Skip to main content

Hormonotherapy of Bone Metastases

  • Chapter
Book cover Bone Metastases

Part of the book series: Cancer Metastasis – Biology and Treatment ((CMBT,volume 12))

  • 962 Accesses

Abstract

Hormone-dependent tumors have a proclivity to metastasize to bone where they form two distinct types of bone lesions, which depend on whether osteoclastic (breast and thyroid cancer) or osteoblastic (prostate cancer) activity prevails. Regardless the types of bone lesion, these cancers usually behave indolently and share in common a significant sensitivity to surgical or medical hormone depleting therapies. Such therapeutic strategies are castration interventions and administration of selective inhibitors of hormone biosynthesis (aromatase inhibitors for breast cancer) or hormone receptors (tamoxifen for breast and anti-androgens for prostate cancer). Hormonotherapy of hormone-sensitive bone metastases is typically shown effective over protracted periods of time and it usually outperforms chemotherapy in benefiting these patients. Therefore hormonotherapy should be considered as an upfront treatment option for patients with such cancers. Cancer research is currently investigating the molecular mechanisms, which underlie the apparent close ties of hormonal driven cancers and the microenvironment of bone. Improvements in the biological understanding are hoped to boost clinical research into developing most optimal hormonal management of hormone sensitive bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosetti C, Bertuccio P, Levi F, et al. (2008) Cancer mortality in the European Union, 1970–2003, with a joinpoint analysis. Ann Oncol 19:631–40

    Article  PubMed  CAS  Google Scholar 

  2. Hess KR, Pusztai L, Buzdar AU, et al. (2003) Estrogen receptors and distinct patterns of breast cancer relapse. Breast Cancer Res Treat 78: 105–18

    Article  PubMed  CAS  Google Scholar 

  3. Hortobagyi GN, Libshitz HI, Seabold JE (1984) Osseous metastases of breast cancer. Clinical, biochemical, radiographic, and scintigraphic evaluation of response to therapy. Cancer 53: 577–82

    CAS  Google Scholar 

  4. Kinsey T, Jemal A, Liff J, et al. (2008) Secular trends in mortality from common cancers in the United States by educational attainment, 1993–2001. J Natl Cancer Inst 100: 1003–12

    Article  PubMed  Google Scholar 

  5. Loberg RD, Logothetis CJ, Keller ET, et al. (2005) Pathogenesis and treatment of prostate cancer bone metastases:targeting the lethal phenotype. J Clin Oncol 23: 8232–41

    Article  PubMed  CAS  Google Scholar 

  6. Pittas AG, Adler M, Fazzari M, et al. (2000) Bone metastases from thyroid carcinoma: clinical characteristics and prognostic variables in one hundred forty-six patients. Thyroid 10: 261–8

    Article  PubMed  CAS  Google Scholar 

  7. Fuchs E (1882) Das Sarkom des Uvealtractus. Graefe’s Archiv für Ophthalmologie XII

    Google Scholar 

  8. Paget S (1889) The distribution of seondary growths in cancer of the breasts. Lancet 133: 571–73

    Article  Google Scholar 

  9. Fidler IJ (2003) Understanding bone metastases: the key to the effective treatment of prostate cancer. Clin Adv Hematol Oncol 1: 278–9

    PubMed  Google Scholar 

  10. Hofbauer LC, Rachner T, Singh SK (2008) Fatal attraction: why breast cancer cells home to bone. Breast Cancer Res 10:101

    Article  PubMed  CAS  Google Scholar 

  11. Logothetis CJ, Navone NM, Lin SH (2008) Understanding the biology of bone metastases: key to the effective treatment of prostate cancer. Clin Cancer Res 14: 1599–602

    Article  PubMed  CAS  Google Scholar 

  12. Harvey HA (1997) Issues concerning the role of chemotherapy and hormonal therapy of bone metastases from breast carcinoma. Cancer 80: 1646–51

    Article  PubMed  CAS  Google Scholar 

  13. Muss HB (1992) Endocrine therapy for advanced breast cancer: a review. Breast Cancer Res Treat 21: 15–26

    Article  PubMed  CAS  Google Scholar 

  14. Ryan CJ, Elkin EP, Cowan J, et al. (2007) Initial treatment patterns and outcome of contemporary prostate cancer patients with bone metastases at initial presentation: data from CaPSURE. Cancer 110: 81–6

    Article  PubMed  Google Scholar 

  15. Clezardin P, Teti A (2007) Bone metastasis: pathogenesis and therapeutic implications. Clin Exp Metastasis 24: 599–608

    Article  PubMed  CAS  Google Scholar 

  16. Kakonen SM, Mundy GR (2003) Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 97: 834–9

    Article  PubMed  Google Scholar 

  17. Keller ET, Brown J (2004) Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. J Cell Biochem 91: 718–29

    Article  PubMed  CAS  Google Scholar 

  18. Keller ET, Zhang J, Cooper CR, et al. (2001) Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev 20: 333–49

    Article  PubMed  CAS  Google Scholar 

  19. Parfitt AM (1995) Bone remodeling, normal and abnormal: a biological basis for the understanding of cancer-related bone disease and its treatment. Can J Oncol 5(Suppl 1): 1–10

    Google Scholar 

  20. Elte JW, Bijvoet OL, Cleton FJ, et al. (1986) Osteolytic bone metastases in breast carcinoma pathogenesis, morbidity and bisphosphonate treatment. Eur J Cancer Clin Oncol 22: 493–500

    Article  PubMed  CAS  Google Scholar 

  21. Guo Y, Tiedemann K, Khalil JA, et al. (2008) Osteoclast precursors acquire sensitivity to breast cancer derived factors early in differentiation. Bone 43: 386–93

    Article  PubMed  CAS  Google Scholar 

  22. Hall CL, Bafico A, Dai J, et al. (2005) Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res 65: 7554–60

    PubMed  CAS  Google Scholar 

  23. McCormack KR (1966) Bone metastases from thyroid carcinoma. Cancer 19: 181–4

    Article  PubMed  CAS  Google Scholar 

  24. Yoneda T, Sasaki A, Mundy GR (1994) Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat 32: 73–84

    Article  PubMed  CAS  Google Scholar 

  25. Cayla J, Rondier J, Jabre E, et al. (1972) Osteolytic metastases in cancer of the prostate. Ann Med Interne (Paris) 123: 307–22

    CAS  Google Scholar 

  26. Fogelman I (2005) Osteoblastic bone metastases in breast cancer: is not seeing believing? Eur J Nucl Med Mol Imaging 32: 1250–2

    Article  PubMed  Google Scholar 

  27. Guise TA, Yin JJ, Mohammad KS (2003) Role of endothelin-1 in osteoblastic bone metastases. Cancer 97: 779–84

    Article  PubMed  Google Scholar 

  28. Rabbani SA, Gladu J, Harakidas P, et al. (1999) Over-production of parathyroid hormone-related peptide results in increased osteolytic skeletal metastasis by prostate cancer cells in vivo. Int J Cancer 80: 257–64

    Article  PubMed  CAS  Google Scholar 

  29. Coleman RE, Rubens RD (1985) Bone metastases and breast cancer. Cancer Treat Rev 12: 251–70

    Article  PubMed  CAS  Google Scholar 

  30. Akhtari M, Mansuri J, Newman KA, et al. (2008) Biology of breast cancer bone metastasis. Cancer Biol Ther 7: 3–9

    PubMed  CAS  Google Scholar 

  31. Jemal A, Siegel R, Ward E, et al. (2008) Cancer statistics, 2008. CA Cancer J Clin 58: 71–96

    Article  PubMed  Google Scholar 

  32. Pujol P, Hilsenbeck SG, Chamness GC, et al. (1994) Rising levels of estrogen receptor in breast cancer over 2 decades. Cancer 74: 1601–6

    Article  PubMed  CAS  Google Scholar 

  33. Salesi N, Carlini P, Ruggeri EM, et al. (2005) Prostate cancer: the role of hormonal therapy. J Exp Clin Cancer Res 24: 175–80

    PubMed  CAS  Google Scholar 

  34. Briasoulis E, Karavasilis V, Kostadima L, et al. (2004) Metastatic breast carcinoma confined to bone: portrait of a clinical entity. Cancer 101: 1524–8

    Article  PubMed  Google Scholar 

  35. McGuire WL (1973) Estrogen receptors in human breast cancer. J Clin Invest 52: 73–7

    Article  PubMed  CAS  Google Scholar 

  36. Pound CR, Partin AW, Eisenberger MA, et al. (1999) Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281: 1591–7

    Article  PubMed  CAS  Google Scholar 

  37. Sherry MM, Greco FA, Johnson DH, et al. (1986) Metastatic breast cancer confined to the skeletal system. An indolent disease. Am J Med 81: 381–6

    CAS  Google Scholar 

  38. Huben RP (1992) Hormone therapy of prostatic bone metastases. Adv Exp Med Biol 324: 305–16

    PubMed  CAS  Google Scholar 

  39. Nielsen OS, Munro AJ, Tannock IF (1991) Bone metastases: pathophysiology and management policy. J Clin Oncol 9: 509–24

    PubMed  CAS  Google Scholar 

  40. Tannock IF (1985) Is there evidence that chemotherapy is of benefit to patients with carcinoma of the prostate? J Clin Oncol 3: 1013–21

    PubMed  CAS  Google Scholar 

  41. Body JJ (1992) Metastatic bone disease: clinical and therapeutic aspects. Bone 13: S57–62

    Article  PubMed  Google Scholar 

  42. Clamp A, Danson S, Nguyen H, et al. (2004) Assessment of therapeutic response in patients with metastatic bone disease. Lancet Oncol 5: 607–16

    Article  PubMed  Google Scholar 

  43. Ingle JN, Ahmann DL, Green SJ, et al. (1981) Randomized clinical trial of diethylstilbestrol versus tamoxifen in postmenopausal women with advanced breast cancer. N Engl J Med 304: 16–21

    PubMed  CAS  Google Scholar 

  44. Bubley GJ, Carducci M, Dahut W, et al. (1999) Eligibility and response guidelines for phase II clinical trials in androgen-independent prostate cancer: recommendations from the Prostate-Specific Antigen Working Group. J Clin Oncol 17: 3461–7

    PubMed  CAS  Google Scholar 

  45. Beatson G (1896) On the treatment of inoperable cases of carcinoma of the mamma: Suggestions for a new method of treatment, with illustrative cases. Lancet 2:107

    Google Scholar 

  46. Fracchia AA, Farrow JH, Miller TR, et al. (1971) Hypophysectomy as compared with adrenalectomy in the treatment of advanced carcinoma of the breast. Surg Gynecol Obstet 133: 241–6

    PubMed  CAS  Google Scholar 

  47. Pearson OH, Ray BS (1959) Results of hypophysectomy in the treatment of metastatic mammary carcinoma. Cancer 12: 85–92

    Article  PubMed  CAS  Google Scholar 

  48. Fracchia AA, Randall HT, Farrow JH (1967) The results of adrenalectomy in advanced breast cancer in 500 consecutive patients. Surg Gynecol Obstet 125: 747–56

    PubMed  CAS  Google Scholar 

  49. Nemoto T, Patel J, Rosner D, et al. (1984) Tamoxifen (Nolvadex) versus adrenalectomy in metastatic breast cancer. Cancer 53: 1333–5

    Article  PubMed  CAS  Google Scholar 

  50. Santen RJ, Worgul TJ, Samojlik E, et al. (1981) A randomized trial comparing surgical adrenalectomy with aminoglutethimide plus hydrocortisone in women with advanced breast cancer. N Engl J Med 305: 545–51

    Article  PubMed  CAS  Google Scholar 

  51. Kennedy BJ (1965) Diethylstilbestrol Versus Testosterone Propionate Therapy in Advanced Breast Cancer. Surg Gynecol Obstet 120: 1246–50

    PubMed  CAS  Google Scholar 

  52. Goldenberg IS, Hayes MA, Morin JE (1965) Hormonal Therapy of Metastatic Female Breast Carcinoma. V. Phenol,4,4′-(Dl-1,2-Diethyl-Ethylene)Di- and Androst-4-En-3-One, 9-Chloro-11-Beta, 17-Beta-Dihydroxy-17-Methyl. Cancer 18: 447–9

    Article  PubMed  CAS  Google Scholar 

  53. Gockerman JP, Spremulli EN, Raney M, et al. (1986) Randomized comparison of tamoxifen versus diethylstilbestrol in estrogen receptor-positive or -unknown metastatic breast cancer: a Southeastern Cancer Study Group trial. Cancer Treat Rep 70: 1199–203

    PubMed  CAS  Google Scholar 

  54. Jochimsen PR, Ness SJ, Sherman BM (1978) Results and merit of estrogen receptor data derived from metastatic tumors of the breast. Surg Gynecol Obstet 147: 842–4

    PubMed  CAS  Google Scholar 

  55. Lawrence BV, Lipton A, Harvey HA, et al. (1980) Influence of estrogen receptor status on response of metastatic breast cancer to aminoglutethimide therapy. Cancer 45: 786–91

    Article  PubMed  CAS  Google Scholar 

  56. Kataja V, Castiglione M (2008) Locally recurrent or metastatic breast cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 19:ii 11–3

    Google Scholar 

  57. Sunderland MC, Osborne CK (1991) Tamoxifen in premenopausal patients with metastatic breast cancer: a review. J Clin Oncol 9: 1283–97

    PubMed  CAS  Google Scholar 

  58. Furr BJ, Jordan VC (1984) The pharmacology and clinical uses of tamoxifen. Pharmacol Ther 25: 127–205

    Article  PubMed  CAS  Google Scholar 

  59. Lerner HJ, Band PR, Israel L, et al. (1976) Phase II study of tamoxifen: report of 74 patients with stage IV breast cancer. Cancer Treat Rep 60: 1431–5

    PubMed  CAS  Google Scholar 

  60. Gill PG, Gebski V, Snyder R, et al. (1993) Randomized comparison of the effects of tamoxifen, megestrol acetate, or tamoxifen plus megestrol acetate on treatment response and survival in patients with metastatic breast cancer. Ann Oncol 4: 741–4

    PubMed  CAS  Google Scholar 

  61. Paterson AH, Hanson J, Pritchard KI, et al. (1990) Comparison of antiestrogen and progestogen therapy for initial treatment and consequences of their combination for second-line treatment of recurrent breast cancer. Semin Oncol 17: 52–62

    PubMed  CAS  Google Scholar 

  62. Stuart-Harris RC, Smith IE (1984) Aminoglutethimide in the treatment of advanced breast cancer. Cancer Treat Rev 11: 189–204

    Article  PubMed  CAS  Google Scholar 

  63. Wander HE, Nagel GA, Blossey HC, et al. (1986) Aminoglutethimide and medroxyprogesterone acetate in the treatment of patients with advanced breast cancer. A phase II study of the Association of Medical Oncology of the German Cancer Society (AIO). Cancer 58: 1985–9

    Article  PubMed  CAS  Google Scholar 

  64. Hortobagyi GN, Buzdar AU, Frye D, et al. (1985) Oral medroxyprogesterone acetate in the treatment of metastatic breast cancer. Breast Cancer Res Treat 5: 321–6

    Article  PubMed  CAS  Google Scholar 

  65. Muss HB, Wells HB, Paschold EH, et al. (1988) Megestrol acetate versus tamoxifen in advanced breast cancer: 5-year analysis – a phase III trial of the Piedmont Oncology Association. J Clin Oncol 6: 1098–106

    PubMed  CAS  Google Scholar 

  66. van Veelen H, Willemse PH, Tjabbes T, et al. (1986) Oral high-dose medroxyprogesterone acetate versus tamoxifen. A randomized crossover trial in postmenopausal patients with advanced breast cancer. Cancer 58: 7–13

    Google Scholar 

  67. Simpson ER, Clyne C, Rubin G, et al. (2002) Aromatase–a brief overview. Annu Rev Physiol 64: 93–127

    Article  PubMed  CAS  Google Scholar 

  68. Brodie AM, Njar VC (1998) Aromatase inhibitors in advanced breast cancer: mechanism of action and clinical implications. J Steroid Biochem Mol Biol 66: 1–10

    Article  PubMed  CAS  Google Scholar 

  69. Carpenter R, Miller WR (2005) Role of aromatase inhibitors in breast cancer. Br J Cancer 93: S1–5

    Article  PubMed  CAS  Google Scholar 

  70. Lonning PE, Dowsett M, Powles TJ (1990) Postmenopausal estrogen synthesis and metabolism: alterations caused by aromatase inhibitors used for the treatment of breast cancer. J Steroid Biochem 35: 355–66

    Article  PubMed  CAS  Google Scholar 

  71. Smith IE, Dowsett M (2003) Aromatase inhibitors in breast cancer. N Engl J Med 348: 2431–42

    Article  PubMed  CAS  Google Scholar 

  72. Mouridsen H, Gershanovich M, Sun Y, et al. (2001) Superior efficacy of letrozole versus tamoxifen as first-line therapy for postmenopausal women with advanced breast cancer: results of a phase III study of the International Letrozole Breast Cancer Group. J Clin Oncol 19: 2596–606

    PubMed  CAS  Google Scholar 

  73. Mouridsen H, Sun Y, Gershanovich M, et al. (2004) Superiority of letrozole to tamoxifen in the first-line treatment of advanced breast cancer: evidence from metastatic subgroups and a test of functional ability. Oncologist 9: 489–96

    Article  PubMed  CAS  Google Scholar 

  74. Buzdar AU, Smith R, Vogel C, et al. (1996) Fadrozole HCL (CGS-16949A) versus megestrol acetate treatment of postmenopausal patients with metastatic breast carcinoma: results of two randomized double blind controlled multi institutional trials. Cancer 77: 2503–13

    Article  PubMed  CAS  Google Scholar 

  75. Mouridsen H, Chaudri-Ross HA (2004) Efficacy of first-line letrozole versus tamoxifen as a function of age in postmenopausal women with advanced breast cancer. Oncologist 9: 497–506

    Article  PubMed  CAS  Google Scholar 

  76. Mauri D, Pavlidis N, Polyzos NP, et al. (2006) Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J Natl Cancer Inst 98: 1285–91

    PubMed  CAS  Google Scholar 

  77. Iino Y, Takeo T, Sugamata N, et al. (1995) Oral high-dose medroxyprogesterone acetate treatment for recurrent breast cancer. Anticancer Res 15: 1061–4

    PubMed  CAS  Google Scholar 

  78. Blackledge GR, Latief T, Mould JJ, et al. (1986) Phase II evaluation of megestrol acetate in previously treated patients with advanced breast cancer: relationship of response to previous treatment. Eur J Cancer Clin Oncol 22: 1091–4

    Article  PubMed  CAS  Google Scholar 

  79. Smith IE, Macaulay V (1985) Comparison of different endocrine therapies in management of bone metastases from breast carcinoma. J R Soc Med 78: 15–7

    PubMed  Google Scholar 

  80. Griffiths CT, Hall TC, Saba Z, et al. (1973) Preliminary trial of aminoglutethimide in breast cancer. Cancer 32: 31–7

    Article  PubMed  CAS  Google Scholar 

  81. Lipton A, Harvey HA, Santen RJ, et al. (1982) A randomized trial of aminoglutethimide versus tamoxifen in metastatic breast cancer. Cancer 50: 2265–8

    Article  PubMed  CAS  Google Scholar 

  82. Smith IE, Harris AL, Morgan M, et al. (1981) Tamoxifen versus aminoglutethimide in advanced breast carcinoma: a randomized cross-over trial. Br Med J (Clin Res Ed) 283: 1432–4

    Article  CAS  Google Scholar 

  83. Buzdar AU, Jonat W, Howell A, et al. (1996) Anastrozole, a potent and selective aromatase inhibitor, versus megestrol acetate in postmenopausal women with advanced breast cancer: results of overview analysis of two phase III trials. Arimidex Study Group. J Clin Oncol 14: 2000–11

    CAS  Google Scholar 

  84. Wakeling AE, Dukes M, Bowler J (1991) A Potent Specific Pure Antiestrogen with Clinical Potential. Cancer Res 51: 3867–73

    PubMed  CAS  Google Scholar 

  85. Perey L, Paridaens R, Hawle H, et al. (2007) Clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer and primary or acquired resistance to aromatase inhibitors: final results of phase II Swiss Group for Clinical Cancer Research Trial (SAKK 21/00). Ann Oncol 18: 64–9

    Article  PubMed  CAS  Google Scholar 

  86. Chia S, Gradishar W, Mauriac L, et al. (2008) Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: results from EFECT. J Clin Oncol 26: 1664–70

    Article  PubMed  CAS  Google Scholar 

  87. Rubens RD, Tinson CL, Coleman RE, et al. (1988) Prednisolone improves the response to primary endocrine treatment for advanced breast cancer. Br J Cancer 58: 626–30

    PubMed  CAS  Google Scholar 

  88. Ahmann DL, Hahn RG, Bisel HF (1972) Disseminated breast cancer: evaluation of hormonal therapy utilizing stilbestrol and medrogestone (AY-62022) singly and in combination. Cancer 30: 651–3

    Article  PubMed  CAS  Google Scholar 

  89. Baum M, Budzar AU, Cuzick J, et al. (2002) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359: 2131–9

    Article  PubMed  CAS  Google Scholar 

  90. Baum M, Buzdar AU, Cuzick J, et al. (2003) Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early-stage breast cancer: results of the ATAC (Arimidex, Tamoxifen Alone or in Combination) trial efficacy and safety update analyses. Cancer 98: 1802–10

    Article  PubMed  CAS  Google Scholar 

  91. Goldhirsch A, Leuenberger U, Ryssel HJ, et al. (1982) Combination hormonotherapy with tamoxifen and fluoxymesterone in patients with advanced breast cancer relapsing on hormonotherapy. Oncology 39: 284–6

    Article  PubMed  CAS  Google Scholar 

  92. Mouridsen HT, Ellemann K, Mattsson W, et al. (1979) Therapeutic effect of tamoxifen versus tamoxifen combined with medroxyprogesterone acetate in advanced breast cancer in postmenopausal women. Cancer Treat Rep 63: 171–5

    PubMed  CAS  Google Scholar 

  93. Leary A, Dowsett M (2006) Combination therapy with aromatase inhibitors: the next era of breast cancer treatment? Br J Cancer 95: 661–6

    Article  PubMed  CAS  Google Scholar 

  94. Oura S, Hirai I, Yoshimasu T, et al. (2003) Clinical efficacy of bisphosphonate therapy for bone metastasis from breast cancer. Breast Cancer 10: 28–32

    Article  PubMed  Google Scholar 

  95. Kohno N (2008) Treatment of breast cancer with bone metastasis: bisphosphonate treatment – current and future. Int J Clin Oncol 13: 18–23

    Article  PubMed  CAS  Google Scholar 

  96. Lipton A (2007) Efficacy and safety of intravenous bisphosphonates in patients with bone metastases caused by metastatic breast cancer. Clin Breast Cancer 7: S14–20

    Article  PubMed  CAS  Google Scholar 

  97. Lipton A (1997) Bisphosphonates and breast carcinoma. Cancer 80: 1668–73

    Article  PubMed  CAS  Google Scholar 

  98. Bundred NJ, Campbell ID, Davidson N, et al. (2008) Effective inhibition of aromatase inhibitor-associated bone loss by zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: ZO-FAST Study results. Cancer 112: 1001–10

    Article  PubMed  CAS  Google Scholar 

  99. Coleman RE (2004) Hormone- and chemotherapy-induced bone loss in breast cancer. Oncology (Williston Park) 18: 16–20

    Google Scholar 

  100. Damber JE, Aus G (2008) Prostate cancer. Lancet 371: 1710–21

    Article  PubMed  Google Scholar 

  101. Yoneda T (1998) Cellular and molecular mechanisms of breast and prostate cancer metastasis to bone. Eur J Cancer 34: 240–5

    Article  PubMed  CAS  Google Scholar 

  102. Graham J, Baker M, Macbeth F, et al. (2008) Diagnosis and treatment of prostate cancer: summary of NICE guidance. BMJ 336: 610–2

    Article  PubMed  Google Scholar 

  103. Loblaw DA, Virgo KS, Nam R, et al. (2007) Initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer: 2006 update of an American Society of Clinical Oncology practice guideline. J Clin Oncol 25: 1596–605

    Article  PubMed  CAS  Google Scholar 

  104. Moinpour CM, Savage MJ, Troxel A, et al. (1998) Quality of life in advanced prostate cancer: results of a randomized therapeutic trial. J Natl Cancer Inst 90: 1537–44

    Article  PubMed  CAS  Google Scholar 

  105. Horwich A, Parker C, Kataja V (2008) Prostate cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 19: ii45–6

    Article  PubMed  Google Scholar 

  106. Laigle-Donadey F, Taillibert S, Martin-Duverneuil N, et al. (2005) Skull-base metastases. J Neurooncol 75: 63–9

    Article  PubMed  Google Scholar 

  107. Auclerc G, Antoine EC, Cajfinger F, et al. (2000) Management of advanced prostate cancer. Oncologist 5: 36–44

    Article  PubMed  CAS  Google Scholar 

  108. Huggins C, Hodges CV (1941) Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. Cancer Res 168: 273–297

    Google Scholar 

  109. Taplin ME (2007) Drug insight: role of the androgen receptor in the development and progression of prostate cancer. Nat Clin Pract Oncol 4: 236–44

    Article  PubMed  CAS  Google Scholar 

  110. Kyprianou N, Isaacs JT (1987) Quantal relationship between prostatic dihydrotestosterone and prostatic cell content: critical threshold concept. Prostate 11: 41–50

    Article  PubMed  CAS  Google Scholar 

  111. Scherr D, Swindle PW, Scardino PT (2003) National Comprehensive Cancer Network guidelines for the management of prostate cancer. Urology 61: 14–24

    Article  PubMed  Google Scholar 

  112. Mauri D, Pavlidis N, Polyzos NP, et al. (1967) Treatment and survival of patients with cancer of the prostate. The Veterans Administration Co-operative Urological Research Group. Surg Gynecol Obstet 124: 1011–7

    Google Scholar 

  113. Robinson MR, Smith PH, Richards B, et al. (1995) The final analysis of the EORTC Genito-Urinary Tract Cancer Co-Operative Group phase III clinical trial (protocol 30805) comparing orchidectomy, orchidectomy plus cyproterone acetate and low dose stilboestrol in the management of metastatic carcinoma of the prostate. Eur Urol 28: 273–83

    PubMed  CAS  Google Scholar 

  114. Auvinen A, Hakama M, Ala-Opas M, et al. (2004) A randomized trial of choice of treatment in prostate cancer: the effect of intervention on the treatment chosen. BJU Int 93:52–6; discussion 56

    Google Scholar 

  115. Clark JA, Wray NP, Ashton CM (2001) Living with treatment decisions: regrets and quality of life among men treated for metastatic prostate cancer. J Clin Oncol 19: 72–80

    PubMed  CAS  Google Scholar 

  116. Nyman CR, Andersen JT, Lodding P, et al. (2005) The patient’s choice of androgen-deprivation therapy in locally advanced prostate cancer: bicalutamide, a gonadotrophin-releasing hormone analogue or orchidectomy. BJU Int 96: 1014–8

    Article  PubMed  Google Scholar 

  117. Reese DM (2000) Choice of hormonal therapy for prostate cancer. Lancet 355: 1474–5

    Article  PubMed  CAS  Google Scholar 

  118. Seidenfeld J, Samson DJ, Hasselblad V, et al. (2000) Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann Intern Med 132: 566–77

    PubMed  CAS  Google Scholar 

  119. Bubley GJ (2001) Is the flare phenomenon clinically significant? Urology 58: 5–9

    Article  PubMed  CAS  Google Scholar 

  120. Brogden RN, Faulds D (1995) Goserelin. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in prostate cancer. Drugs Aging 6: 324–43

    CAS  Google Scholar 

  121. Sugiono M, Winkler MH, Okeke AA, et al. (2005) Bicalutamide vs cyproterone acetate in preventing flare with LHRH analogue therapy for prostate cancer – a pilot study. Prostate Cancer Prostatic Dis 8: 91–4

    Article  PubMed  CAS  Google Scholar 

  122. Msaouel P, Diamanti E, Tzanela M, et al. (2007) Luteinising hormone-releasing hormone antagonists in prostate cancer therapy. Expert Opin Emerg Drugs 12: 285–99

    Article  PubMed  CAS  Google Scholar 

  123. Van Poppel H, Tombal B, de la Rosette JJ, et al. (2008) Degarelix: a novel gonadotropin-releasing hormone (GnRH) receptor blocker-results from a 1-year, multicentre, randomised, phase 2 dosage-finding study in the treatment of prostate cancer. Oncol 9:489–9

    Google Scholar 

  124. Gommersall LM, Hayne D, Shergill IS, et al. (2002) Luteinising hormone releasing hormone analogues in the treatment of prostate cancer. Expert Opin Pharmacother 3: 1685–92

    Article  PubMed  CAS  Google Scholar 

  125. Moreau JP, Delavault P, Blumberg J (2006) Luteinizing hormone-releasing hormone agonists in the treatment of prostate cancer: a review of their discovery, development, and place in therapy. Clin Ther 28: 1485–508

    Article  PubMed  CAS  Google Scholar 

  126. Culig Z, Bartsch G, Hobisch A (2004) Antiandrogens in prostate cancer endocrine therapy. Curr Cancer Drug Targets 4: 455–61

    Article  PubMed  CAS  Google Scholar 

  127. Moguilewsky M, Cotard M, Proulx L, et al. (1987) What is an antiandrogen and what is the physiological and pharmacological rationale for combined “castration’’ + “antiandrogen’’ therapy. Prog Clin Biol Res 243A: 315–40

    Google Scholar 

  128. Iversen P, Melezinek I, Schmidt A (2001) Nonsteroidal antiandrogens: a therapeutic option for patients with advanced prostate cancer who wish to retain sexual interest and function. BJU Int 87: 47–56

    Article  PubMed  CAS  Google Scholar 

  129. Gillatt D (2006) Antiandrogen treatments in locally advanced prostate cancer: are they all the same? J Cancer Res Clin Oncol 132: S17–26

    Article  PubMed  CAS  Google Scholar 

  130. Sarosdy MF (1999) Which is the optimal antiandrogen for use in combined androgen blockade of advanced prostate cancer? The transition from a first- to second-generation antiandrogen. Anticancer Drugs 10: 791–6

    Article  PubMed  CAS  Google Scholar 

  131. Schroder FH, Whelan P, de Reijke TM, et al. (2004) Metastatic prostate cancer treated by flutamide versus cyproterone acetate. Final analysis of the “European Organization for Research and Treatment of Cancer’’ (EORTC) Protocol 30892. Eur Urol 45: 457–64

    Google Scholar 

  132. Elder JS, Catalona WJ (1984) Management of newly diagnosed metastatic carcinoma of the prostate. Urol Clin North Am 11: 283–95

    PubMed  CAS  Google Scholar 

  133. Keuppens F, Whelan P, Carneiro de Moura JL, et al. (1993) Orchidectomy versus goserelin plus flutamide in patients with metastatic prostate cancer (EORTC 30853). European Organization for Research and Treatment of Cancer – Genitourinary Group. Cancer 72: 3863–9

    Article  PubMed  CAS  Google Scholar 

  134. Pacini F, Cetani F, Miccoli P, et al. (1990) American Cancer Society Workshop on Combined Castration and Androgen Blockade Therapy in Prostate Cancer. Atlanta, Georgia, September 18–20, 1989. Proceedings. Cancer 66: 1007–89

    Google Scholar 

  135. Iversen P, Suciu S, Sylvester R, et al. (1990) Zoladex and flutamide versus orchiectomy in the treatment of advanced prostatic cancer. A combined analysis of two European studies, EORTC 30853 and DAPROCA 86. Cancer 66: 1067–73

    CAS  Google Scholar 

  136. Belanger A, Labrie F, Dupont A, et al. (1988) Endocrine effects of combined treatment with an LHRH agonist in association with flutamide in metastatic prostatic carcinoma. Clin Invest Med 11: 321–6

    PubMed  CAS  Google Scholar 

  137. Akaza H, Yamaguchi A, Matsuda T, et al. (2004) Superior anti-tumor efficacy of bicalutamide 80\,mg in combination with a luteinizing hormone-releasing hormone (LHRH) agonist versus LHRH agonist monotherapy as first-line treatment for advanced prostate cancer: interim results of a randomized study in Japanese patients. Jpn J Clin Oncol 34: 20–8

    Article  PubMed  Google Scholar 

  138. Klotz L, Schellhammer P, Carroll K (2004) A re-assessment of the role of combined androgen blockade for advanced prostate cancer. BJU Int 93: 1177–82

    Article  PubMed  CAS  Google Scholar 

  139. Labrie F, Belanger A, Simard J, et al. (1993) Combination therapy for prostate cancer. Endocrine and biologic basis of its choice as new standard first-line therapy. Cancer 71: 1059–67

    Article  PubMed  CAS  Google Scholar 

  140. Schmitt B, Bennett C, Seidenfeld J, et al. (2000) Maximal androgen blockade for advanced prostate cancer. Clin Nucl Med 32:440–4

    Google Scholar 

  141. Banach-Petrosky W, Jessen WJ, Ouyang X, et al. (2007) Prolonged exposure to reduced levels of androgen accelerates prostate cancer progression in Nkx3.1; Pten mutant mice. Cancer Res 67: 9089–96

    Article  PubMed  CAS  Google Scholar 

  142. Albrecht W, Collette L, Fava C, et al. (2003) Intermittent maximal androgen blockade in patients with metastatic prostate cancer: an EORTC feasibility study. Eur Urol 44: 505–11

    Article  PubMed  CAS  Google Scholar 

  143. Shaw GL, Wilson P, Cuzick J, et al. (2007) International study into the use of intermittent hormone therapy in the treatment of carcinoma of the prostate: a meta-analysis of 1446 patients. BJU Int 99: 1056–65

    Article  PubMed  CAS  Google Scholar 

  144. Robson M, Dawson N (1996) How is androgen-dependent metastatic prostate cancer best treated? Hematol Oncol Clin North Am 10: 727–47

    Article  PubMed  CAS  Google Scholar 

  145. Halabi S, Small EJ, Kantoff PW, et al. (2003) Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer. J Clin Oncol 21: 1232–7

    Article  PubMed  Google Scholar 

  146. Pienta KJ, Bradley D (2006) Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res 12: 1665–71

    Article  PubMed  CAS  Google Scholar 

  147. Schrijvers D (2007) Androgen-independent prostate cancer. Recent Results Cancer Res 175: 239–49

    Article  PubMed  CAS  Google Scholar 

  148. Gennigens C, Menetrier-Caux C, Droz JP (2006) Insulin-Like Growth Factor (IGF) family and prostate cancer. Crit Rev Oncol Hematol 58: 124–45

    Article  PubMed  CAS  Google Scholar 

  149. Plymate SR, Haugk K, Coleman I, et al. (2007) An antibody targeting the type I insulin-like growth factor receptor enhances the castration-induced response in androgen-dependent prostate cancer. Clin Cancer Res 13: 6429–39

    Article  PubMed  CAS  Google Scholar 

  150. Shanmugam R, Jayaprakasan V, Gokmen-Polar Y, et al. (2006) Restoring chemotherapy and hormone therapy sensitivity by parthenolide in a xenograft hormone refractory prostate cancer model. Prostate 66: 1498–511

    Article  PubMed  CAS  Google Scholar 

  151. Fujimoto N, Miyamoto H, Mizokami A, et al. (2007) Prostate cancer cells increase androgen sensitivity by increase in nuclear androgen receptor and androgen receptor coactivators; a possible mechanism of hormone-resistance of prostate cancer cells. Cancer Invest 25: 32–7

    Article  PubMed  CAS  Google Scholar 

  152. Hsieh CL, Cai C, Giwa A, et al. (2008) Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells. J Mol Endocrinol 41: 13–23

    Article  PubMed  CAS  Google Scholar 

  153. Page ST, Lin DW, Mostaghel EA, et al. (2006) Persistent intraprostatic androgen concentrations after medical castration in healthy men. J Clin Endocrinol Metab 91: 3850–6

    Article  PubMed  CAS  Google Scholar 

  154. Stanbrough M, Bubley GJ, Ross K, et al. (2006) Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66: 2815–25

    Article  PubMed  CAS  Google Scholar 

  155. Tamura K, Furihata M, Tsunoda T, et al. (2007) Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res 67: 5117–25

    Article  PubMed  CAS  Google Scholar 

  156. Taplin ME, Bubley GJ, Shuster TD, et al. (1995) Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med 332: 1393–8

    Article  PubMed  CAS  Google Scholar 

  157. Mohler JL (2008) Castration-recurrent prostate cancer is not androgen-independent. Adv Exp Med Biol 617: 223–34

    Article  PubMed  Google Scholar 

  158. Labrie F, Luu-The V, Belanger A, et al. (2005) Is dehydroepiandrosterone a hormone? J Endocrinol 187: 169–96

    Article  PubMed  CAS  Google Scholar 

  159. Mostaghel EA, Page ST, Lin DW, et al. (2007) Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 67: 5033–41

    Article  PubMed  CAS  Google Scholar 

  160. Negri-Cesi P, Colciago A, Poletti A, et al. (1999) 5alpha-reductase isozymes and aromatase are differentially expressed and active in the androgen-independent human prostate cancer cell lines DU145 and PC3. Prostate 41: 224–32

    Article  PubMed  CAS  Google Scholar 

  161. Re RN (2002) The origins of intracrine hormone action. Am J Med Sci 323: 43–8

    Article  PubMed  Google Scholar 

  162. Yano A, Fujii Y, Iwai A, et al. (2006) Glucocorticoids suppress tumor angiogenesis and in vivo growth of prostate cancer cells. Clin Cancer Res 12: 3003–9

    Article  PubMed  CAS  Google Scholar 

  163. Trump DL, Potter DM, Muindi J, et al. (2006) Phase II trial of high-dose, intermittent calcitriol (1,25 dihydroxyvitamin D3) and dexamethasone in androgen-independent prostate cancer. Cancer 106: 2136–42

    Article  PubMed  CAS  Google Scholar 

  164. Higano CS (2004) Understanding treatments for bone loss and bone metastases in patients with prostate cancer: a practical review and guide for the clinician. Urol Clin North Am 31: 331–52

    Article  PubMed  Google Scholar 

  165. Guise TA, Mohammad KS, Clines G, et al. (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res 12: 6213s–6s

    Article  PubMed  CAS  Google Scholar 

  166. Canil CM, Tannock IF (2002) Should bisphosphonates be used routinely in patients with prostate cancer metastatic to bone? J Natl Cancer Inst 94: 1422–3

    PubMed  CAS  Google Scholar 

  167. Kelly WK, Steineck G (2003) Bisphosphonates for men with prostate cancer: sifting through the rubble. J Clin Oncol 21: 4261–2

    Article  PubMed  CAS  Google Scholar 

  168. Wilt TJ, Ensrud KE (2007) The if’s, and’s, or but’s regarding bisphosphonates for prostate cancer. J Natl Cancer Inst 99: 744–5

    Article  PubMed  Google Scholar 

  169. Berry S, Waldron T, Winquist E, et al. (2006) The use of bisphosphonates in men with hormone-refractory prostate cancer: a systematic review of randomized trials. Can J Urol 13: 3180–8

    PubMed  Google Scholar 

  170. Yuen KK, Shelley M, Sze WM, et al. (2006) Bisphosphonates for advanced prostate cancer. Br Med J (Clin Res Ed) 283:1432–4

    Google Scholar 

  171. Michaelson MD, Kaufman DS, Lee H, et al. (2007) Randomized controlled trial of annual zoledronic acid to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer. J Clin Oncol 25: 1038–42

    Article  PubMed  CAS  Google Scholar 

  172. Williams ED (1995) Mechanisms and pathogenesis of thyroid cancer in animals and man. Mutat Res 333: 123–9

    PubMed  CAS  Google Scholar 

  173. Hayat MJ, Howlader N, Reichman ME, et al. (2007) Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 12: 20–37

    Article  PubMed  Google Scholar 

  174. Hundahl SA, Fleming ID, Fremgen AM, et al. (1998) A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [see commetns]. Cancer 83: 2638–48

    Article  PubMed  CAS  Google Scholar 

  175. Marcocci C, Pacini F, Elisei R, et al. (1989) Clinical and biologic behavior of bone metastases from differentiated thyroid carcinoma. Surgery 106: 960–6

    PubMed  CAS  Google Scholar 

  176. Pelizzo MR, Boschin IM, Toniato A, et al. (2007) Papillary thyroid carcinoma: 35-year outcome and prognostic factors in 1858 patients. Clin Nucl Med 32: 440–4

    Article  PubMed  Google Scholar 

  177. Pomorski L, Bartos M (1999) Metastasis as the first sign of thyroid cancer. Neoplasma 46: 309–12

    PubMed  CAS  Google Scholar 

  178. Hindie E, Zanotti-Fregonara P, Keller I, et al. (2007) Bone metastases of differentiated thyroid cancer: impact of early 131I-based detection on outcome. Endocr Relat Cancer 14: 799–807

    Google Scholar 

  179. Phan HT, Jager PL, Plukker JT, et al. (2007) Detection of bone metastases in thyroid cancer patients: bone scintigraphy or 18F-FDG PET? Nucl Med Commun 28: 597–602

    Article  PubMed  Google Scholar 

  180. Wexler JA, Sharretts J (2007) Thyroid and bone. Endocrinol Metab Clin North Am 36: 673–705, vi

    Article  PubMed  CAS  Google Scholar 

  181. Crile G Jr. (1970) The endocrine dependency of papillary carcinomas of the thyroid. Monogr Neoplast Dis Var Sites 6: 269–75

    PubMed  Google Scholar 

  182. Pujol P, Daures JP, Nsakala N, et al. (1996) Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer. J Clin Endocrinol Metab 81: 4318–23

    Article  PubMed  CAS  Google Scholar 

  183. Elaraj DM, Clark OH (2007) Changing management in patients with papillary thyroid cancer. Curr Treat Options Oncol 8: 305–13

    Article  PubMed  Google Scholar 

  184. Fernandes JK, Day TA, Richardson MS, et al. (2005) Overview of the management of differentiated thyroid cancer. Curr Treat Options Oncol 6: 47–57

    Article  PubMed  Google Scholar 

  185. Hard GC (1998) Recent developments in the investigation of thyroid regulation and thyroid carcinogenesis. Environ Health Perspect 106: 427–36

    Article  PubMed  CAS  Google Scholar 

  186. Kamel N, Gullu S, Dagci Ilgin S, et al. (1999) Degree of thyrotropin suppression in differentiated thyroid cancer without recurrence or metastases. Thyroid 9: 1245–8

    Google Scholar 

  187. Eustatia-Rutten CF, Corssmit EP, Biermasz NR, et al. (2006) Survival and death causes in differentiated thyroid carcinoma. J Clin Endocrinol Metab 91: 313–9

    Article  PubMed  CAS  Google Scholar 

  188. Lippi F, Capezzone M, Angelini F, et al. (2001) Radioiodine treatment of metastatic differentiated thyroid cancer in patients on L-thyroxine, using recombinant human TSH. Eur J Endocrinol 144: 5–11

    Article  PubMed  CAS  Google Scholar 

  189. Luster M, Lippi F, Jarzab B, et al. (2005) rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer 12: 49–64

    Article  PubMed  CAS  Google Scholar 

  190. Pacini F, Cetani F, Miccoli P, et al. (1994) Outcome of 309 patients with metastatic differentiated thyroid carcinoma treated with radioiodine. World J Surg 18: 600–4

    Article  PubMed  CAS  Google Scholar 

  191. Pacini F, Castagna MG, Brilli L, et al. (2008) Differentiated thyroid cancer: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol 19:ii99–101

    Google Scholar 

  192. Takano T, Miyauchi A, Ito Y, et al. (2006) Thyroxine to triiodothyronine hyperconversion thyrotoxicosis in patients with large metastases of follicular thyroid carcinoma. Thyroid 16: 615–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Kamposioras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kamposioras, K., Briasoulis, E. (2009). Hormonotherapy of Bone Metastases. In: Kardamakis, D., Vassiliou, V., Chow, E. (eds) Bone Metastases. Cancer Metastasis – Biology and Treatment, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9819-2_15

Download citation

Publish with us

Policies and ethics