Skip to main content

A Richer Understanding of the Complexity of Election Systems

  • Chapter

Abstract

We provide an overview of some recent progress on the complexity of election systems. The issues studied include the complexity of the winner, manipulation, bribery, and control problems.

Supported in part by DFG grant RO-1202/9-3, NSF grants CCR-0311021 and CCF-0426761, and the Alexander von Humboldt Foundation’s TransCoop program.

URL: home.agh.edu.pl/~faliszew. Current affiliation: AGH University of Science and Technology, Kraków, Poland.

URL: www.cs.rit.edu/~eh.

URL: www.cs.rochester.edu/u/lane.

URL: ccc.cs.uni-duesseldorf.de/~rothe. Work done in part while visiting the University of Rochester.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bartholdi III and J. Orlin. Single transferable vote resists strategic voting. Social Choice and Welfare, 8(4):341–354, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Bartholdi III, C. Tovey, and M. Trick. The computational difficulty of manipulating an election. Social Choice and Welfare, 6(3):227–241, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Bartholdi III, C. Tovey, and M. Trick. Voting schemes for which it can be difficult to tell who won the election. Social Choice and Welfare, 6(2):157–165, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Bartholdi III, C. Tovey, and M. Trick. How hard is it to control an election? Mathematical and Computer Modeling, 16(8/9):27–40, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Black. Theory of Committees and Elections. Cambridge University Press, Cambridge, 1958.

    MATH  Google Scholar 

  6. V. Conitzer and T. Sandholm. Complexity of manipulating elections with few candidates. In Proceedings of the 18th National Conference on Artificial Intelligence, pages 314–319. AAAI Press, Menlo Park, 2002.

    Google Scholar 

  7. V. Conitzer, J. Lang, and T. Sandholm. How many candidates are needed to make elections hard to manipulate? In Proceedings of the 9th Conference on Theoretical Aspects of Rationality and Knowledge, pages 201–214. ACM Press, New York, 2003.

    Chapter  Google Scholar 

  8. V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard to manipulate? Unpublished manuscript, January 2005.

    Google Scholar 

  9. J.-A.-N. de Caritat, Marquis de Condorcet. Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix, 1785. Facsimile reprint of original published in Paris, 1972, by the Imprimerie Royale.

    Google Scholar 

  10. C. Dodgson. A method of taking votes on more than two issues, 1876. Pamphlet printed by the Clarendon Press, Oxford, and headed “not yet published”.

    Google Scholar 

  11. J. Duggan and T. Schwartz. Strategic manipulability without resoluteness or shared beliefs: Gibbard–Satterthwaite generalized. Social Choice and Welfare, 17(1):85–93, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Dwork, S. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In Proceedings of the 10th International World Wide Web Conference, pages 613–622. ACM Press, New York, 2001.

    Google Scholar 

  13. E. Elkind and H. Lipmaa. Small coalitions cannot manipulate voting. In Proceedings of the 9th International Conference on Financial Cryptography and Data Security. Lecture Notes in Computer Science, volume 3570, pages 285–297. Springer, Berlin, 2005.

    Google Scholar 

  14. E. Ephrati and J. Rosenschein. The Clarke tax as a consensus mechanism among automated agents. In Proceedings of the 9th National Conference on Artificial Intelligence, pages 173–178. AAAI Press, Menlo Park, 1991.

    Google Scholar 

  15. E. Ephrati and J. Rosenschein. Multi-agent planning as a dynamic search for social consensus. In Proceedings of the 13th International Joint Conference on Artificial Intelligence, pages 423–429. Morgan Kaufmann, San Mateo, 1993.

    Google Scholar 

  16. R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity search and classification via rank aggregation. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pages 301–312. ACM Press, New York, 2003.

    Chapter  Google Scholar 

  17. P. Faliszewski, E. Hemaspaandra, and L. Hemaspaandra. The complexity of bribery in elections. In Proceedings of the 21st National Conference on Artificial Intelligence, pages 641–646. AAAI Press, Menlo Park, 2006.

    Google Scholar 

  18. P. Fishburn. Condorcet social choice functions. SIAM Journal on Applied Mathematics, 33(3):469–489, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.

    MATH  Google Scholar 

  20. A. Gibbard. Manipulation of voting schemes. Econometrica, 41(4):587–601, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer and System Sciences, 39(3):299–322, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Hemaspaandra and L. Hemaspaandra. Dichotomy for voting systems. Technical Report TR-861, Department of Computer Science, University of Rochester, Rochester, NY, April 2005. Journal version to appear in Journal of Computer and System Sciences.

    Google Scholar 

  23. E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. Journal of the ACM, 44(6):806–825, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  24. E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Raising NP lower bounds to parallel NP lower bounds. SIGACT News, 28(2):2–13, 1997.

    Article  Google Scholar 

  25. E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Anyone but him: The complexity of precluding an alternative. In Proceedings of the 20th National Conference on Artificial Intelligence, pages 95–101. AAAI Press, Menlo Park, 2005.

    Google Scholar 

  26. E. Hemaspaandra, L. Hemaspaandra, and J. Rothe. Hybrid elections broaden complexity-theoretic resistance to control. Technical Report TR-900, Department of Computer Science, University of Rochester, Rochester, NY, June 2006. Revised, August 2006. Conference version to appear in Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007).

    Google Scholar 

  27. E. Hemaspaandra, H. Spakowski, and J. Vogel. The complexity of Kemeny elections. Theoretical Computer Science, 349(3):382–391, 2005.

    MATH  MathSciNet  Google Scholar 

  28. C. Homan and L. Hemaspaandra. Guarantees for the success frequency of an algorithm for finding Dodgson-election winners. In Proceedings of the 31st International Symposium on Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, volume 4162, pages 528–539. Springer, Berlin, 2006.

    Google Scholar 

  29. J. Kemeny. Mathematics without numbers. Dædalus, 88:571–591, 1959.

    Google Scholar 

  30. J. Kemeny and L. Snell. Mathematical Models in the Social Sciences. Ginn, Needham Heights, 1960.

    Google Scholar 

  31. C. Papadimitriou and S. Zachos. Two remarks on the power of counting. In Proceedings 6th GI Conference on Theoretical Computer Science. Lecture Notes in Computer Science, volume 145, pages 269–276. Springer, Berlin, 1983.

    Google Scholar 

  32. D. Pennock, E. Horvitz, and C. Giles. Social choice theory and recommender systems: Analysis of the axiomatic foundations of collaborative filtering. In Proceedings of the 17th National Conference on Artificial Intelligence, pages 729–734. AAAI Press, Menlo Park, 2000.

    Google Scholar 

  33. A. Procaccia and J. Rosenschein. Junta distributions and the average-case complexity of manipulating elections. In Proceedings of the 5th International Joint Conference on Autonomous Agents and Multiagent Systems, pages 497–504. ACM Press, New York, 2006.

    Chapter  Google Scholar 

  34. A. Procaccia, J. Rosenschein, and A. Zohar. Multi-winner elections: Complexity of manipulation, control, and winner-determination. In Preproceedings of the Eighth Trading Agent Design and Analysis & Agent Mediated Electronic Commerce Joint International Workshop (TADA/AMEC 2006), pages 15–28, 2006.

    Google Scholar 

  35. T. Riege and J. Rothe. Completeness in the boolean hierarchy: Exact-four-colorability, minimal graph uncolorability, and exact domatic number problems—a survey. Journal of Universal Computer Science, 12(5):551–578, 2006.

    MathSciNet  Google Scholar 

  36. J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of the winner problem for Young elections. Theory of Computing Systems, 36(4):375–386, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  37. M. Satterthwaite. Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems for voting procedures and social welfare functions. Journal of Economic Theory, 10(2):187–217, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  38. H. Simon. The Sciences of the Artificial. MIT Press, Cambridge, 1969. 3rd edition, 1996.

    Google Scholar 

  39. A. Taylor. Social Choice and the Mathematics of Manipulation. Cambridge University Press, Cambridge, 2005.

    MATH  Google Scholar 

  40. K. Wagner. More complicated questions about maxima and minima, and some closures of NP. Theoretical Computer Science, 51(1–2):53–80, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  41. K. Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833–846, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Young. Extending Condorcet’s rule. Journal of Economic Theory, 16(2):335–353, 1977.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A., Rothe, J. (2009). A Richer Understanding of the Complexity of Election Systems. In: Ravi, S.S., Shukla, S.K. (eds) Fundamental Problems in Computing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9688-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9688-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9687-7

  • Online ISBN: 978-1-4020-9688-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics