Skip to main content

Biological Control of Plant-Parasitic Nematodes: An Ecological Perspective, a Review of Progress and Opportunities for Further Research

  • Chapter
  • First Online:
Biological Control of Plant-Parasitic Nematodes:

Part of the book series: Progress in Biological Control ((PIBC,volume 11))

Abstract

Plant-parasitic nematodes are important pests, causing billions of dollars damage to the world’s food and fibre crops. However, from an ecological perspective, this group of nematodes is simply one component in a vast array of organisms that live in soil. All these organisms interact with nematodes and with each other, and during that process, contribute to regulatory mechanisms that maintain the ­stability of the soil food-web. Populations of individual species do not increase indefinitely but are subject to a constant series of checks and balances, which more or less stabilises their population densities. Thus, biological control is a normal part of a properly functioning soil ecosystem, with plant-parasitic nematodes only becoming pests when they are no longer constrained by the biological buffering mechanisms that normally keep them in check. This chapter therefore focuses on approaches that can be used to restore, maintain or enhance the natural nematode-suppressive mechanisms that should operate in all agricultural soils. The positive impact of organic matter and the negative effects of tillage, biocides, fertilisers and other management practices on suppressiveness are discussed, together with examples of suppression due to host-specific natural enemies. The problems ­associated with replacing soil fumigants and nematicides with biological alternatives, and the ecological issues likely to affect the efficacy of such products, are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahrén D, Ursing BM, Tunlid A (1998) Phylogeny of nematode-trapping fungi based on 18 S rDNA sequences. FEMS Microbiol Lett 158:179–184

    Article  PubMed  Google Scholar 

  • Ahrén D, Tholander M, Fekete C et al (2005) Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology 151:789–803

    Article  PubMed  Google Scholar 

  • Akhtar M, Malik A (2000) Role of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes. Bioresour Technol 74:35–47

    Article  CAS  Google Scholar 

  • Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Pathol 28:57–64

    Article  Google Scholar 

  • Athman SY, Dubois T, Coyne D et al (2007) Effect of endophytic Fusarium oxysporum on root penetration and reproduction of Radopholus similis in tissue culture-derived banana (Musa sp.) plants. Nematology 9:599–607

    Article  Google Scholar 

  • Atibalentja N, Babadoost M, Noel GR (2008) A real-time PCR assay for the detection of Pasteuria nishizawae in soil. Phytopathology 98(Supplement):S15

    Google Scholar 

  • Atkins SD, Clark IM, Pande S et al (2005) The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol Ecol 51:257–264

    Article  PubMed  CAS  Google Scholar 

  • Atkins SD, Peteira B, Clark IM et al (2009) Use of real-time quantitiative PCR to investigate root and gall colonisation by co-inoculated isolates of the nematophagous fungus Pochonia chlamydosporia. Ann Appl Biol 155:143–152

    Article  CAS  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. WH Freeman & Co., San Francisco

    Google Scholar 

  • Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Google Scholar 

  • Barker KR, Carter CC, Sasser JN (1985) An advanced treatise on Meloidogyne: volume 2, Methodology. North Carolina State University Graphics, Raleigh

    Google Scholar 

  • Barron GL (1992) Lignolytic and cellulolytic fungi as predators and parasites. In: Carroll GC, Wicklow DT (eds) The fungal community, its organization and role in the ecosystem. Marcel-Decker, New York

    Google Scholar 

  • Becker JO, Zavaleta-Mejia E, Colbert SF et al (1988) Effects of rhizobacteria on root-knot nematodes and gall formation. Phytopathology 78:1466–1469

    Article  Google Scholar 

  • Bent E, Loffredo A, McKenry MV et al (2008) Detection and investigation of soil biological activity against Meloidogyne incognita. J Nematol 40:109–118

    PubMed  CAS  Google Scholar 

  • Berkelmans R, Ferris H, Tenuta M et al (2003) Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Appl Soil Ecol 23:223–235

    Article  Google Scholar 

  • Bhan M, McSorley R, Chase CA (2010) Effect of cropping system complexity on plant-parasitic nematodes associated with organically grown vegetables in Florida. Nematropica 40:53–70

    Google Scholar 

  • Bilgrami AL, Gaugler R (2005) Feeding behaviour of the predatory nematodes Laimydorus baldus and Discolaimus major (Nematoda: Dorylaimida). Nematology 7:11–20

    Article  Google Scholar 

  • Bilgrami AL, Gaugler R, Brey C (2005) Prey preference and feeding behaviour of the diplogastrid predator Mononchoides gaugleri (Nematoda: Diplogastrida). Nematology 7:333–342

    Article  Google Scholar 

  • Bilgrami AL, Brey C, Gaugler R (2008) First field release of a predatory nematode, Mononchoides gaugleri (Nematoda: Diplogastrida), to control plant-parasitic nematodes. Nematology 10:143–146

    Article  Google Scholar 

  • Borneman J, Becker JO (2007) Identifying microorganisms involved in specific pathogen suppression in soil. Annu Rev Phytopathol 45:153–172

    Article  PubMed  CAS  Google Scholar 

  • Borneman J, Olatinwo R, Yin B et al (2004) An experimental approach for identifying microorganisms involved in specified functions: utilisation for understanding a nematode suppressive soil. Australas Plant Pathol 33:151–155

    Article  CAS  Google Scholar 

  • Bourne JM, Kerry BR, De Leij FAAM (1996) The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus Verticillium chlamydosporium Goddard. Biocontrol Sci Technol 6:539–548

    Article  Google Scholar 

  • Broadbent P, Baker KF (1974) Behaviour of Phytophthora cinnamomi in soils suppressive and conducive to root rot. Aust J Agric Res 25:121–137

    Article  Google Scholar 

  • Buée M, de Boer W, Martin F et al (2009a) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archea, and fungi, and some of their structuring factors. Plant Soil 321:189–212

    Article  CAS  Google Scholar 

  • Buée M, Reich M, Murat C et al (2009b) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    Article  PubMed  CAS  Google Scholar 

  • Chen ZX, Dickson DW (1998) Review of Pasteuria penetrans: biology, ecology and biological control potential. J Nematol 30:313–340

    PubMed  CAS  Google Scholar 

  • Chen J, Xu L-L, Liu B et al (2007a) Taxonomy of Dactylella complex and Vermispora I. Generic concepts based on morphology and ITS sequences data. Fungal Divers 26:73–83

    CAS  Google Scholar 

  • Chen J, Xu L-L, Liu B et al (2007b) Taxonomy of Dactylella complex and Vermispora II. The genus Dactylella. Fungal Divers 26:85–126

    Google Scholar 

  • Chen J, Xu L-L, Liu B et al (2007c) Taxonomy of Dactylella complex and Vermispora III. A new Brachyphoris and revision of Vermispora. Fungal Divers 26:127–142

    Google Scholar 

  • Ciancio A, Bonsignore R, Vovlas N et al (1994) Host records and spore morphometrics of Pasteuria penetrans group parasites of nematodes. J Invertebr Pathol 63:260–267

    Article  Google Scholar 

  • Coleman DC (2008) From peds to paradoxes: linkages between soil biota and their influences on soil ecological processes. Soil Biol Biochem 40:271–289

    Article  CAS  Google Scholar 

  • Coleman DC, Crossley DA (2003) Fundamentals of soil ecology. Academic, Burlington

    Google Scholar 

  • Compant S, Duffy B, Nowak J et al (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Conn KL, Lazarovits G (1999) Impact of animal manures on Verticillium wilt, potato scab, and soil microbial populations. Can J Plant Pathol 21:81–92

    Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. American Phytopathological Society, St. Paul

    Google Scholar 

  • Dababat AEA, Sikora RA (2007) Induced resistance by the mutualistic endophyte, Fusarium oxysporum strain 162, toward Meloidogyne incognita on tomato. Biocontrol Sci Technol 17:969–975

    Article  Google Scholar 

  • Davet P (2004) Microbial ecology of the soil and plant growth. Science Publishers Inc., Enfield

    Google Scholar 

  • Davies KG, Redden M (1997) Diversity and partial characterization of putative virulence determinants of Pasteuria penetrans, the hyperparasitic bacterium of root-knot nematodes (Meloidogyne spp.). J Appl Microbiol 83:227–235

    Article  PubMed  CAS  Google Scholar 

  • Davies KG, Redden M, Pearson TK (1994) Endospore heterogeneity in Pasteuria penetrans related to adhesion to plant-parasitic nematodes. Lett Appl Microbiol 19:370–383

    Article  Google Scholar 

  • De Leij FAAM, Kerry BR, Dennehy JA (1992) The effect of fungal application rate and nematode density on the effectiveness of Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita. Nematologica 38:112–122

    Article  Google Scholar 

  • Deacon JW (1991) Significance of ecology in the development of biocontrol agents against soil-borne diseases. Biocontrol Sci Technol 1:5–20

    Article  Google Scholar 

  • DeLeij FAAM, Kerry BR (1991) The nematophagous fungus Verticillium chlamydosporium as a potential biological control agent for Meloidogyne arenaria. Rev Nematol 14:157–164

    Google Scholar 

  • Desaeger JA, Csinos AS (2006) Root-knot nematode management in double-cropped plasticulture vegetables. J Nematol 38:59–67

    PubMed  CAS  Google Scholar 

  • Downer AJ, Menge JA, Pond E (2001) Association of cellulytic enzyme activities in Eucalyptus mulches with biological control of Phytophthora cinnamomi. Phytopathology 91:847–855

    Article  PubMed  CAS  Google Scholar 

  • Eno CF, Blue WG, Good JM Jr (1955) The effect of anhydrous ammonia on nematodes, fungi, bacteria, and nitrification in some Florida soils. Proc Soil Sci Soc Am 19:55–58

    Article  CAS  Google Scholar 

  • Ferris H, Bongers T (2009) Indices developed specifically for analysis of nematode assemblages. In: Wilson MJ, Kakouli-Duarte T (eds) Nematodes as environmental indicators. CAB International, Wallingford, pp 124–145

    Chapter  Google Scholar 

  • Franco C, Michelsen P, Perry N et al (2007) Actinobacterial endophytes for improved crop performance. Australas Plant Pathol 36:524–531

    Article  Google Scholar 

  • Franzluebbers AJ (2004) Tillage and management effects on soil organic matter. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp 227–268

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  PubMed  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    Article  PubMed  CAS  Google Scholar 

  • Garside AL, Bell MJ, Robotham BG et al (2005) Managing yield decline in sugarcane cropping systems. Int Sugar J 107:16–26

    Google Scholar 

  • Gaspard JT, Mankau R (1986) Nematophagous fungi associated with Tylenchulus semipenetrans and the citrus rhizosphere. Nematologica 32:359–363

    Article  Google Scholar 

  • Gerber JF, Hewlett TE, Smith KS et al (2006) Materials and methods for in vitro production of bacteria.US Patent 7,067,299 B2

    Google Scholar 

  • Giblin-Davis RM, McDaniel LL, Bilz FG (1990) Isolates of the Pasteuria penetrans group from phytoparasitic nematodes in Bermudagrass turf. J Nematol 22(supplement):750–762

    PubMed  CAS  Google Scholar 

  • Giblin-Davis RM, Williams DS, Bekal S et al (2003) ‘Candidatus Pasteuria usgae’ sp. nov., an obligate endoparasite of the phytoparasitic nematode Belonolaimus longicaudatus. Int J Syst Evol Microbiol 53:197–200

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonising Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn G, Scholler M (1999) A reevaluation of predatory orbiliaceous fungi. 1. Phylogenetic analysis using rDNA sequence data. Sydowia 51:27–48

    Google Scholar 

  • Hallman J, Sikora RA (1994) Influence of Fusarium oxysporum, a mutualistic fungal endophyte, on Meloidogyne incognita infection of tomato. J Plant Dis Prot 101:475–481

    Google Scholar 

  • Hallman J, Sikora RA (1996) Toxicity of fungal endophyte secondary metabolites to plant-parasitic nematodes and soil-borne plant pathogenic fungi. Eur J Plant Pathol 102:155–162

    Article  Google Scholar 

  • Hewlett TE, Gerber JF, Smith KS (2004) In vitro culture of Pasteuria penetrans. Nematol Monogr Perspect 2:175–185

    Google Scholar 

  • Hewlett TE, Waters JP, Luc JE et al (2008) Field studies using in vitro produced Pasteuria endospores to control sting nematodes on turf. In: Abstracts, Fifth International Congress of Nematology, vol 180, Brisbane, 2008

    Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  PubMed  CAS  Google Scholar 

  • Hornby D (1990) Biological control of soil-borne plant pathogens. CAB International, Wallingford

    Google Scholar 

  • Jaffee BA (2003) Correlations between most probable number and activity of nematode-trapping fungi. Phytopathology 93:1599–1605

    Article  PubMed  CAS  Google Scholar 

  • Jaffee BA (2004) Do organic amendments enhance the nematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora? J Nematol 36:267–275

    PubMed  CAS  Google Scholar 

  • Jaffee BA, Muldoon AE, Anderson CE et al (1991) Detection of the nematophagous fungus Hirsutella rhossiliensis in California sugar beet fields. Biol Control 1:63–67

    Article  Google Scholar 

  • Jaffee BA, Barstow JL, Strong DR (2007) Suppression of nematodes in a coastal grassland soil. Biol Fertil Soils 44: 19–26

    Article  PubMed  CAS  Google Scholar 

  • Jaffee BA, Ferris H, Scow KM (1998) Nematode-trapping fungi in organic and conventional cropping systems. Phytopathology 88:344–350

    Article  PubMed  CAS  Google Scholar 

  • Jetiyanon K, Fowler WD, Kloepper JW (2003) Broad-spectrum protection against several pathogens by PGPR mixtures under field conditions in Thailand. Plant Dis 87:1390–1394

    Article  Google Scholar 

  • Kariuki GM, Dickson DW (2007) Transfer and development of Pasteuria penetrans. J Nematol 39:55–61

    PubMed  CAS  Google Scholar 

  • Khan Z, Kim YH (2005) The predatory nematode, Mononchoides fortidens (Nematoda: Diplogastrida), suppresses the root-knot nematode, Meloidogyne arenaria, in potted field soil. Biol Control 35:78–82

    Article  Google Scholar 

  • King RA, Read DS, Traugott M, et al. (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963

    Article  PubMed  CAS  Google Scholar 

  • Kloepper JW, Rodríguez-Kábana R, McInroy JA et al (1991) Analysis of populations and physiological characterization of microorganisms in rhizospheres of plants with antagonistic properties to phytopathogenic nematodes. Plant Soil 136:95–102

    Article  Google Scholar 

  • Kloepper JW, Rodríguez-Kábana R, McInroy JA et al (1992) Rhizosphere bacteria antagonistic to soybean cyst (Heterodera glycines) and root knot (Meloidogyne incognita) nematodes: identification by fatty acid analysis and frequency of biological control activity. Plant Soil 139:75–84

    Article  CAS  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  PubMed  CAS  Google Scholar 

  • Kluepfel DA, McInnis TM, Zehr EI (1993) Involvement of root-colonizing bacteria in peach soils suppressive of the nematode Criconemella xenoplax. Phytopathology 83:1240–1245

    Article  Google Scholar 

  • Kokalis-Burelle N, Martinez-Ochoa N, Rodriguez-Kabana R et al (2002a) Development of multi-component transplant mixes for suppression of Meloidogyne incognita on tomato (Lycopersicon esculentum). J Nematol 34:362–369

    PubMed  CAS  Google Scholar 

  • Kokalis-Burelle N, Vavrina CS, Rosskopf EN et al (2002b) Field evaluation of plant growth-promoting rhizobactera amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  CAS  Google Scholar 

  • Lazarovits G, Conn KL, Potter J (1999) Reduction of potato scab, verticillium wilt, and nematodes by soymeal and meat and bone meal in two Ontario potato fields. Can J Plant Pathol 21:345–353

    Article  Google Scholar 

  • Lazarovits G, Tenuta M, Conn KL (2001) Organic amendments as a disease control strategy for soilborne diseases of high-value agricultural crops. Australas Plant Pathol 30:111–117

    Article  Google Scholar 

  • Li Y, Hyde KD, Jeewon R et al (2005) Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein encoding genes. Mycologia 97:1034–1046

    Article  PubMed  CAS  Google Scholar 

  • Lumsden RD, Garcia ER, Lewis JA et al (1987) Suppression of damping-off caused by Pythium spp. in soil from the indigenous Chinampa agricultural system. Soil Biol Biochem 19:501–508

    Article  Google Scholar 

  • Magdoff F, Weil RR (2004) Soil organic matter management strategies. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp 45–65

    Chapter  Google Scholar 

  • Maheshwari R (2006) What is an endophytic fungus? Curr Sci 90:1309

    Google Scholar 

  • Malajczuk N (1983) Microbial antagonism of Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora: its biology, taxonomy, ecology and pathology. American Phytopathological Society, St. Paul

    Google Scholar 

  • Mazzola M (2004) Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42:35–59

    Article  PubMed  CAS  Google Scholar 

  • Mazzola M (2007) Manipulation of rhizosphere bacterial communities to induce suppressive soils. J Nematol 39:213–220

    PubMed  Google Scholar 

  • McInnis TM, Jaffee BA (1989) An assay for Hirsutella rhossiliensis spores and the importance of phialides for nematode inoculation. J Nematol 21:229–234

    PubMed  CAS  Google Scholar 

  • McSorley R, Gallaher RN (1995) Effect of yard waste compost on plant-parasitic nematode densities in vegetable crops. J Nematol 27:545–549

    PubMed  CAS  Google Scholar 

  • McSorley R, Gallaher RN (1996) Effect of yard waste compost on nematode densities and maize yield. J Nematol 28:655–660

    PubMed  CAS  Google Scholar 

  • Melakeberhan H (2002) Embracing the emerging precision agriculture technologies for site-specific management of yield-limiting factors. J Nematol 34:185–188

    PubMed  CAS  Google Scholar 

  • Muller R, Gooch PS (1982) Organic amendments in nematode control. An examination of the literature. Nematropica 12:319–326

    Google Scholar 

  • Neher DA, Darby BJ (2009) General community indices that can be used for analysis of nematode assemblages. In: Wilson MJ, Kakouli-Duarte T (eds) Nematodes as environmental indicators. CAB International, Wallingford, pp 107–123

    Chapter  Google Scholar 

  • Nguyen Vi L, Bastow JL, Jaffee BA et al (2007) Response of nematode-trapping fungi to organic substrates in a coastal grassland soil. Mycol Res 111:856–862

    Article  PubMed  CAS  Google Scholar 

  • Noel GR, Atibalentja N, Bauer SJ (2010) Suppression of Heterodera glycines in a soybean field artificially infested with Pasteuria nishizawae. Nematropica 40:41–52

    Google Scholar 

  • Oka Y (2010) Mechanism of nematode suppression by organic soil amendments – a review. Appl Soil Ecol 44:101–115

    Article  Google Scholar 

  • Oka Y, Pivonia S (2002) Effect of a nitrification inhibitor on nematicidal activity of organic and inorganic ammonia-releasing compounds against the root-knot nematode Meloidogyne javanica. Nematology 5:505–513

    Article  Google Scholar 

  • Oka Y, Chet I, Spiegel Y (1993) Control of root-knot nematode, Meloidogyne javanica by Bacillus cereus. Biocontrol Sci Technol 3:115–126

    Article  Google Scholar 

  • Oka Y, Tkachi N, Shuker S et al (2006a) Laboratory studies on the enhancement of nematicidal activity of ammonia-releasing fertilisers by alkaline amendments. Nematology 8:335–346

    Article  CAS  Google Scholar 

  • Oka Y, Tkachi N, Shuker S et al (2006b) Field studies on the enhancement of nematicidal activity of ammonia-releasing fertilisers by alkaline amendments. Nematology 8:881–893

    Article  CAS  Google Scholar 

  • Olatinwo R, Borneman J, Becker JO (2006a) Suppression of Heterodera schachtii populations by Dactylella oviparasitica in four soils. J Nematol 38:345–348

    PubMed  Google Scholar 

  • Olatinwo R, Borneman J, Becker JO (2006b) Induction of beet-cyst nematode suppressiveness by the fungi Dactylella oviparasitica and Fusarium oxysporum in field microplots. Phytopathology 96:855–859

    Article  PubMed  Google Scholar 

  • Olatinwo R, Yin B, Becker JO et al (2006c) Suppression of the plant-parasitic nematode Heterodera schachtii by the fungus Dactylella oviparasitica. Phytopathology 96:111–114

    Article  PubMed  Google Scholar 

  • Ophel-Keller K, McKay A, Hartley D et al (2008) Development of a routine DNA-based testing service for soilborne diseases in Australia. Australas Plant Pathol 37:243–253

    Article  CAS  Google Scholar 

  • Paul EA (ed) (2007) Soil microbiology, ecology and biochemistry. Academic, Burlington

    Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  PubMed  CAS  Google Scholar 

  • Paustian K, Collins HP, Paul EA (1997) Management control on soil carbon. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton

    Google Scholar 

  • Persson C, Jansson H-B (1999) Rhizosphere colonization and control of Meloidogyne spp. by nematode-trapping fungi. J Nematol 31:164–171

    PubMed  CAS  Google Scholar 

  • Pyrowolakis A, Westphal A, Sikora RA (2002) Identification of root-knot nematode suppressive soils. Appl Soil Ecol 19:51–56

    Article  Google Scholar 

  • Robinson AF, Westphal A, Overstreet C et al (2008) Detection of suppressiveness against Rotylenchulus reniformis in soil from cotton (Gossypium hirsutum) fields in Texas and Louisiana. J Nematol 40:35–38

    PubMed  Google Scholar 

  • Rodriguez-Kabana R (1986) Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematol 18:129–135

    PubMed  CAS  Google Scholar 

  • Rodriguez-Kabana R, Shelby RA, King PS et al (1982) Combinations of anhydrous ammonia and 1, 3-dichloropropenes for control of root-knot nematodes in soybean. Nematropica 12:61–69

    Google Scholar 

  • Rovira A (1990) Ecology, epidemiology and control of take-all, Rhizoctonia bare patch and cereal cyst nematode. Australas Plant Pathol 19:101–111

    Article  Google Scholar 

  • Sánchez-Moreno S, Ferris H (2007) Suppressive service of the soil food web: effects of environmental management. Agric Ecosyst Environ 119:75–87

    Article  Google Scholar 

  • Sasser JN, Carter CC (1985) An advanced treatise on Meloidogyne, vol 1, Biology and control. North Carolina State University Graphics, Raleigh

    Google Scholar 

  • Sayre RM, Starr MP (1988) Bacterial diseases and antagonisms in nematodes. In: Poinar GO Jr, Jansson H-B (eds) Diseases of nematodes. CRC Press, Boca Raton

    Google Scholar 

  • Schippers B (1992) Prospects for management of natural suppressiveness to control soilborne pathogens. In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases. Plenum, New York

    Google Scholar 

  • Scholler M, Hagedorn G, Rubner A (1999) A reevaluation of predatory orbiliaceous fungi. II. A new generic concept. Sydowia 51:89–113

    Google Scholar 

  • Seyb A, Xing LJ, Vyn TJ et al (2008) Effect of tillage on population levels of Heterodera glycines in a crop sequence of corn and a nematode-susceptible or -resistant cultivar of soybean (Abstr.). Phytopathology 98:S204

    Google Scholar 

  • Small RW (1987) A review of the prey of predatory soil nematodes. Pedobiologia 30:179–206

    Google Scholar 

  • Smith ME, Jaffee BA (2009) PCR primers with enhanced specificity for nematode-trapping fungi (Orbiliales). Microb Ecol 58:117–128

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan A (ed) (2006) Handbook of precision agriculture principles and applications. Haworth, New York

    Google Scholar 

  • Stirling GR (1979) Techniques for detecting Dactylella oviparasitica and evaluating its significance in field soils. J Nematol 11:99–100

    PubMed  CAS  Google Scholar 

  • Stirling GR (1985) Host specificity of Pasteuria penetrans within the genus Meloidogyne. Nematologica 31:203–209

    Article  Google Scholar 

  • Stirling GR (1991) Biological control of plant-parasitic nematodes: progress, problems and prospects. CAB International, Wallingford

    Google Scholar 

  • Stirling GR (2008) The impact of farming systems on soil biology and soilborne diseases: examples from the Australian sugar and vegetable industries – the case for better integration of sugarcane and vegetable production and implications for future research. Australas Plant Pathol 37:1–18

    Article  Google Scholar 

  • Stirling GR, Eden LM (2008) The impact of organic amendments, mulching and tillage on plant nutrition, Pythium root rot, root-knot nematode and other pests and diseases of capsicum in a subtropical environment, and implications for the development of more sustainable vegetable farming systems. Australas Plant Pathol 37:123–131

    Article  CAS  Google Scholar 

  • Stirling GR, Mankau R (1978) Parasitism of Meloidogyne eggs by a new fungal parasite. J Nematol 10:236–240

    PubMed  CAS  Google Scholar 

  • Stirling GR, McKenry MV, Mankau R (1979) Biological control of root-knot nematodes (Meloidogyne spp.) on peach. Phytopathology 69:806–809

    Article  Google Scholar 

  • Stirling GR, Sharma RD, Perry J (1990) Attachment of Pasteuria penetrans spores to Meloidogyne javanica and its effects on infectivity of the nematode. Nematologica 36:246–252

    Article  Google Scholar 

  • Stirling GR, Dullahide SR, Nikulin A (1995) Management of lesion nematode (Pratylenchus jordanensis) on replanted apple trees. Aust J Exp Agric 35:247–258

    Article  CAS  Google Scholar 

  • Stirling GR, Wilson EJ, Stirling AM et al (2003) Organic amendments enhance biological suppression of plant-parasitic nematodes in sugarcane soils. In: Proceedings of the Australian Society of Sugar Cane Technologists 25: (CD ROM)

    Google Scholar 

  • Stirling GR, Wilson EJ, Stirling AM et al (2005) Amendments of sugarcane trash induce suppressiveness to plant-parasitic nematodes in sugarcane soil. Australas Plant Pathol 34:203–211

    Article  Google Scholar 

  • Stirling GR, Halpin NV, Bell MJ (2011) A surface mulch of crop residues enhances suppressiveness to plant-parasitic nematodes in sugarcane soils. Nematropica 41 (in press)

    Google Scholar 

  • Stone AG, Traina SJ, Hoitink HAJ (2001) Particulate organic matter composition and Pythium damping-off of cucumber. Soil Sci Soc Am J 65:761–770

    Article  CAS  Google Scholar 

  • Stone AG, Scheuerell SJ, Darby HM (2004) Suppression of soilborne diseases in field agricultural systems: organic matter management, cover cropping, and other cultural practices. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp 131–177

    Google Scholar 

  • Sturhan D (1988) New host and geographical records of nematode-parasitic bacteria of the Pasteuria penetrans group. Nematologica 34:350–356

    Article  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG et al (2005) Principles and applications of soil microbiology. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    Article  PubMed  CAS  Google Scholar 

  • Tate RL (2000) Soil microbiology, 2nd edn. Wiley, New York

    Google Scholar 

  • Tenuta M, Ferris H (2004) Sensitivity of nematode life-history groups to ions and osmotic tensions of nitrogenous solutions. J Nematol 36:85–94

    PubMed  Google Scholar 

  • Tzean SS, Liou JY (1993) Nematophagous resupinate basidiomycetous fungi. Phytopathology 83:1015–1020

    Article  Google Scholar 

  • Van Elsas JD, Jansson JK, Trevors JT (eds) (2007) Modern Soil Microbiology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Van Elsas JD, Speksnijder AJ, van Overbeek LS (2008) A procedure for the metagenomics exploration of disease-suppressive soils. J Microbiol Meth 75:515–522

    Article  CAS  Google Scholar 

  • Vawdrey LL, Stirling GR (1997) Control of root-knot nematode (Meloidogyne javanica) on tomato with molasses and other organic amendments. Australas Plant Pathol 26:179–187

    Article  Google Scholar 

  • Vu T, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852

    Article  Google Scholar 

  • Wang ELH, Bergeson GB (1974) Biochemical changes in root exudates and xylem sap of tomato plants infected with Meloidogyne incognita. J Nematol 6:194–202

    PubMed  CAS  Google Scholar 

  • Wardle DA (1995) Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Adv Ecol Res 26:105–183

    Article  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Monographs in population biology 34. Princeton University Press, Princeton

    Google Scholar 

  • Wardle DA (2005) How plant communities influence decomposer communities. In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge

    Google Scholar 

  • Weibelzahl-Fulton E, Dickson DW, Whitty EB (1996) Suppression of Meloidogyne incognita and M. javanica by Pasteuria penetrans in field soil. J Nematol 28:43–49

    PubMed  CAS  Google Scholar 

  • Weil RR, Magdoff F (2004) Significance of soil organic matter to soil quality and health. In: Magdoff F, Weil RR (eds) Soil organic matter in sustainable agriculture. CRC Press, Boca Raton, pp 1–43

    Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardner BB et al (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  PubMed  CAS  Google Scholar 

  • Westphal A (2005) Detection and description of soils with specific nematode suppressiveness. J Nematol 37:121–130

    PubMed  Google Scholar 

  • Westphal A, Becker JO (1999) Biological suppression and natural population decline of Heterodera schachtii in a California field. Phytopathology 89:434–440

    Article  PubMed  CAS  Google Scholar 

  • Westphal A, Becker JO (2000) Transfer of biological soil suppressiveness against Heterodera schachtii. Phytopathology 90:401–406

    Article  PubMed  CAS  Google Scholar 

  • Westphal A, Becker JO (2001) Components of soil suppressiveness against Heterodera schachtii. Soil Biol Biochem 33:9–16

    Article  CAS  Google Scholar 

  • Westphal A, Mehl H, Seyb A et al (2008) Consequences of tillage intensity on population densities of Heterodera glycines and severity of sudden death syndrome in corn-soybean sequence (Abstr.). Phytopathology 98:S169

    Google Scholar 

  • Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–134

    Article  Google Scholar 

  • Widmer TL, Mitkowski NA, Abawi GS (2002) Soil organic matter management of plant-parasitic nematodes. J Nematol 34:289–295

    PubMed  CAS  Google Scholar 

  • Xu J-R, Peng Y-L, Dickman MB et al (2006) The dawn of fungal pathogen genomics. Annu Rev Phytopathol 44:337–366

    Article  PubMed  CAS  Google Scholar 

  • Yin B, Valinsky L, Gao X et al (2003) Identification of fungal rDNA associated with soil suppressiveness against Heterodera schachtii using oligonucleotide fingerprinting of ribosomal RNA genes. Phytopathology 93:1006–1013

    Article  PubMed  CAS  Google Scholar 

  • You MP, Sivasithamparan K (1994) Hydrolysis of fluorescein diacetate in an avocado plantation mulch suppressive to Phytophthora cinnamomi and its relationship with certain biotic and abiotic factors. Soil Biol Biochem 26:1355–1361

    Article  CAS  Google Scholar 

  • You MP, Sivasithamparan K (1995) Changes in microbial populations of an avocado plantation mulch suppressive to Phytophthora cinnamomi. Appl Soil Ecol 2:33–43

    Article  Google Scholar 

  • Zasada IA (2005) Factors affecting the suppression of Heterodera glycines by N-Viro soil. J Nematol 37:220–225

    PubMed  CAS  Google Scholar 

  • Zasada IA, Tenuta M (2004) Chemical-mediated toxicity of N-Viro soil to Heterodera glycines and Meloidogyne incognita. J Nematol 36:297–302

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Gregor Yeates and Keith Davies for their comments on the manuscript, and my wife Marcelle for her constant support over many years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham R. Stirling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stirling, G.R. (2011). Biological Control of Plant-Parasitic Nematodes: An Ecological Perspective, a Review of Progress and Opportunities for Further Research. In: Davies, K., Spiegel, Y. (eds) Biological Control of Plant-Parasitic Nematodes:. Progress in Biological Control, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9648-8_1

Download citation

Publish with us

Policies and ethics