

  182. Ravina B, Eidelberg D, Ahlskog JE, Albin RL, Brooks DJ, Carbon M, et al. The role of radiotracer imaging in Parkinson disease. Neurology 2005;64(2):208–215.

    PubMed  CAS  Google Scholar 

  183. Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson's disease. Lancet Neurol 2006;5(1):75–86.

    PubMed  Google Scholar 

  184. Michell AW, Lewis SJ, Foltynie T, Barker RA. Biomarkers and Parkinson's disease. Brain 2004;127(Pt 8):1693–1705.

    PubMed  CAS  Google Scholar 

  185. Ehringer H, Hornykiewicz O. [Distribution of noradrena-line and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system.]. Klin Wochenschr 1960;38:1236–1239.

    PubMed  CAS  Google Scholar 

  186. Scherfler C, Schwarz J, Antonini A, Grosset D, Valldeoriola F, Marek K, et al. Role of DAT-SPECT in the diagnostic work up of Parkinsonism. Mov Disord 2007;22(9):1229–1238.

    PubMed  Google Scholar 

  187. Carbon M, Marie RM. Functional imaging of cognition in Parkinson's disease. Curr Opin Neurol 2003;16(4): 475–480.

    PubMed  Google Scholar 

  188. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986;9:357–381.

    PubMed  CAS  Google Scholar 

  189. Bruck A, Portin R, Lindell A, Laihinen A, Bergman J, Haaparanta M, et al. Positron emission tomography shows that impaired frontal lobe functioning in Parkinson's disease is related to dopaminergic hypofunction in the caudate nucleus. Neurosci Lett 2001;311(2):81–84.

    PubMed  CAS  Google Scholar 

  190. Owen AM, Doyon J, Dagher A, Sadikot A, Evans AC. Abnormal basal ganglia outflow in Parkinson's disease identified with PET. Implications for higher cortical functions. Brain 1998;121 (Pt 5):949–965.

    PubMed  Google Scholar 

  191. Carbon M, Ma Y, Barnes A, Dhawan V, Chaly T, Ghilardi MF, et al. Caudate nucleus: influence of dopaminergic input on sequence learning and brain activation in Parkinsonism. Neuroimage 2004;21(4):1497–1507.

    PubMed  Google Scholar 

  192. Hilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 2005;65(11):1716–1722.

    PubMed  CAS  Google Scholar 

  193. Ito K, Nagano-Saito A, Kato T, Arahata Y, Nakamura A, Kawasumi Y, et al. Striatal and extrastriatal dysfunction in Parkinson's disease with dementia: a 6-[18F]fluoro-L-dopa PET study. Brain 2002;125(Pt 6):1358–1365.

    PubMed  Google Scholar 

  194. Antonini A, Schwarz J, Oertel WH, Pogarell O, Leenders KL. Long-term changes of striatal dopamine D2 receptors in patients with Parkinson's disease: a study with positron emission tomography and [11C]raclopride. Mov Disord 1997;12(1):33–38.

    PubMed  CAS  Google Scholar 

  195. Booij J, Tissingh G, Boer GJ, Speelman JD, Stoof JC, Janssen AG, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson's disease. J Neurol Neurosurg Psychiatry 1997;62(2):133–140.

    PubMed  CAS  Google Scholar 

  196. Kaasinen V, Aalto S, K NA, Hietala J, Sonninen P, Rinne JO. Extrastriatal dopamine D(2) receptors in Parkinson's disease: a longitudinal study. J Neural Transm 2003;110(6):591–601.

    PubMed  CAS  Google Scholar 

  197. Piggott MA, Ballard CG, Dickinson HO, McKeith IG, Perry RH, Perry EK. Thalamic D2 receptors in dementia with Lewy bodies, Parkinson's disease, and Parkinson's disease dementia. Int J Neuropsychopharmacol 2007;10(2):231–244.

    PubMed  CAS  Google Scholar 

  198. Hilker R, Burghaus L, Razai N, Jacobs AH, Szelies B, Heiss WD. Functional brain imaging in combined motor and sleep disorders. J Neurol Sci 2006;248(1–2):223–226.

    PubMed  Google Scholar 

  199. Boeve BF, Silber MH, Saper CB, Ferman TJ, Dickson DW, Parisi JE, et al. Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease. Brain 2007;130(Pt 11):2770–2788.

    PubMed  CAS  Google Scholar 

  200. Happe S, Baier PC, Helmschmied K, Meller J, Tatsch K, Paulus W. Association of daytime sleepiness with nigrostri-atal dopaminergic degeneration in early Parkinson's disease. J Neurol 2007;254(8):1037–1043.

    PubMed  Google Scholar 

  201. Happe S, Pirker W, Klosch G, Sauter C, Zeitlhofer J. Periodic leg movements in patients with Parkinson's disease are associated with reduced striatal dopamine transporter binding. J Neurol 2003;250(1):83–86.

    PubMed  Google Scholar 

  202. Happe S, Anderer P, Pirker W, Klosch G, Gruber G, Saletu B, et al. Sleep microstructure and neurodegeneration as measured by [123I]beta-CIT SPECT in treated patients with Parkinson's disease. J Neurol 2004;251(12):1465–1471.

    PubMed  Google Scholar 

  203. Hilker R, Razai N, Ghaemi M, Weisenbach S, Rudolf J, Szelies B, et al. [18F]fluorodopa uptake in the upper brain-stem measured with positron emission tomography correlates with decreased REM sleep duration in early Parkinson's disease. Clin Neurol Neurosurg 2003;105(4): 262–269.

    PubMed  Google Scholar 

  204. Bohnen NI, Frey KA. Imaging of cholinergic and monoam-inergic neurochemical changes in neurodegenerative disorders. Mol Imaging Biol 2007;9(4):243–257.

    PubMed  Google Scholar 

  205. Fujita M, Ichise M, Zoghbi SS, Liow JS, Ghose S, Vines DC, et al. Widespread decrease of nicotinic acetyl-choline receptors in Parkinson's disease. Ann Neurol 2006;59(1): 174–177.

    PubMed  CAS  Google Scholar 

  206. Kuhl DE, Minoshima S, Fessler JA, Frey KA, Foster NL, Ficaro EP, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer's disease, and Parkinson's disease. Ann Neurol 1996;40(3):399–410.

    PubMed  CAS  Google Scholar 

  207. Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomo-graphic study. Arch Neurol 2003;60(12):1745–1748.

    PubMed  Google Scholar 

  208. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Constantine GM, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson's disease and parkin-sonian dementia. J Neurol 2006;253(2):242–247.

    PubMed  CAS  Google Scholar 

  209. Colloby SJ, Pakrasi S, Firbank MJ, Perry EK, Piggott MA, Owens J, et al. In vivo SPECT imaging of muscarinic ace- tylcholine receptors using (R,R) 123I-QNB in dementia with Lewy bodies and Parkinson's disease dementia. Neuroimage 2006;33(2):423–429.

    PubMed  Google Scholar 

  210. McKeith I, Del Ser T, Spano P, Emre M, Wesnes K, Anand R, et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet 2000;356(9247):2031–2036.

    PubMed  CAS  Google Scholar 

  211. Bohnen NI, Kaufer DI, Hendrickson R, Constantine GM, Mathis CA, Moore RY. Cortical cholinergic denervation is associated with depressive symptoms in Parkinson's disease and parkinsonian dementia. J Neurol Neurosurg Psychiatry 2007;78(6):641–643.

    PubMed  CAS  Google Scholar 

  212. Brooks DJ, Piccini P. Imaging in Parkinson's disease: the role of monoamines in behavior. Biol Psychiatry 2006;59(10):908–918.

    PubMed  CAS  Google Scholar 

  213. Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ. Tremor in Parkinson's disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology 2003;60(4):601–605.

    PubMed  CAS  Google Scholar 

  214. Kim SE, Choi JY, Choe YS, Choi Y, Lee WY. Serotonin transporters in the midbrain of Parkinson's disease patients: a study with 123I-beta-CIT SPECT. J Nucl Med 2003;44(6):870–876.

    PubMed  CAS  Google Scholar 

  215. Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, et al. Preferential loss of serotonin markers in caudate versus putamen in Parkinson's disease. Brain 2008;131(Pt 1):120–131.

    PubMed  Google Scholar 

  216. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson's disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005;128(Pt 6):1314–1322.

    PubMed  Google Scholar 

  217. Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains. Acta Neuropathol 2003;106(6):518–526.

    PubMed  CAS  Google Scholar 

  218. Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, et al. Microglial activation and dopamine terminal loss in early Parkinson's disease. Ann Neurol 2005;57(2):168–175.

    PubMed  CAS  Google Scholar 

  219. Eckert T, Tang C, Eidelberg D. Assessment of the progression of Parkinson's disease: a metabolic network approach. Lancet Neurol 2007;6(10):926–932.

    PubMed  Google Scholar 

  220. Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive function in Parkinson's disease. Neuroimage 2007;34(2): 714–723.

    PubMed  Google Scholar 

  221. Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, et al. Changes in network activity with the progression of Parkinson's disease. Brain 2007;130(Pt 7):1834–1846.

    PubMed  Google Scholar 

  222. Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. Network modulation in the treatment of Parkinson's disease. Brain 2006;129(Pt 10):2667–2678.

    PubMed  Google Scholar 

  223. Mentis MJ, McIntosh AR, Perrine K, Dhawan V, Berlin B, Feigin A, et al. Relationships among the metabolic patterns that correlate with mnemonic, visuospatial, and mood symptoms in Parkinson's disease. Am J Psychiatry 2002;159(5):746–754.

    PubMed  Google Scholar 

  224. Koeppe RA, Gilman S, Joshi A, Liu S, Little R, Junck L, et al. 11C-DTBZ and 18F-FDG PET measures in differentiating dementias. J Nucl Med 2005;46(6):936–944.

    PubMed  CAS  Google Scholar 

  225. Dagher A, Owen AM, Boecker H, Brooks DJ. The role of the striatum and hippocampus in planning: a PET activation study in Parkinson's disease. Brain 2001;124(Pt 5):1020–1032.

    PubMed  CAS  Google Scholar 

  226. Sawamoto N, Honda M, Hanakawa T, Aso T, Inoue M, Toyoda H, et al. Cognitive slowing in Parkinson disease is accompanied by hypofunctioning of the striatum. Neurology 2007;68(13):1062–1068.

    PubMed  CAS  Google Scholar 

  227. Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM. Dopaminergic modulation of high-level cognition in Parkinson's disease: the role of the prefrontal cortex revealed by PET. Brain 2002;125(Pt 3):584–594.

    PubMed  Google Scholar 

  228. Carbon M, Eidelberg D. Functional imaging of sequence learning in Parkinson's disease. J Neurol Sci 2006; 248(1–2):72–77.

    PubMed  Google Scholar 

  229. Marie RM, Lozza C, Chavoix C, Defer GL, Baron JC. Functional imaging of working memory in Parkinson's disease: compensations and deficits. J Neuroimaging 2007;17(4):277–285.

    PubMed  Google Scholar 

  230. Dujardin K, Defebvre L, Duhamel A, Lecouffe P, Rogelet P, Steinling M, et al. Cognitive and SPECT characteristics predict progression of Parkinson's disease in newly diagnosed patients. J Neurol 2004;251(11):1383–1392.

    PubMed  Google Scholar 

  231. Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology 2005;65(11):1708–1715.

    PubMed  CAS  Google Scholar 

  232. Kemp PM, Holmes C. Imaging in dementia with Lewy bodies: a review. Nucl Med Commun 2007;28(7):511–519.

    PubMed  Google Scholar 

  233. Monchi O, Petrides M, Strafella AP, Worsley KJ, Doyon J. Functional role of the basal ganglia in the planning and execution of actions. Ann Neurol 2006;59(2):257–264.

    PubMed  Google Scholar 

  234. Sauer J, ffytche DH, Ballard C, Brown RG, Howard R. Differences between Alzheimer's disease and dementia with Lewy bodies: an fMRI study of task-related brain activity. Brain 2006;129(Pt 7):1780–1788.

    PubMed  Google Scholar 

  235. Mattay VS, Tessitore A, Callicott JH, Bertolino A, Goldberg TE, Chase TN, et al. Dopaminergic modulation of cortical function in patients with Parkinson's disease. Ann Neurol 2002;51(2):156–164.

    PubMed  CAS  Google Scholar 

  236. Stebbins GT, Goetz CG, Carrillo MC, Bangen KJ, Turner DA, Glover GH, et al. Altered cortical visual processing in PD with hallucinations: an fMRI study. Neurology 2004;63(8):1409–1416.

    PubMed  CAS  Google Scholar 

  237. Warmuth-Metz M, Naumann M, Csoti I, Solymosi L. Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy. Arch Neurol 2001;58(7):1076–1079.

    PubMed  CAS  Google Scholar 

  238. Dormont D, Ricciardi KG, Tande D, Parain K, Menuel C, Galanaud D, et al. Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 2004;25(9):1516–1523.

    PubMed  Google Scholar 

  239. Minati L, Grisoli M, Carella F, De Simone T, Bruzzone MG, Savoiardo M. Imaging degeneration of the substantia nigra in Parkinson disease with inversion-recovery MR imaging. AJNR Am J Neuroradiol 2007;28(2):309–313.

    PubMed  CAS  Google Scholar 

  240. Oikawa H, Sasaki M, Tamakawa Y, Ehara S, Tohyama K. The substantia nigra in Parkinson disease: proton density- weighted spin-echo and fast short inversion time inversion- recovery MR findings. AJNR Am J Neuroradiol 2002;23(10):1747–1756.

    PubMed  Google Scholar 

  241. Burton EJ, McKeith IG, Burn DJ, O'Brien JT. Brain atrophy rates in Parkinson's disease with and without dementia using serial magnetic resonance imaging. Mov Disord 2005;20(12):1571–1576.

    PubMed  Google Scholar 

  242. Beyer MK, Janvin CC, Larsen JP, Aarsland D. A magnetic resonance imaging study of patients with Parkinson's disease with mild cognitive impairment and dementia using voxel-based morphometry. J Neurol Neurosurg Psychiatry 2007;78(3):254–259.

    PubMed  Google Scholar 

  243. Burton EJ, McKeith IG, Burn DJ, Williams ED, O'Brien JT. Cerebral atrophy in Parkinson's disease with and without dementia: a comparison with Alzheimer's disease, dementia with Lewy bodies and controls. Brain 2004;127(Pt 4):791–800.

    PubMed  Google Scholar 

  244. Junque C, Ramirez-Ruiz B, Tolosa E, Summerfield C, Marti MJ, Pastor P, et al. Amygdalar and hippocampal MRI volumetric reductions in Parkinson's disease with dementia. Mov Disord 2005;20(5):540–544.

    PubMed  Google Scholar 

  245. Nagano-Saito A, Washimi Y, Arahata Y, Kachi T, Lerch JP, Evans AC, et al. Cerebral atrophy and its relation to cognitive impairment in Parkinson disease. Neurology 2005;64(2):224–229.

    PubMed  CAS  Google Scholar 

  246. Summerfield C, Junque C, Tolosa E, Salgado-Pineda P, Gomez-Anson B, Marti MJ, et al. Structural brain changes in Parkinson disease with dementia: a voxel-based mor-phometry study. Arch Neurol 2005;62(2):281–285.

    PubMed  Google Scholar 

  247. Tam CW, Burton EJ, McKeith IG, Burn DJ, O'Brien JT. Temporal lobe atrophy on MRI in Parkinson disease with dementia: a comparison with Alzheimer disease and dementia with Lewy bodies. Neurology 2005;64(5): 861–865.

    PubMed  CAS  Google Scholar 

  248. Whitwell JL, Weigand SD, Shiung MM, Boeve BF, Ferman TJ, Smith GE, et al. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease. Brain 2007;130(Pt 3):708–719.

    PubMed  Google Scholar 

  249. Hashimoto M, Kitagaki H, Imamura T, Hirono N, Shimomura T, Kazui H, et al. Medial temporal and whole-brain atrophy in dementia with Lewy bodies: a volumetric MRI study. Neurology 1998;51(2):357–362.

    PubMed  CAS  Google Scholar 

  250. Janvin CC, Aarsland D, Larsen JP. Cognitive predictors of dementia in Parkinson's disease: a community-based, 4-year longitudinal study. J Geriatr Psychiatry Neurol 2005;18(3):149–154.

    PubMed  Google Scholar 

  251. Dalaker T, Zivadinov R, Larsen J, Beyer M, Cox J, Alves G, et al. Cingulate Atrophy Predicts Mild Cognitive Impairment in Early Parkinson Disease. A Voxel-based Morphometry Study. Neurology 2008;70(Suppl 1):P05.137.

    Google Scholar 

  252. Borroni B, Anchisi D, Paghera B, Vicini B, Kerrouche N, Garibotto V, et al. Combined 99mTc-ECD SPECT and neuropsychological studies in MCI for the assessment of conversion to AD. Neurobiol Aging 2006;27(1):24–31.

    PubMed  CAS  Google Scholar 

  253. Meyer JS, Huang J, Chowdhury MH. MRI confirms mild cognitive impairments prodromal for Alzheimer's, vascular and Parkinson-Lewy body dementias. J Neurol Sci 2007;257(1–2):97–104.

    PubMed  Google Scholar 

  254. Almeida OP, Burton EJ, McKeith I, Gholkar A, Burn D, O'Brien JT. MRI study of caudate nucleus volume in Parkinson's disease with and without dementia with Lewy bodies and Alzheimer's disease. Dement Geriatr Cogn Disord 2003;16(2):57–63.

    PubMed  Google Scholar 

  255. Beyer MK, Larsen JP, Aarsland D. Gray matter atrophy in Parkinson disease with dementia and dementia with Lewy bodies. Neurology 2007;69(8):747–754.

    PubMed  Google Scholar 

  256. Seppi K, Rascol O. Dementia with Lewy bodies and Parkinson disease with dementia: can MRI make the difference? Neurology 2007;69(8):717–718.

    PubMed  Google Scholar 

  257. Ramirez-Ruiz B, Marti MJ, Tolosa E, Gimenez M, Bargallo N, Valldeoriola F, et al. Cerebral atrophy in Parkinson's disease patients with visual hallucinations. Eur J Neurol 2007;14(7):750–756.

    PubMed  CAS  Google Scholar 

  258. Feldmann A, Illes Z, Kosztolanyi P, Illes E, Mike A, Kover F, et al. Morphometric changes of gray matter in Parkinson's disease with depression: a voxel-based morphometry study. Mov Disord 2008;23(1):42–46.

    PubMed  Google Scholar 

  259. Beyer MK, Aarsland D, Greve OJ, Larsen JP. Visual rating of white matter hyperintensities in Parkinson's disease. Mov Disord 2006;21(2):223–229.

    PubMed  Google Scholar 

  260. Burton EJ, McKeith IG, Burn DJ, Firbank MJ, O'Brien JT. Progression of white matter hyperintensities in Alzheimer disease, dementia with lewy bodies, and Parkinson disease dementia: a comparison with normal aging. Am J Geriatr Psychiatry 2006;14(10):842–849.

    PubMed  Google Scholar 

  261. Dalaker T, Larsen J, Bergsland N, Beyer M, Alves G, Dwyer M, et al. Extent of brain atrophy and white matter hyperin- tensities in early Parkinson Disease. A large case-control study. Neurology 2008;70(Suppl 1):P08.023,A437.

    Google Scholar 

  262. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12(3):189–198.

    PubMed  CAS  Google Scholar 

  263. Marshall GA, Shchelchkov E, Kaufer DI, Ivanco LS, Bohnen NI. White matter hyperintensities and cortical ace- tylcholinesterase activity in parkinsonian dementia. Acta Neurol Scand 2006;113(2):87–91.

    PubMed  CAS  Google Scholar 

  264. Clarke CE, Lowry M. Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinso-nian syndromes. Eur J Neurol 2001;8(6):573–577.

    PubMed  CAS  Google Scholar 

  265. Summerfield C, Gomez-Anson B, Tolosa E, Mercader JM, Marti MJ, Pastor P, et al. Dementia in Parkinson disease: a proton magnetic resonance spectroscopy study. Arch Neurol 2002;59(9):1415–1420.

    PubMed  Google Scholar 

  266. Molina JA, Garcia-Segura JM, Benito-Leon J, Gomez- Escalonilla C, del Ser T, Martinez V, et al. Proton magnetic resonance spectroscopy in dementia with Lewy bodies. Eur Neurol 2002;48(3):158–163.

    PubMed  CAS  Google Scholar 

  267. Martin WR. MR spectroscopy in neurodegenerative disease. Mol Imaging Biol 2007;9(4):196–203.

    PubMed  Google Scholar 

  268. Hu MT, Taylor-Robinson SD, Chaudhuri KR, Bell JD, Labbe C, Cunningham VJ, et al. Cortical dysfunction in non-demented Parkinson's disease patients: a combined (31)P-MRS and (18)FDG-PET study. Brain 2000;123 (Pt 2):340–352.

    PubMed  Google Scholar 

  269. Rango M, Arighi A, Biondetti P, Barberis B, Bonifati C, Blandini F, et al. Magnetic resonance spectroscopy in Parkinson's disease and parkinsonian syndromes. Funct Neurol 2007;22(2):75–79.

    PubMed  Google Scholar 

  270. Firbank MJ, Blamire AM, Krishnan MS, Teodorczuk A, English P, Gholkar A, et al. Atrophy is associated with posterior cingulate white matter disruption in dementia with Lewy bodies and Alzheimer's disease. Neuroimage 2007;36(1):1–7.

    PubMed  Google Scholar 

  271. Matsui H, Nishinaka K, Oda M, Niikawa H, Kubori T, Udaka F. Dementia in Parkinson's disease: diffusion tensor imaging. Acta Neurol Scand 2007;116(3):177–181.

    PubMed  CAS  Google Scholar 

  272. Berg D, Merz B, Reiners K, Naumann M, Becker G. Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson's disease. Mov Disord 2005;20(3):383–385.

    PubMed  Google Scholar 

  273. Ressner P, Skoloudik D, Hlustik P, Kanovsky P. Hyperechogenicity of the substantia nigra in Parkinson's disease. J Neuroimaging 2007;17(2):164–167.

    PubMed  Google Scholar 

  274. Murthy JM. Acute disseminated encephalomyelitis. Neurol India 2002;50(3):238–243.

    PubMed  CAS  Google Scholar 

  275. Bakshi R, Kinkel PR, Mechtler LL, Bates VE, Lindsay BD, Esposito SE, et al. Magnetic resonance imaging findings in 22 cases of myelitis: comparison between patients with and without multiple sclerosis. Eur J Neurol 1998;5(1):35–48.

    PubMed  Google Scholar 

  276. Wingerchuk DM, Weinshenker BG. Neuromyelitis optica: clinical predictors of a relapsing course and survival. Neurology 2003;60(5):848–853.

    PubMed  Google Scholar 

  277. Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 1991;41(5):685–691.

    PubMed  CAS  Google Scholar 

  278. Benedict RH, Fischer JS, Archibald CJ, Arnett PA, Beatty WW, Bobholz J, et al. Minimal neuropsychological assessment of MS patients: a consensus approach. Clin Neuropsychol 2002;16(3):381–397.

    PubMed  Google Scholar 

  279. Rao SM. Neuropsychology of multiple sclerosis. Curr Opin Neurol 1995;8(3):216–220.

    PubMed  CAS  Google Scholar 

  280. Benedict RH, Wahlig E, Bakshi R, Fishman I, Munschauer F, Zivadinov R, et al. Predicting quality of life in multiple sclerosis: accounting for physical disability, fatigue, cognition, mood disorder, personality, and behavior change. J Neurol Sci 2005;231(1–2):29–34.

    PubMed  Google Scholar 

  281. Kraus JA, Schutze C, Brokate B, Kroger B, Schwendemann G, Hildebrandt H. Discriminant analysis of the cognitive performance profile of MS patients differentiates their clinical course. J Neurol 2005;252(7):808–813.

    PubMed  Google Scholar 

  282. DeLuca J, Gaudino EA, Diamond BJ, Christodoulou C, Engel RA. Acquisition and storage deficits in multiple sclerosis. J Clin Exp Neuropsychol 1998;20(3):376–390.

    PubMed  CAS  Google Scholar 

  283. Foong J, Rozewicz L, Quaghebeur G, Thompson AJ, Miller DH, Ron MA. Neuropsychological deficits in multiple sclerosis after acute relapse. J Neurol Neurosurg Psychiatry 1998;64(4):529–532.

    PubMed  CAS  Google Scholar 

  284. Tekok-Kilic A, Benedict RH, Zivadinov R. Update on the relationships between neuropsychological dysfunction and structural MRI in multiple sclerosis. Expert Rev Neurother 2006;6(3):323–331.

    PubMed  Google Scholar 

  285. Rao SM, Leo GJ, Haughton VM, St Aubin-Faubert P, Bernardin L. Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology 1989;39(2 Pt 1):161–166.

    PubMed  CAS  Google Scholar 

  286. Sperling RA, Guttmann CR, Hohol MJ, Warfield SK, Jakab M, Parente M, et al. Regional magnetic resonance imaging lesion burden and cognitive function in multiple sclerosis: a longitudinal study. Arch Neurol 2001;58(1):115–121.

    PubMed  CAS  Google Scholar 

  287. Benedict RH, Carone DA. Brain Atrophy, Cognitive Dysfunction and Emotional Disturbances in Multiple Sclerosis. In: Zivadinov R, Bakshi R, eds. Brain and Spinal Cord Atrophy in Multiple Sclerosis. Hauppauge, NY: Nova Biomedical Books, 2004: 137–166.

    Google Scholar 

  288. Hohol MJ, Guttmann CR, Orav J, Mackin GA, Kikinis R, Khoury SJ, et al. Serial neuropsychological assessment and magnetic resonance imaging analysis in multiple sclerosis. Arch Neurol 1997;54(8):1018–1025.

    PubMed  CAS  Google Scholar 

  289. Bermel RA, Bakshi R, Tjoa C, Puli SR, Jacobs L. Bicaudate ratio as a magnetic resonance imaging marker of brain atrophy in multiple sclerosis. Arch Neurol 2002;59(2):275–280.

    PubMed  Google Scholar 

  290. Benedict RH, Weinstock-Guttman B, Fishman I, Sharma J, Tjoa CW, Bakshi R. Prediction of neuropsychological impairment in multiple sclerosis: comparison of conventional magnetic resonance imaging measures of atrophy and lesion burden. Arch Neurol 2004;61(2):226–230.

    PubMed  Google Scholar 

  291. Zivadinov R, Locatelli L, Stival B, Bratina A, Grop A, Nasuelli D, et al. Normalized regional brain atrophy measurements in multiple sclerosis. Neuroradiology 2003;45(11):793–798.

    PubMed  Google Scholar 

  292. Simon JH. Linear and regional measures of brain atrophy in multiple sclerosis. In: Zivadinov R, Bakshi R, eds. Brain and Spinal Cord Atrophy in Multiple Sclerosis. Hauppauge, NY: Nova Biomedical Books, 2004: 15–28.

    Google Scholar 

  293. Locatelli L, Zivadinov R, Grop A, Zorzon M. Frontal parenchymal atrophy measures in multiple sclerosis. Mult Scler 2004;10(5):562–568.

    PubMed  Google Scholar 

  294. Carone DA, Benedict RH, Dwyer MG, Cookfair DL, Srinivasaraghavan B, Tjoa CW, et al. Semi-automatic brain region extraction (SABRE) reveals superior cortical and deep gray matter atrophy in MS. Neuroimage 2006;29(2):505–514.

    PubMed  CAS  Google Scholar 

  295. Tekok-Kilic A, Benedict RH, Weinstock-Guttman B, Dwyer MG, Carone D, Srinivasaraghavan B, et al. Independent contributions of cortical gray matter atrophy and ventricle enlargement for predicting neuropsychological impairment in multiple sclerosis. Neuroimage 2007;36: 1294–1130.

    PubMed  Google Scholar 

  296. Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain 2000;123 (Pt 9):1845–1849.

    PubMed  Google Scholar 

  297. Houtchens MK, Benedict RH, Killiany R, Sharma J, Jaisani Z, Singh B, et al. Thalamic atrophy and cognition in multiple sclerosis. Neurology 2007;69(12):1213–1223.

    PubMed  CAS  Google Scholar 

  298. Pagani E, Rocca MA, Gallo A, Rovaris M, Martinelli V, Comi G, et al. Regional brain atrophy evolves differently in patients with multiple sclerosis according to clinical pheno-type. AJNR Am J Neuroradiol 2005;26(2):341–346.

    PubMed  Google Scholar 

  299. Horakova D, Cox JL, Havrdova E, Hussein S, Dolezal O, Cookfair D, et al. Evolution of different MRI measures in patients with active relapsing-remitting multiple sclerosis over 2 and 5 years: a case-control study. J Neurol Neurosurg Psychiatry 2008;79(4):407–414.

    PubMed  CAS  Google Scholar 

  300. Amato MP, Bartolozzi ML, Zipoli V, Portaccio E, Mortilla M, Guidi L, et al. Neocortical volume decrease in relapsing-remitting MS patients with mild cognitive impairment. Neurology 2004;63(1):89–93.

    PubMed  CAS  Google Scholar 

  301. Zivadinov R, De Masi R, Nasuelli D, Bragadin LM, Ukmar M, Pozzi-Mucelli RS, et al. MRI techniques and cognitive impairment in the early phase of relapsing-remitting multiple sclerosis. Neuroradiology 2001;43(4):272–278.

    PubMed  CAS  Google Scholar 

  302. Christodoulou C, Krupp LB, Liang Z, Huang W, Melville P, Roque C, et al. Cognitive performance and MR markers of cerebral injury in cognitively impaired MS patients. Neurology 2003;60(11):1793–1798.

    PubMed  CAS  Google Scholar 

  303. Benedict RH, Bruce J, Dwyer MG, Weinstock-Guttman B, Tjoa C, Tavazzi E, et al. Diffusion-weighted imaging predicts cognitive impairment in multiple sclerosis. Mult Scler 2007;13(6):722–730.

    PubMed  Google Scholar 

  304. Zivadinov R, Bakshi R. Role of magnetic resonance imaging in the diagnosis and prognosis of multiple sclerosis. In: Olek M, ed. Multiple Sclerosis, Etiology, Diagnosis, and New Treatment Strategies. Totowa, NJ: Humana Press, 2005: 55–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dalaker, T.O., Beyer, M.K., Stosic, M., Zivadinov, R. (2009). Role of Imaging Techniques in Discerning Neurobehavioral Changes in Ischemic, Neurodegenerative and Demyelinating Disorders. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9831-4_2

Download citation

Publish with us

Policies and ethics