Skip to main content

The Use of Quantum Mechanics Derived Descriptors in Computational Toxicology

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 8))

Abstract

The aim of this chapter is to outline the theoretical background and application of quantum mechanics (QM) derived descriptors in computational toxicology, specifically in (quantitative) structure–activity relationship models ((Q)SARs). The chapter includes a discussion of the mechanistic rationale for the need for such descriptors in terms of the underlying chemistry. Having established the mechanistic rationale for quantum mechanical descriptors, a brief discussion of the underlying mathematical theory to quantum mechanical methodologies is presented, the aim being to help the reader understand (in simple terms) the differences between the commonly used levels of theory that one finds when surveying the computational toxicological literature. Finally, the chapter highlights a number of (Q)SAR models in which QM descriptors have been utilised to model a range of toxicological effects

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aptula AO, Roberts DW (2006) Mechanistic applicability domains for non-animal based prediction of toxicological end points: General principles and application to reactive toxicity. Chem Res Tox 19:1097–1105

    Article  CAS  Google Scholar 

  2. Streitwieser A, Heathcock CH (1985) Introduction to organic chemistry. 3rd edn. Macmillan, New York

    Google Scholar 

  3. Schüürmann G (2004) Quantum chemical descriptors in structure–activity relationships – calculation, interpretation and comparison of methods. In: Cronin MTD, Livingstone DJ (eds) Predicting Chemistry Toxicity and Fate. Taylor and Francis, London

    Google Scholar 

  4. Fuentealba P, Perez P, Contreras R (2000) On the condensed Fukui function. J Chem Phys 113:2544–2551

    Article  CAS  Google Scholar 

  5. Leach AR (2001) Molecular Modelling: Principles and Applications. Pearson Education Limited, Harlow

    Google Scholar 

  6. Foresman JB, Frisch A (1996) Exploring Chemistry with Electronic Structure Methods, 2nd edn. Gaussian Inc., Pittsburgh.

    Google Scholar 

  7. Dewar MJS, Zoebisch EG, Healy EF et al. (1985) AM1: A new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  8. Rocha GB, Freire RO, Simas AM et al. (2006) RM1: A reparameterisation of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J Comput Chem 27:1101–1111

    Article  CAS  Google Scholar 

  9. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, Weinheim.

    Google Scholar 

  10. Mekenyan OG, Veith GD (1993) Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity. SAR QSAR Environ Res 1:335–344

    Article  CAS  Google Scholar 

  11. Cronin MTD, Schultz TW (1996) Structure-toxicity relationships for phenols to Tetrahymena pyriformis. Chemosphere 32:1453–1468

    Article  CAS  Google Scholar 

  12. Garg R, Kurup A, Hansch C (2001) Comparative QSAR: On the toxicology of the phenolic OH moiety. Crit Rev Toxicol 31:223–245

    Article  CAS  Google Scholar 

  13. Cronin MTD, Schultz TW (1997) Validation of Vibrio fisheri acute toxicity data: mechanism of action-based QSARs for non-polar narcotics and polar narcotic phenols. Sci Total Environ 204:75–88

    Article  CAS  Google Scholar 

  14. Ramos EU, Vaes WHJ, Verhaar HJM et al. (1997) Polar narcosis: Designing a suitable training set for QSAR studies. Environ Sci Pollut Res 4:83–90

    Article  CAS  Google Scholar 

  15. Netzeva TI, Aptula AO, Benfenati E et al. (2005) Description of the electronic structure of organic chemicals using semi-empirical and ab initio methods for development of toxicological QSARs. J Chem Inf Model 45:106–114

    Article  CAS  Google Scholar 

  16. Puzyn T, Suzuki N, Haranczyk M et al. (2008) Calculation of quantum-mechanical descriptors for QSPR at the DFT level: Is it necessary? J Chem Inf Model 48:1174–1180

    Article  CAS  Google Scholar 

  17. Karabunarliev S, Mekenyan OG, Karcher W et al. (1996) Quantum-chemical descriptors for estimating the acute toxicity of electrophiles to the fathead minnow (Pimephales promelas): An analysis based on molecular mechanisms. Quant Struc-Act Relat 15:302–310

    Article  CAS  Google Scholar 

  18. Karabunarliev S, Mekenyan OG, Karcher W et al. (1996) Quantum-chemical descriptors for estimating the acute toxicity of substituted benzenes to the Guppy (Poecilia reticulata) and Fathead Minnow (Pimephales promelas). Quant Struc-Act Relat 15:311–320

    Article  CAS  Google Scholar 

  19. Aptula AO, Roberts DW, Cronin MTD (2005) From experiment to theory: Molecular orbital parameters to interpret the skin sensitization potential of 5-chloro-2-methylisothiazol-3-one and 2-methylisothiazol-3-one. Chem Res Toxicol 18:324–329

    Article  CAS  Google Scholar 

  20. Aptula AO, Roberts DW, Cronin MTD et al. (2005) Chemistry-toxicity relationships for the effects of di-and trihydroxybenzenes to Tetrahymena pyriformis. Chem Res Toxicol 18:844–854

    Article  CAS  Google Scholar 

  21. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  22. Parr RG, Donnelly RA, Levy M et al. (1978) Electronegativity – density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  23. Parr RG, Pearson RG (1983) Absolute hardness – companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  24. Domingo LR, Aurell MJ, Perez P et al. (2002) Quantitative characterization of the local electrophilicity of organic molecules. Understanding the regioselectivity on Diels-Alder reactions. J Phys Chem A 106:6871–6875

    Article  CAS  Google Scholar 

  25. Domingo LR, Perez P, Contreras R (2004) Reactivity of the carbon–carbon double bond towards nucleophilic additions. A DFT analysis. Tetrahedron 60:6585–6591

    Article  CAS  Google Scholar 

  26. Lemek T, Mayr HJ (2003) Electrophilicity parameters for benzylidenemalononitriles. J Org Chem 68:6880–6886

    Article  CAS  Google Scholar 

  27. Enoch SJ, Cronin MTD, Schultz TW et al. (2008) Quantitative and mechanistic read across for predicting the skin sensitization potential of alkenes acting via Michael addition. Chem Res Toxicol 21:513–520

    Article  CAS  Google Scholar 

  28. Aptula AO, Patlewicz G, Roberts DW et al. (2006) Non-enzymatic glutathione reactivity and in vitro toxicity: A non-animal approach to skin sensitization. Toxicol In Vitro 20:239–247

    Article  CAS  Google Scholar 

  29. Schultz TW, Yarbrough JW, Hunter RS et al. (2007) Verification of the structural alerts for Michael acceptors. Chem Res Toxicol 20:1359–1363

    Article  CAS  Google Scholar 

  30. Roy DR, Parthasarathi R, Maiti B et al. (2005) Electrophilicity as a possible descriptor for toxicity prediction. Bioorg Med Chem 13:3405–3412

    Article  CAS  Google Scholar 

  31. Roy DR, Parthasarathi R, Subramanian V et al. (2006) An electrophilicity based analysis of toxicity of aromatic compounds towards Tetrahymena pyriformis. QSAR Combi Sci 25:114–122.

    Article  CAS  Google Scholar 

  32. Contreras RR, Fuentealba P, Galvan M et al. (1999) A direct evaluation of regional Fukui functions in molecules. Chem Phys Lett 304:405–413

    Article  CAS  Google Scholar 

  33. Yan X, Xiao HM, Ju XH et al. (2005) DFT study on the QSAR of nitroaromatic compound toxicity to the fathead minnow. Chin J Chem 23:947–952

    Article  CAS  Google Scholar 

  34. Kazius J, McGuire R, Bursi R (2005) Derivation and validation of toxicophores for mutagenicity prediction. J Med Chem 48:312–320

    Article  CAS  Google Scholar 

  35. Eder E, Scheckenbach S, Deininger C et al. (1993) The possible role of α,β-unsaturated carbonyl compounds in mutagenesis and carcinogenesis. Toxicol Lett 67:87–103

    Article  CAS  Google Scholar 

  36. Passerini L (2003) QSARs for individual classes of chemical mutagens and carcinogens. In: Benigni R (ed) Quantitative Structure-Activity Relationships (QSAR) Models of Mutagens and Carcinogens. CRC Press LLC, Boca Raton

    Google Scholar 

  37. Lopez de Compadre RI, Debnath AK, Shusterman AJ et al. (1990) LUMO energies and hydrophobicity as determinants of mutagenicity by nitroaromatic compounds in Salmonella typhimurium. Environ Mol Mutagen 15:44–55

    Article  CAS  Google Scholar 

  38. Debnath AK, Debnath G, Shusterman AJ et al. (1992) A QSAR investigation of the role of hydrophobicity in regulating mutagenicity in the AMES test. 1. Mutagenicity of aromatic and heteroaromatic amines in Salmonella typhimurium TA98 and TA100. Environ Mol Mutagen 19:37–52

    Article  CAS  Google Scholar 

  39. Debnath AK, Decompadre RLL, Shusterman AJ et al. (1992) Quantitative structure-activity relationship investigation of the role of hydrophobicity in regulating mutagenicity in the AMES test. 2. Mutagenicity of aromatic and heteroaromatic nitro compounds in Salmonella typhimurium TA100. Environ Mol Mutagen 19:53–70

    Article  CAS  Google Scholar 

  40. Benigni R, Conti L, Crebelli R et al. (2005) Simple and α,β-unsaturated aldehydes: Correct prediction of genotoxic activity through structure-activity relationship models. Environ Mol Mutagen 46:268–280

    Article  CAS  Google Scholar 

  41. Knize MG, Hatch FT, Tanga MJ et al. (2006) A QSAR for the mutagenic potencies of twelve 2-amino-trimethylimidazopyridine isomers: Structural, quantum chemical, and hydropathic factors. Environ Mol Mutagen 47:132–146

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The funding of the European Union Sixth Framework CAESAR Specific Targeted Project (SSPI-022674-CAESAR) and the comments of Dr Judith Madden, Liverpool John Moores University, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J Enoch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Enoch, S.J. (2010). The Use of Quantum Mechanics Derived Descriptors in Computational Toxicology. In: Puzyn, T., Leszczynski, J., Cronin, M. (eds) Recent Advances in QSAR Studies. Challenges and Advances in Computational Chemistry and Physics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9783-6_2

Download citation

Publish with us

Policies and ethics