Skip to main content

Cancer, Stem Cells and the Neoplastic Niche

  • Chapter
  • 679 Accesses

Abstract

Conventionally, cancer is treated as a homogenous mass of highly proliferative cells, with therapeutics designed to destroy rapidly dividing cells. However, not only are cancers heterogeneous, but also small subsets are endowed with the ability to initiate cancer formation and metastasis. The resistance of cancer initiating cells to current therapies may explain high relapse rates. Our inability to eradicate cancer may be due to misrecognition of the proper cancer target. Designing novel therapeutics for cancer eradication will require understanding specific pathways involved in cancer initiating cell self-renewal, differentiation and homing. Furthermore, targeting the distinctions of the cancer initiating cell microenvironment may be key to effective cancer therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aicher, A. and C. Heeschen (2007). “Nonbone marrow-derived endothelial progenitor cells: What is their exact location?” Circ Res 101(9): e102.

    Article  PubMed  CAS  Google Scholar 

  • Al-Hajj, M., M. S. Wicha, et al. (2003). “Prospective identification of tumorigenic breast cancer cells.” Proc Natl Acad Sci USA 100(7): 3983–8.

    Article  PubMed  CAS  Google Scholar 

  • Avital, I., A. L. Moreira, et al. (2007). “Donor-derived human bone marrow cells contribute to solid organ cancers developing after bone marrow transplantation.” Stem Cells 25(11): 2903–9.

    Article  PubMed  Google Scholar 

  • Bailey, J. M., P. K. Singh, et al. (2007). “Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins.” J Cell Biochem 102(4): 829–39.

    Article  PubMed  CAS  Google Scholar 

  • Bao, S., Q. Wu, et al. (2006a). “Glioma stem cells promote radioresistance by preferential activation of the DNA damage response.” Nature 444(7120): 756–60.

    Google Scholar 

  • Bao, S., Q. Wu, et al. (2006b). “Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor.” Cancer Res 66(16): 7843–8.

    Google Scholar 

  • Bolontrade, M. F., R. R. Zhou, et al. (2002). “Vasculogenesis Plays a Role in the Growth of Ewing’s Sarcoma in Vivo.” Clin Cancer Res 8(11): 3622–7.

    PubMed  Google Scholar 

  • Bonnet, D. and J. E. Dick (1997). “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.” Nat Med 3(7): 730–7.

    Article  PubMed  CAS  Google Scholar 

  • Braakhuis, B. J., M. P. Tabor, et al. (2003). “A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications.” Cancer Res 63(8): 1727–30.

    PubMed  CAS  Google Scholar 

  • Brinster, R. (1874). “The effect of cells transferred into the mouse blastocyst on subsequent development.” J Exp Med 140: 1049–1056.

    Article  Google Scholar 

  • Buzzeo, M. P., E. W. Scott, et al. (2007). “The hunt for cancer-initiating cells: a history stemming from leukemia.” Leukemia 21(8): 1619–27.

    Article  PubMed  CAS  Google Scholar 

  • Calabrese, C., H. Poppleton, et al. (2007). “A perivascular niche for brain tumor stem cells.” Cancer Cell 11(1): 69–82.

    Article  PubMed  CAS  Google Scholar 

  • Calvi, L. M., G. B. Adams, et al. (2003). “Osteoblastic cells regulate the haematopoietic stem cell niche.” Nature 425(6960): 841–6.

    Article  PubMed  CAS  Google Scholar 

  • Case, J., L. E. Mead, et al. (2007). “Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors.” Exp Hematol 35(7): 1109–18.

    Article  PubMed  CAS  Google Scholar 

  • Chauncey, T. R., C. Rankin, et al. (2000). “A phase I study of induction chemotherapy for older patients with newly diagnosed acute myeloid leukemia (AML) using mitoxantrone, etoposide, and the MDR modulator PSC 833: a southwest oncology group study 9617.” Leuk Res 24(7): 567–74.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, M. F., J. E. Dick, et al. (2006). “Cancer stem cells – perspectives on current status and future directions: AACR Workshop on cancer stem cells.” Cancer Res 66(19): 9339–44.

    Article  PubMed  CAS  Google Scholar 

  • Clevers, H. (2006). “Wnt/beta-catenin signaling in development and disease.” Cell 127(3): 469–80.

    Article  PubMed  CAS  Google Scholar 

  • Cobaleda, C., N. Gutierrez-Cianca, et al. (2000). “A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia.” Blood 95(3): 1007–13.

    PubMed  CAS  Google Scholar 

  • Cogle, C. R., N. D. Theise, et al. (2007). “Bone marrow contributes to epithelial cancers in mice and humans as developmental mimicry.” Stem Cells 25(8): 1881–7.

    Article  PubMed  Google Scholar 

  • Cohnheim, J. (1867). “Ueber entzundung und eiterung.” Path Anat Physiol Klin Med 40: 1–79.

    Google Scholar 

  • Collins, A. T., P. A. Berry, et al. (2005). “Prospective identification of tumorigenic prostate cancer stem cells.” Cancer Res 65(23): 10946–51.

    Article  PubMed  CAS  Google Scholar 

  • Cucina, A., P. M. Biava, et al. (2006). “Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2).” Apoptosis 11(9): 1617–28.

    Article  PubMed  CAS  Google Scholar 

  • Dalerba, P., S. J. Dylla, et al. (2007). “Phenotypic characterization of human colorectal cancer stem cells.” Proc Natl Acad Sci USA 104(24): 10158–63.

    Article  PubMed  CAS  Google Scholar 

  • De Palma, M., M. A. Venneri, et al. (2003). “Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells.” Nat Med 9(6): 789–95.

    Article  PubMed  CAS  Google Scholar 

  • Donnenberg, V. S. and A. D. Donnenberg (2005). “Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis.” J Clin Pharmacol 45(8): 872–7.

    Article  PubMed  CAS  Google Scholar 

  • Duda, D. G., K. S. Cohen, et al. (2006). “Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors.” Blood 107(7): 2774–6.

    Article  PubMed  CAS  Google Scholar 

  • Durante, F. (1874). “Nesso fisiopathologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni.” Arch Memori ed Osservazioni di Chirugia Practica 11: 217–226.

    Google Scholar 

  • Dwenger, A., F. Rosenthal, et al. (2004). “Transplanted bone marrow cells preferentially home to the vessels of in situ generated murine tumors rather than of normal organs.” Stem Cells 22(1): 86–92.

    Article  PubMed  Google Scholar 

  • Fang, D., T. K. Nguyen, et al. (2005). “A tumorigenic subpopulation with stem cell properties in melanomas.” Cancer Res 65(20): 9328–37.

    Article  PubMed  CAS  Google Scholar 

  • Fialkow, P. J., R. J. Jacobson, et al. (1977). “Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage.” Am J Med 63(1): 125–30.

    Article  PubMed  CAS  Google Scholar 

  • Friedewald, W. and P. Rous (1944). “The initiating and promiting elements in tumor production: an analysis of the effects of tar, benzpyrene, and methylcholanthrene on rabbit skin.” Journal of Experimental Medicine 80: 101–126.

    Article  CAS  Google Scholar 

  • Fujino, H., H. Hiramatsu, et al. (2007). “Human cord blood CD34+ cells develop into hepatocytes in the livers of NOD/SCID/gamma(c)null mice through cell fusion.” Faseb J 21(13): 3499–510.

    Article  PubMed  CAS  Google Scholar 

  • Furth, J. and M. Kahn (1937). “The transmission of leukemia of mice with a single cell.” Am J Cancer(31): 276–282.

    Google Scholar 

  • Gao, D., D. J. Nolan, et al. (2008). “Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis.” Science 319(5860): 195–8.

    Article  PubMed  CAS  Google Scholar 

  • Gat, U., R. DasGupta, et al. (1998). “De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin.” Cell 95(5): 605–14.

    Article  PubMed  CAS  Google Scholar 

  • Gerschenson, M., K. Graves, et al. (1986). “Regulation of melanoma by the embryonic skin.” Proc Natl Acad Sci USA 83(19): 7307–10.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, C. P., V. G. Kukekov, et al. (2005). “Stem-like cells in bone sarcomas: implications for tumorigenesis.” Neoplasia 7(11): 967–76.

    Article  PubMed  CAS  Google Scholar 

  • Goodell, M. A. (2003). “Stem-cell “plasticity”: befuddled by the muddle.” Curr Opin Hematol 10(3): 208–13.

    Article  PubMed  Google Scholar 

  • Gootwine, E., C. G. Webb, et al. (1982). “Participation of myeloid leukaemic cells injected into embryos in haematopoietic differentiation in adult mice.” Nature 299(5878): 63–5.

    Article  PubMed  CAS  Google Scholar 

  • Gothert, J. R., S. E. Gustin, et al. (2004). “Genetically tagging endothelial cells in vivo:bone marrow-derived cells do not contribute to tumor endothelium.” Blood 2004 Sep 15; 104(6): 1769–77. Epub 2004 Jun 8.

    Article  PubMed  CAS  Google Scholar 

  • Gunsilius, E., H. C. Duba, et al. (2000). “Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells.” Lancet 355(9216): 1688–91.

    Article  PubMed  CAS  Google Scholar 

  • Hammerling, G. J. and R. Ganss (2006). “Vascular integration of endothelial progenitors during multistep tumor progression.” Cell Cycle 5(5): 509–11.

    PubMed  Google Scholar 

  • Haramis, A. P., H. Begthel, et al. (2004). “De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine.” Science 303(5664): 1684–6.

    Article  PubMed  CAS  Google Scholar 

  • He, T. C., T. A. Chan, et al. (1999). “PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs.” Cell 99(3): 335–45.

    Article  PubMed  CAS  Google Scholar 

  • He, T. C., A. B. Sparks, et al. (1998). “Identification of c-MYC as a target of the APC pathway.” Science 281(5382): 1509–12.

    Article  PubMed  CAS  Google Scholar 

  • He, X. C., J. Zhang, et al. (2004). “BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling.” Nat Genet 36(10): 1117–21.

    Article  PubMed  CAS  Google Scholar 

  • Herzog, E. L., L. Chai, et al. (2003). “Plasticity of marrow-derived stem cells.” Blood 102(10): 3483–93.

    Article  PubMed  CAS  Google Scholar 

  • Houghton, J., C. Stoicov, et al. (2004). “Gastric cancer originating from bone marrow-derived cells.” Science 306(5701): 1568–71.

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz, H., L. Fehrenbacher, et al. (2004). “Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.” N Engl J Med 350(23): 2335–42.

    Article  PubMed  CAS  Google Scholar 

  • Ignatova, T. N., V. G. Kukekov, et al. (2002). “Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro.” Glia 39(3): 193–206.

    Article  PubMed  Google Scholar 

  • Ikoma, N., H. Yamazaki, et al. (2005). “S100A4 expression with reduced E-cadherin expression predicts distant metastasis of human malignant melanoma cell lines in the NOD/SCID/gammaCnull (NOG) mouse model.” Oncol Rep 14(3): 633–7.

    PubMed  CAS  Google Scholar 

  • Ito, M., H. Hiramatsu, et al. (2002). “NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells.” Blood 100(9): 3175–82.

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal, S., D. Traver, et al. (2003). “Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias.” Proc Natl Acad Sci USA 100(17): 10002–7.

    Article  PubMed  CAS  Google Scholar 

  • Jamieson, C. H., L. E. Ailles, et al. (2004). “Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML.” N Engl J Med 351(7): 657–67.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, X., Y. Zhao, et al. (2007). “Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies.” Leukemia 2007 May; 21(5): 926–35. Epub 2007 Mar 1.

    PubMed  CAS  Google Scholar 

  • Jin, L., K. J. Hope, et al. (2006). “Targeting of CD44 eradicates human acute myeloid leukemic stem cells.” Nat Med 12(10): 1167–74.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, R. N., R. D. Riba, et al. (2005). “VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche.” Nature 438(7069): 820–7.

    Article  PubMed  CAS  Google Scholar 

  • Katayama, Y., M. Battista, et al. (2006). “Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow.” Cell 124(2): 407–21.

    Article  PubMed  CAS  Google Scholar 

  • Kiel, M. J., O. H. Yilmaz, et al. (2005). “SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells.” Cell 121(7): 1109–21.

    Article  PubMed  CAS  Google Scholar 

  • Kim, C. F., E. L. Jackson, et al. (2005). “Identification of bronchioalveolar stem cells in normal lung and lung cancer.” Cell 121(6): 823–35.

    Article  PubMed  CAS  Google Scholar 

  • Kinzler, K. W., M. C. Nilbert, et al. (1991). “Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers.” Science 251(4999): 1366–70.

    Article  PubMed  CAS  Google Scholar 

  • Krause, D. S., K. Lazarides, et al. (2006). “Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells.” Nat Med 12(10): 1175–80.

    Article  PubMed  CAS  Google Scholar 

  • Lantos, P. L. and D. J. Cox (1976). “The origin of experimental brain tumours: a sequential study.” Experientia 32(11): 1467–8.

    Article  PubMed  CAS  Google Scholar 

  • Lapidot, T., C. Sirard, et al. (1994). “A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.” Nature 367(6464): 645–8.

    Article  PubMed  CAS  Google Scholar 

  • Larrivee, B., K. Niessen, et al. (2005). “Minimal contribution of marrow-derived endothelial precursors to tumor vasculature.” J Immunol 175(5): 2890–9.

    PubMed  CAS  Google Scholar 

  • Lee, T. H., M. F. Bolontrade, et al. (2006). “Production of VEGF165 by Ewing’s sarcoma cells induces vasculogenesis and the incorporation of CD34+ stem cells into the expanding tumor vasculature.” Int J Cancer 119(4): 839–46.

    Article  PubMed  CAS  Google Scholar 

  • Leith, C. P., K. J. Kopecky, et al. (1999). “Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study.” Blood 94(3): 1086–99.

    PubMed  CAS  Google Scholar 

  • Li, C., D. G. Heidt, et al. (2007). “Identification of pancreatic cancer stem cells.” Cancer Res 67(3): 1030–7.

    Article  PubMed  CAS  Google Scholar 

  • Li, L. and W. B. Neaves (2006). “Normal stem cells and cancer stem cells: the niche matters.” Cancer Res 66(9): 4553–7.

    Article  PubMed  CAS  Google Scholar 

  • Lord, B. I., N. G. Testa, et al. (1975). “The relative spatial distributions of CFUs and CFUc in the normal mouse femur.” Blood 46(1): 65–72.

    PubMed  CAS  Google Scholar 

  • Lyden, D., K. Hattori, et al. (2001). “Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth.” Nat Med 7(11): 1194–201.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R. (1980). “Teratocarcinomas and mammalian embryogenesis.” Science 209(4458): 768–76.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, W., C. A. Huff, et al. (2004). “Characterization of clonogenic multiple myeloma cells.” Blood 103(6): 2332–6.

    Article  PubMed  CAS  Google Scholar 

  • Mintz, B. and K. Illmensee (1975). “Normal genetically mosaic mice produced from malignant teratocarcinoma cells.” Proc Natl Acad Sci USA 72(9): 3585–9.

    Article  PubMed  CAS  Google Scholar 

  • Muller, A., B. Homey, et al. (2001). “Involvement of chemokine receptors in breast cancer metastasis.” Nature 410(6824): 50–6.

    Article  PubMed  CAS  Google Scholar 

  • Nolan, D. J., A. Ciarrocchi, et al. (2007). “Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization.” Genes Dev 21(12): 1546–58.

    Article  PubMed  CAS  Google Scholar 

  • Nuciforo, P. and F. Fraggetta (2004). “Cancer stem cell theory: pathologists’ considerations and ruminations about wasting time and wrong evaluations.” J Clin Pathol 57(7): 782.

    PubMed  CAS  Google Scholar 

  • O’Brien, C. A., A. Pollett, et al. (2007). “A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.” Nature 445(7123): 106–10.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, T. D., A. R. Willhoite, et al. (2000). “Vascular niche for adult hippocampal neurogenesis.” J Comp Neurol 425(4): 479–94.

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou, V. E., M. W. McBurney, et al. (1975). “Fate of teratocarcinoma cells injected into early mouse embryos.” Nature 258(5530): 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Patrawala, L., T. Calhoun, et al. (2006). “Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells.” Oncogene 25(12): 1696–708.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Losada, J. and A. Balmain (2003). “Stem-cell hierarchy in skin cancer.” Nat Rev Cancer 3(6): 434–43.

    Article  PubMed  CAS  Google Scholar 

  • Peters, B. A., L. A. Diaz, et al. (2005). “Contribution of bone marrow-derived endothelial cells to human tumor vasculature.” Nat Med 11(3): 261–2.

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo, S. G., B. A. Reynolds, et al. (2006). “Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells.” Nature 444(7120): 761–5.

    Article  PubMed  CAS  Google Scholar 

  • Podesta, A. H., J. Mullins, et al. (1984). “The neurula stage mouse embryo in control of neuroblastoma.” Proc Natl Acad Sci USA 81(23): 7608–11.

    Article  PubMed  CAS  Google Scholar 

  • Prince, M. E., R. Sivanandan, et al. (2007). “Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma.” Proc Natl Acad Sci USA 104(3): 973–8.

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak, M. Z., E. Zuba-Surma, et al. (2006). “The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis.” Leukemia 20(11): 1915–24.

    Article  PubMed  CAS  Google Scholar 

  • Ricci-Vitiani, L., D. G. Lombardi, et al. (2007). “Identification and expansion of human colon-cancer-initiating cells.” Nature 445(7123): 111–5.

    Article  PubMed  CAS  Google Scholar 

  • Rigolin, G. M., C. Fraulini, et al. (2006). “Neoplastic circulating endothelial cells in multiple myeloma with 13q14 deletion.” Blood 107(6): 2531–5.

    Article  PubMed  CAS  Google Scholar 

  • Rigolin, G. M., E. Mauro, et al. (2007). “Neoplastic circulating endothelial-like cells in patients with acute myeloid leukaemia.” Eur J Haematol 78(5): 365–73.

    Article  PubMed  Google Scholar 

  • Rotter, W. (1921). “Histogenese der malignen Geschwulste.” Ztschr Krebsforschung 18: 171–208.

    Article  Google Scholar 

  • Sanai, N., A. Alvarez-Buylla, et al. (2005). “Neural stem cells and the origin of gliomas.” N Engl J Med 353(8): 811–22.

    Article  PubMed  CAS  Google Scholar 

  • Santarelli, J. G., V. Udani, et al. (2006). “Incorporation of bone marrow-derived Flk-1-expressing CD34+ cells in the endothelium of tumor vessels in the mouse brain.” Neurosurgery 59(2): 374–82; discussion 374–82.

    Article  PubMed  Google Scholar 

  • Scadden, D. T. (2006). “The stem-cell niche as an entity of action.” Nature 441(7097): 1075–9.

    Article  PubMed  CAS  Google Scholar 

  • Shinde Patil, V. R., E. B. Friedrich, et al. (2005). “Bone marrow-derived lin(-)c-kit(+)Sca-1+ stem cells do not contribute to vasculogenesis in Lewis lung carcinoma.” Neoplasia 7(3): 234–40.

    Article  PubMed  CAS  Google Scholar 

  • Singh, S. K., C. Hawkins, et al. (2004). “Identification of human brain tumour initiating cells.” Nature 432(7015): 396–401.

    Article  PubMed  CAS  Google Scholar 

  • Sirard, C., T. Lapidot, et al. (1996). “Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis.” Blood 87(4): 1539–48.

    PubMed  CAS  Google Scholar 

  • Slaughter, D. P., H. W. Southwick, et al. (1953). “Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin.” Cancer 6(5): 963–8.

    Article  PubMed  CAS  Google Scholar 

  • Streubel, B., A. Chott, et al. (2004). “Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas.” N Engl J Med 351(3): 250–9.

    Article  PubMed  CAS  Google Scholar 

  • Taichman, R. S. (2005). “Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche.” Blood 105(7): 2631–9.

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto, A. S., R. Grosschedl, et al. (1988). “Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice.” Cell 55(4): 619–25.

    Article  PubMed  CAS  Google Scholar 

  • Udani, V. M., J. G. Santarelli, et al. (2005). “Hematopoietic stem cells give rise to perivascular endothelial-like cells during brain tumor angiogenesis.” Stem Cells Dev 14(5): 478–86.

    Article  PubMed  CAS  Google Scholar 

  • Vick, N. A., M. J. Lin, et al. (1977). “The role of the subependymal plate in glial tumorigenesis.” Acta Neuropathol 40(1): 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Virchow, R. (1855). “Editoral Archiv fuer pathologische.” Anatomie und Physiologie und fuer klinische Medizin 8: 23.

    Google Scholar 

  • Zentilin, L., S. Tafuro, et al. (2006). “Bone marrow mononuclear cells are recruited to the sites of VEGF-induced neovascularization but are not incorporated into the newly formed vessels.” Blood 107(9): 3546–54.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., C. Niu, et al. (2003). “Identification of the haematopoietic stem cell niche and control of the niche size.” Nature 425(6960): 836–41.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, T., T. Otevrel, et al. (2001). “Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer.” Cancer Res 61(24): 8664–7.

    PubMed  CAS  Google Scholar 

  • Zhao, C., J. Blum, et al. (2007). “Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo.” Cancer Cell 12(6): 528–41.

    Article  PubMed  CAS  Google Scholar 

  • Ziegelhoeffer, T., B. Fernandez, et al. (2004). “Bone marrow-derived cells do not incorporate into the adult growing vasculature.” Circ Res 94(2): 230–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Cogle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cogle, C.R. (2009). Cancer, Stem Cells and the Neoplastic Niche. In: Baronzio, G., Fiorentini, G., Cogle, C.R. (eds) Cancer Microenvironment and Therapeutic Implications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9576-4_4

Download citation

Publish with us

Policies and ethics