Skip to main content

Exploiting Genomics to Understand the Interactions Between Root-Knot Nematodes and Pasteuria penetrans

  • Chapter
  • First Online:
Book cover Biological Control of Plant-Parasitic Nematodes:

Part of the book series: Progress in Biological Control ((PIBC,volume 11))

Abstract

Caenorhabditis elegans was the first multicellular organism to have its genome sequenced and has proved useful in the investigations of innate immunity, the generic science that underpins the biology of host-pathogen interactions. This chapter explores the sequencing of plant-parasitic nematodes and microbial genomes and shows how this knowledge can help in understanding the biology of the interaction between Meloidogyne spp. and the bacterial nematode parasite Pasteuria penetrans. Three examples examine how genomic information can help in developing new approaches to the problems associated with using Pasteuria as a biological control agent: initially one focuses on the transportome and how genomics might help to understand the fastidious nature of Pasteuria growth in the nematode; secondly, comparative genomics is used to explore the phosphorylation pathway important in initiating sporulation; and, thirdly, comparative genomics is exploited to understand endospore attachment to the nematode cuticle where, in comparisons with other animal parasitic Bacillus spp., collagen-like fibres have been implicated. Finally the chapter suggests that genomics paves the way for the development of designer control agents but such an approach would not be without its critics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Gouzy J, Auryet J-M et al (2008) Genome sequence of the metazoan plan-parasitic nematode Meloidogyne incognita. Nat Biotechnol 8:909–915

    Article  Google Scholar 

  • Benzi Z, Schmidt MA (2002) Never say never again: protein glycosylation in pathogenic bacteria. Mol Microbiol 45:267–276

    Article  Google Scholar 

  • Bird DMcK, Opperman CH, Jones SJ (1999) The Caenorhabditis elegans genome: a guide in the post genomics age. Annu Rev Phytopathol 37:347–365

    Article  Google Scholar 

  • Bird DM, Opperman CH, Davies KG (2003) Interactions between bacteria and plant-parasitic nematodes: now and then. Int J Parasitol 33:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Bishop AH, Ellar DJ (1991) Attempts to culture Pasteuria penetrans in vitro. Biocontrol Sci Technol 1:101–114

    Article  Google Scholar 

  • Boydston JA, Chen P, Steichen CT et al (2005) Orientation within the exosporium and structural stability of the collagen-like glycoprotein BclA of Bacillus anthracis. J Bacteriol 187:5310–5317

    Article  PubMed  CAS  Google Scholar 

  • Burbulys D, Trach KA, Hoch JA (1991) Initiation of sporulation in B.subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552

    Article  PubMed  CAS  Google Scholar 

  • Cañestro C, Yokoi H, Postlethwait JH (2007) Evolutionary developmental biology and genomics. Nat Rev Genet 8:932–942

    Article  PubMed  Google Scholar 

  • Castagnone-Sereno P (2002) Genetic variability of nematodes: a threat to the durability of plant resistance genes? Euphytica 124:193–199

    Article  CAS  Google Scholar 

  • Channer AG, Gowen SR (1992) Selection for increased host resistance and increased pathogen specificity in the Meloidogyne-Pasteuria penetrans interaction. Fundam Appl Nematol 15:331–339

    Google Scholar 

  • Charles L, Carbone I, Davies KG et al (2005) Phylogenetic analysis of Pasteuria penetrans by useof multiple genetic loci. J Bacteriol 187:5700–5708

    Article  PubMed  CAS  Google Scholar 

  • Charlon S, Moir AJG, Baillie L et al (1999) Characterisation of the exosporium of Bacillus cereus. J Appl Microbiol 87:241–245

    Article  Google Scholar 

  • Chen P, Roberts PA (2003) Virulence in Meloidogyne hapla differentiated by resistance in common bean (Phaseolus vulgaris). Nematology 5:39–47

    Article  Google Scholar 

  • Davies KG (2009) Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria obligate plant-parasiuriatic nematode host, Meloidogyne spp. Adv Parasitol 68:211–245

    Article  PubMed  Google Scholar 

  • Davies KG, Danks C (1993) Carbohydrate/protein interactions between the cuticle of infective juveniles of Meloidogyne incognita and spores of the obligate hyperparasite Pasteuria penetrans. Nematologica 39:54–64

    Article  Google Scholar 

  • Davies KG, Opperman CH (2006) A potential role for collagen in the attachment of Pasteuria penetrans to nematode cuticle. In: Raaijmakers JM, Sikora RA (eds) Multitrophic interactions in the soil and integrated control. IOBC/WPRS Bull 29:11–15, General Secretariat IOBC/WPRS Dijon France

    Google Scholar 

  • Davies KG, Redden M (1997) Diversity and partial characterisation of putative virulence determinants in Pasteuria penetrans, the hyperparasite of root-knot nematodes. J Appl Microbiol 83:227–235

    Article  PubMed  CAS  Google Scholar 

  • Davies KG, Williamson VM (2006) Host-specificity exhibited by populations of endospores of Pasteuria penetrans to the juvenile and male cuticles of Meloidogyne hapla. Nematology 8:475–476

    Article  Google Scholar 

  • Davies KG, Kerry BR, Flynn CA (1988) Observations on the pathogenicity of Pasteuria penetrans, a parasite of root-knot nematodes. Annu Appl Biol 112:1491–1501

    Article  Google Scholar 

  • Davies KG, Flynn CA, Laird V et al (1990) The life-cycle, population dynamics and host specificity of a parasite of Heterodera avenae, similar to Pasteuria penetrans. Rev Nématol 13:303–309

    Google Scholar 

  • Davies KG, Laird V, Kerry BR (1991) The motility, development and infection of Meloidogyne incognita encumbered with spores of the obligate hyperparasite Pasteuria penetrans. Rev Nématol 14:611–618

    Google Scholar 

  • Davies KG, Fargette M, Balla G (2001) Cuticle heterogeneity as exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenogenetic root- knot nematodes (Meloidogyne spp.). Parasitology 122:111–120

    Article  PubMed  Google Scholar 

  • Davies KG, Rowe J, Williamson VM (2008) Cuticle variation amongst amphimictic and parthenogenetic populations of nematode (Meloidogyne spp.) as exhibited by a bacterial parasite (Pasteuria penetrans). Int J Parasitol 38:851–859

    Article  PubMed  CAS  Google Scholar 

  • Davies KG, Gravato-Nobre M, Hodgkin, J (2009) Knock-down of mucin-like genes using RNAi changes lectin staining in adult hermaphrodites of Caenorhabditis elegans. International Worm Meeting, Wormbase (abs), Los Angeles

    Google Scholar 

  • Davies KG, Rowe J, Manzanilla-Lopez R et al (2011) Re-evaluation of the life-cycle of the nematode parasitic bacterium Pasteuria penetrans in root-knot nematodes Meloidogyne spp. Nematology (in press)

    Google Scholar 

  • Dawkins R (2009) The greatest show on earth: the evidence for evolution. Transworld (United Kingdom and Commonwealth), New York

    Google Scholar 

  • DesRosier JP, Lara JC (1981) Isolation and properties of pili from spores of Bacillus cereus. J Bacteriol 145:613–619

    PubMed  CAS  Google Scholar 

  • Duponnois R, Ba AM, Mateille T (1999) Beneficial effects of Enterobacter cloacae and Pseudomonas mendocina for the biocontrol of Meloidogyne incognita with the endospore-forming bacterium Pasteuria penetrans. Nematology 1:95–101

    Google Scholar 

  • Espanol M, Verdejo-Lucas S, Davies KG et al (1997) Compatibility between Pasteuria penetrans and Meloidogyne populations from Spain. Biocontrol Sci Technol 7:219–230

    Article  Google Scholar 

  • Evans AAF (1998) Reproductive mechanisms. In: Perry RN, Wright DJ (eds) The physiology and biochemistry of free-living and plant-parasitic nematodes. CABI Publishing, Wallingford

    Google Scholar 

  • Fawcett P, Eichenberger P, Losick R et al (2000) The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci USA 97:8063–8068

    Article  PubMed  CAS  Google Scholar 

  • Field D, Feil EJ, Wilson GA (2005) Databases and software for the comparison of prokaryotic genomes. Microbiology 151:2125–2132

    Article  PubMed  CAS  Google Scholar 

  • Frutos R, Viari A, Ferraz C et al (2006) Comparative genomic analysis of three strains of Ehrlichia ruminantium reveals an active process of genome size plasticity. J Bacteriol 188:2533–2542

    Article  PubMed  CAS  Google Scholar 

  • Gems DH, Maizels RM (1996) An abundantly expressed mucin-like protein from Toxocara canis infective larvae: the precursor of the larval surface coat glycoproteins. Proc Natl Acad Sci USA 93:1665–1670

    Article  PubMed  CAS  Google Scholar 

  • Gerber JF, White JH (2001) Materials and methods for the efficient production of Pasteuria. International patent application WO 01/11017 A2

    Google Scholar 

  • Ghedin E, Wang S, Spiro D et al (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Giannakou IO, Pembroke B, Gowen SR et al (1997) Effects of long term storage and above normal temperatures on spore adhesion of Pasteuria penetrans and infection of root-knot nematode Meloidogyne javanica. Nematologica 43:185–192

    Article  Google Scholar 

  • Giblin-Davis RM, Williams DS, Bekal S et al (2003) Candidatus Pasteuria usgae’ sp. nov., an obligate endoparasite of the phytoparasitic nematode, Belonolaimus longicaudatus. Int J Syst Evol Microbiol 53:197–200

    Article  PubMed  CAS  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C et al (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  PubMed  CAS  Google Scholar 

  • Griffin GD, McKenry MV (1989) Susceptibility of Nevada synthetic XX germplasm to a California race of Meloidogyne Hapla. J Nematol 21:292–293

    PubMed  CAS  Google Scholar 

  • Grimshaw CE, Huang S, Hanstein CG (1998) Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 37:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Guiliano DB, Blaxter ML (2006) Operon conservation and the evolution of trans-splicing in the phylum Nematoda. PLoS Genet 2(11): e198

    Article  PubMed  Google Scholar 

  • Haldane JBS (1949) Disease and evolution. La Ricerca Sci Suppl 19:1–11

    Google Scholar 

  • Hall DH, Altun ZF (2008) C. elegans Atlas. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Harris TW, Lee R, Schwarz R et al (2003) Wormbase: a cross-species database for comparative genomics. Nucleic Acids Res 31:133–137

    Article  PubMed  CAS  Google Scholar 

  • Hartman KM, Sasser JN (1985) Identification of Meloidogyne species on the basis of differential host test and perineal-pattern morphology. In: Barker KR, Carter CC, Sasser JN (eds) An advanced treatise on Meloidogyne, Vol II. North Carolina State University, Raleigh, pp 69–77

    Google Scholar 

  • Hemmer RM, Donkin SG, Chin KJ et al (1991) Altered expression of an L1-specific, O-linked cuticle surface glycoprotein in mutants of the nematode Caenorhabditis elegans. J Cell Biol 115:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Henriques AP, Moran CP Jr (2007) Structure, assembly, function of the spore surface layers. Annu Rev Microbiol 61:555–588

    Article  PubMed  CAS  Google Scholar 

  • Hewlett TE, Gerber JF, Smith KS (2004) In vitro culture of Pasteuria penetrans. In: Cook RC, Hunt DJ (eds) Nematology monographs and perspectives, vol 2, Proceedings of the fourth international congress of nematology. Brill, Leiden, pp 175–185

    Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113

    Article  PubMed  CAS  Google Scholar 

  • Jack DL, Paulsen IT, Saier MH (2000) The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146:1797–1814

    PubMed  CAS  Google Scholar 

  • Jack DL, Yang NM, Saier MH Jr (2001) The drug/metabolite transporter superfamily. Eur J Biochem 268:3620–3639

    Article  PubMed  CAS  Google Scholar 

  • Jepson SB (1987) Identification of root-knot nematodes (Meloidogyne species). CAB International, Wallingford

    Google Scholar 

  • Kojetin DJ, Thompson RJ, Benson LM et al (2005) Structural analysis of divalent metals binding to the Bacillus subtilis response regulator Spo0F: the possibility for in vitro metalloregulation in the initiation of sporulation. Biometals 18:449–466

    Article  PubMed  CAS  Google Scholar 

  • Kozuka S, Tochikubo K (1985) Properties and origin of filamentous appendages on spores of Bacillus cereus. Microbiol Immunol 29:21–37

    PubMed  CAS  Google Scholar 

  • Law CJ, Maloney PC, Wang DN (2008) Ins and outs of major facilitator superfamily antiporters. Annu Rev Microbiol 62:289–305

    Article  PubMed  CAS  Google Scholar 

  • Leroy S, Duperray C, Morand S (2003) Flow cytometry for parasite nematode genome size ­measurement. Mol Biochem Parasitol 128:91–93

    Article  PubMed  CAS  Google Scholar 

  • Liu QL, Williamson VM (2006) Host-specific pathogenicity and genome differences between inbred strains of Meloidogyne hapla. J Nematol 38:158–164

    PubMed  CAS  Google Scholar 

  • Liu QL, Thomas VP, Williamson VM (2007) Meiotic parthenogenesis in a root-knot nematode results in rapid genomic homozygosity. Genetics 76:1483–1490

    Article  Google Scholar 

  • Magalhães A, Ismail MN, Reis AC (2010) Sweet receptors mediate the adhesion of the gastric pathogen Helicobacter pylori: glycoproteomic stratergies. Expert Rev Proteomics 7:307–310

    Article  PubMed  Google Scholar 

  • MendozadeGives P, Davies KG, Morgan M (1999) Attachment tests of Pasteuria penetrans to the cuticle of plant- and animal-parasitic nematodes, free-living nematodes and srf mutants of Caenorhabditis elegans. J Helminthol 73:67–71

    CAS  Google Scholar 

  • Mohan S, Fould S, Davies KG (2001) The interaction between the gelatine-binding domain of fibronectin and the attachment of Pasteuria penetrans endospores to nematode cuticle. Parasitology 123:271–276

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay D, Sen U, Zapf J et al (2004) Metals in the sporulation phosphorelay: manganese binding by the response regulator Spo0F. Acta Cryst D60:638–645

    CAS  Google Scholar 

  • Noel GR, Atibalentja N, Domier LL (2005) Emended description of Pasteuria nishizawae. Int J Syst Evol Microbiol 55:1681–1685

    Article  PubMed  CAS  Google Scholar 

  • Opperman CH, Bird DM, Williamson VM et al (2008) Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci USA 105:14802–14807

    Article  PubMed  CAS  Google Scholar 

  • Otto SP, Nuismer SL (2004) Species interactions and the evolution of sex. Science 304:1018–1020

    Article  PubMed  CAS  Google Scholar 

  • Pableo EC, Triantaphyllou AC (1989) DNA complexity of the root-knot nematode (Meloidogyne spp.) genome. J Nematol 21:260–263

    PubMed  CAS  Google Scholar 

  • Page AP, Johnstone IL (2007) The cuticle. In WormBook, ed. The C. elegans research community, WormBook, doi/10.1895/wormbook.1.138.1, http://www.wormbook.org

  • Pao SS, Saier PIT, Jr MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34

    PubMed  CAS  Google Scholar 

  • Persidis A, Lay JG, Manousis T (1991) Characterisation of potential adhesions of the bacterium Pasteuria penetrans, and of putative receptors on the cuticle of Meloidogyne incognita, a nematode host. J Cell Sci 100:613–622

    PubMed  CAS  Google Scholar 

  • Plomp M, Leighton TJ, Wheeler KE et al (2005a) The high-resolution architecture and structural dynamics of Bacillus spores. Biophys J 88:603–608

    Article  PubMed  CAS  Google Scholar 

  • Plomp M, Leighton TJ, Wheeler KE (2005b) Architecture and high-resolution structure of Bacillus thuringiensis and Bacillus cereus spore coat surfaces. Langmuir 21:7892–7898

    Article  PubMed  CAS  Google Scholar 

  • Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate :carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    PubMed  CAS  Google Scholar 

  • Power PM, Jennings MP (2003) The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett 218:211–222

    Article  PubMed  CAS  Google Scholar 

  • Saier MH Jr (2000) Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology 146:1775–1795

    PubMed  CAS  Google Scholar 

  • Sharma SB, Davies KG (1996) Characterisation of Pasteuria isolated from Heterodera cajani using morphology, pathology and serology of endospores. Syst Appl Microbiol 19:106–112

    Google Scholar 

  • Steichen CT, Chen P, Kearney JF et al (2003) Identification of an immunodominant protein and other proteins of the Bacillus anthracis exosporium. J Bacteriol 185:1903–1910

    Article  PubMed  CAS  Google Scholar 

  • Stirling GR (1985) Host-specificity in Pasteuria penetrans within the genus Meloidogyne. Nematologica 31:203–209

    Article  Google Scholar 

  • Stirling GR (1991) Biological control of plant-parasitic nematodes: progress problems and prospects. CAB International, Wallingford

    Google Scholar 

  • Stirling GR, Wachtel MF (1980) Mass production of Bacillus penetrans for the biological control of root-knot nematodes. Nematologica 26:308–312

    Article  Google Scholar 

  • Strous GJ, Dekker J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27:57–92

    Article  PubMed  CAS  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2002) A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45:169–178

    Article  PubMed  CAS  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2003) Polymorphism in the collagen-like region of the Bacillus anthracis BclA protein leads to variation in length in the exosporium filament length. J Bacteriol 185:5155–5163

    Article  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2005) Contribution of ExsFA and ExsFB proteins to the localisation of BclA on the spoe surface and to the stability of the Bacillus anthracis exosporium. J Bacteriol 187:5122–5128

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi K, Taguchi F, Inagaki Y et al (2003) Flagellin glycosylation island in Pseudomonas syringae pv. Glycinea and its role in host specificity. J Bacteriol 185:6658–6665

    Article  PubMed  CAS  Google Scholar 

  • Takumi K, Kinouchi T, Kawata T (1979) Isolation and partial characterization of exosporium from spores of a highly sporogenic mutant of Clostridium botulinum type A. Microbiol Immunol 28:443–454

    Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Science 282:2012–2018

    Google Scholar 

  • Todd SJ, Moir AJ, Johnson MJ (2003) Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J Bacteriol 185:3373–3378

    Article  PubMed  CAS  Google Scholar 

  • Trudgill DL, Blok VC (2001) Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39:53–77

    Article  PubMed  CAS  Google Scholar 

  • Van der Beek JG, Poleij LM, Zulstra C et al (1998) Variation in virulence within Meloidogyne chitwoodi, M. fallax, and M. hapla on Solanum spp. Phytopathology 88:658–665

    Article  PubMed  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Wehrli E, Scherrer P, Kubler O (1980) The crystalline layer in spores of Bacillus cereus and Bacillus thuringiensis studied by freeze-etching and high resolution electron microscopy. Eur J Cell Biol 20:283–289

    PubMed  CAS  Google Scholar 

  • Welch M, Cummings MP, Hillis DM (2004) Divergent gene copies in the asexual class Bdelloidea (Rotifera) separated before the bdelloid radiation or within bdelloid families. Proc Natl Acad Sci USA 101:1622–1625

    Article  CAS  Google Scholar 

  • Williams AB, Stirling GR, Hayward AC (1989) Properties and attempted culture of Pasteuria penetrans, a bacterial parasite of root-knot nematode (Meloidogyne javanica). J Appl Microbiol 67:145–156

    Article  Google Scholar 

  • Williamson VM (1999) Plant nematode resistance genes. Curr Opin Plant Biol 2:327–331

    Article  PubMed  CAS  Google Scholar 

  • Wilson AC, Soyer M, Hoch JA et al (2008) The bicarbonate transporter is essential for Bacillus anthracis lethality. PLoS Pathog 4(11):e1000210

    Article  PubMed  Google Scholar 

  • Wishart J, Blok VC, Phillips MS et al (2004) Pasteuria penetrans and P. nischizawae attachment to Meloidogyne chitwoodi, M. fallax and M.hapla. Nematology 6:507–510

    Article  Google Scholar 

  • Zapf J, Hoch JA, Whitely JM (1996) A phosphotransferase activity of the Bacillus subtilis sporulation protein Spo0F that employs phosphoramidate substrates. Biochemistry 35:2926–2933

    Article  PubMed  CAS  Google Scholar 

  • Zarkower D (2006) Somatic sex determination. In Wormbook, ed. The C. elegans research ­community, doi/10.1895/wormbook1.84.1. http://www.wormbook.org

  • Zawadzki JL, Presidente PJA, Meeusen EN et al (2006) RNAi in Haemonchus contortus: a potential method for target validation. Trends Parasitol 22:495–499

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

KGD and THM would like to thank The Biotechnological and Biological Sciences Research Council of the United Kingdom. This work was also supported in part by the North Carolina Biotechnology Centre and the North Carolina Agricultural Research Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenn E. Schaff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Schaff, J.E., Mauchline, T.H., Opperman, C.H., Davies, K.G. (2011). Exploiting Genomics to Understand the Interactions Between Root-Knot Nematodes and Pasteuria penetrans . In: Davies, K., Spiegel, Y. (eds) Biological Control of Plant-Parasitic Nematodes:. Progress in Biological Control, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9648-8_4

Download citation

Publish with us

Policies and ethics