Skip to main content

The effects of Pseudomonas putida biotype B on Tetranychus urticae (Acari: Tetranychidae)

  • Chapter
Diseases of Mites and Ticks

Abstract

This study investigated Pseudomonas putida biotype B as a potential biological control agent of Tetranychus urticae. The bacteria were isolated from greenhouse soil from Carsamba, Turkey. The experiment was carried out in a completely randomized plot design under laboratory conditions. For this purpose, spraying and dipping applications of a suspension of P. putida biotype B (108–109 colony forming units/ml) were applied to newly emerged, copulated females. Dead mite and egg counts were started on the 3rd day after treatments, and observations were continued daily until all the mites had died and egg hatching had finished. Both types of bacterial application significantly reduced total egg numbers and egg hatching, compared to their respective controls. Bacterial spraying was significantly more effective than dipping—the spray application demonstrated 100% efficacy and resulted in the fewest viable eggs. The results of this study indicated that P. putida biotype B has a strong efficacy in causing mortality in T. urticae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aksoy HM, Mennan S (2004) Biological control of Heterodera cruciferae (Tylenchida: Heteroderidae) Franklin 1945 with Fluorescent Pseudomonas spp. J Phytopathol 152(8):514–518

    Article  Google Scholar 

  • Amer GA, Utkhede RS (2000) Development of formulations of biological agents for management of root rot of lettuce and cucumber. Can J Microbiol 46(9):809–816

    Article  PubMed  CAS  Google Scholar 

  • Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50(4):1563–1589

    PubMed  CAS  Google Scholar 

  • Askary H, Carrieare Y, Bealanger RR, Brodeur J (1998) Pathogenicity of the fungus Verticillium lecanii to aphids and powdery mildew. Biocontrol Sci Technol 8:23–32

    Article  Google Scholar 

  • Bolland HR, Gutierrez J, Flechtmann CHW (1998) World catalogue of the spider mite family (Acari: Tetranychidae). Brill Academic Publishers, Leiden

    Google Scholar 

  • Broadway RM, Gongora C, Kain WC, Sanderson JA, Monroy JA, Bennett KC, Warner JB, Hoffman MP (1998) Novel chitinolytic enzymes with biological activity against herbivorous insects. J Chem Ecol 24:985–998

    Article  CAS  Google Scholar 

  • Carey JR, Bradley JW (1982) Developmental rates, vital schedules, sex-ratios and life tables for Tetranychus urticae, T. turkestani and T. pacificus (Acarina: Tetranychidae) on cotton. Acarologia 23:333–345

    Google Scholar 

  • Chandler D, Davidson G, Pell JL, Ball BV, Shaw K, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Technol 10:357–384

    Article  Google Scholar 

  • Chandler D, Davidson G, Jacobson RJ (2005) Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spidermite, Tetranychus urticae (Acari: Tetranychidae) on tomato, Lycopersicon esculentum. Biocontrol Sci Technol 15:37–54

    Article  Google Scholar 

  • Cho JR, Kim YJ, Ahn YJ, Yoo JK, Lee JO (1995) Monitoring of acaricide resistance in field-collected populations of Tetranychus urticae (Acari: Tetranychidae) in Korea. Korean J Appl Entomol 34:40–45

    Google Scholar 

  • Devine GJ, Barber M, Denholm I (2001) Incidence and inheritance of resistance to METI-acaricides in European strains of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Manag Sci 57:443–448

    Article  PubMed  CAS  Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12:133–141

    Article  CAS  Google Scholar 

  • Gerson U, Weintraub PG (2007) Mites for the control of pests in protected cultivation. Pest Manag Sci 63(7):658–676

    Article  PubMed  CAS  Google Scholar 

  • Gerson U, Smiley RL, Ochoa R (2003) Mites (Acari) in biological control. Blackwell Science, Boston

    Book  Google Scholar 

  • Goka K (1998) Mode of inheritance of resistance to three new acaricides in the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Exp Appl Acarol 22:699–708

    Article  CAS  Google Scholar 

  • Gomes NCM, Kosheleva IA, Abraham WR, Smalla K (2005) Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol Ecol 54(1):21–33

    Article  PubMed  CAS  Google Scholar 

  • Hussey NW, Scopes NEA (1985) Greenhouse vegetables. In: Helle W, Sabelis MW (eds) Spider mites—their biology, natural enemies and control, vol 1B. Elsevier Science Publ, Amsterdam, pp 285–298

    Google Scholar 

  • Jeppson LR, Keifer HH, Baker EW (1975) Mites injurious to economic plants. University of California Pres, Berkeley

    Google Scholar 

  • Kiewnick AB, Sands DC (2001) Gram-negative bacteria: Pseudomonas. In: Schaad NW, Jones JB, Chun W (eds) Laboratory guide for identification of plant pathogenic bacteria, third edn. The American Phytopathological Society, St. Paul, pp 84–120

    Google Scholar 

  • Kim YJ, Park HM, Cho JR, Ahn YJ (2006) Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol 99(3):954–958

    Article  PubMed  CAS  Google Scholar 

  • Kramer KJ, Muthukrishnan S (1997) Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol 27:887–900

    Article  CAS  Google Scholar 

  • Lelliott RA, Stead DE (1987) Methods for diagnosis of bacterial diseases of plants. In: Saettler AW, Schaad NW, Roth DA (eds) Methods in plant pathology. Oxford, UK, pp 100–200

    Google Scholar 

  • Marques S, Ramos JL (1993) Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol Microbiol 9(5):923–929

    Article  PubMed  CAS  Google Scholar 

  • Maurhofer M, Reimmann C, Sacherer SP, Heeb S, Haas D, Defago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    Article  PubMed  CAS  Google Scholar 

  • McCoy CW (1996) Pathogens of eriophyoid mites. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science Publ, Amsterdam, pp 481–490

    Chapter  Google Scholar 

  • Minitab (2000) Minitab statistical software, release 13.20. Minitab Inc., State College, PA, USA

    Google Scholar 

  • Muir RC, Cranham JE (1979) Resistance to pesticides in damson—hop aphid and red spider mite on English hops. Proc Br Crop Prot Conf 1:161–167

    Google Scholar 

  • Nauen R, Stumpf N, Elbert A, Zebitz CPW, Winkler V (2001) Acaricide toxicity and resistance in larvae of different strains of Tetranychus urticae and Panonychus ulmi (Acari: Tetranychidae). Pest Manag Sci 57:253–261

    Article  PubMed  CAS  Google Scholar 

  • Park CS, Paulitz TC, Baker R (1988) Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and non-pathogenic isolates of Fusarium oxysporum. Phytopathology 78:190–194

    Article  Google Scholar 

  • Poinar GO, Poinar R (1998) Parasites and pathogens of mites. Annu Rev Entomol 43:449–469

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoek Int J G81:537–547

    Article  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Sabelis MW (1985) Reproduction and sex allocation. In: Helle W, Sabelis MW (eds) Spider mites—their biology, natural enemies and control, vol 1B. Elsevier Science Publ, Amsterdam, pp 73–94

    Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:567–1573

    Article  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  PubMed  CAS  Google Scholar 

  • Validov S, Kamilova F, Qi S, Stephan D, Wang JJ, Makarova N, Lugtenberg B (2007) Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate. J Appl Microbiol 102(2):461–471

    Article  PubMed  CAS  Google Scholar 

  • van de Vrie M (1985) Greenhouse ornamentals. In: Helle W, Sabelis MW (eds) Spider mites—their biology, natural enemies and control, vol 1B. Elsevier Science Publ, Amsterdam, pp 273–284

    Google Scholar 

  • van der Geest LPS, Elliot SL, Breeuwer JAJ, Beerling EAM (2000) Diseases of mites. Exp Appl Acarol 24:497–560

    Article  PubMed  Google Scholar 

  • Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B, Vacherie B, Wincker P, Weissenbach J, Lemaitre B, Médigue C, Boccard F (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679

    Article  PubMed  CAS  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  PubMed  CAS  Google Scholar 

  • Ward PG, Goff M, Donner M, Kaminsky W, O’Connor KE (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40(7):2433–2437

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, McNab R, Henderson B (2002) Bacterial disease mechanisms. Cambridge University Press, Cambridge

    Google Scholar 

  • Zehnder G, Kloepper JW, Yao C, Wei G (1997) Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth promoting rhizobacteria. J Econ Entomol 90:391–396

    Google Scholar 

  • Zhang ZQ (2003) Mites of greenhouses: identification, biology and control. CABI Publishing, Wallingford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebahat K. Ozman-Sullivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Aksoy, H.M., Ozman-Sullivan, S.K., Ocal, H., Celik, N., Sullivan, G.T. (2008). The effects of Pseudomonas putida biotype B on Tetranychus urticae (Acari: Tetranychidae). In: Bruin, J., van der Geest, L.P.S. (eds) Diseases of Mites and Ticks. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9695-2_18

Download citation

Publish with us

Policies and ethics