Skip to main content

Effects of Tumor Microenvironment on Hyperthermia, Photodynamic and Nanotherapy

  • Chapter

Abstract

A tumor mass is an association of normal cells and epigenetically modified cells in continuous evolution. Heterogeneous normal cell populations are forced to survive in a hostile environment in contact with cancer cells. Resident and recruited fibroblasts, and a complex infiltrate of neutrophils, macrophages, lymphocytes and mast cells work in concert with neoplastic cells to create a new, distinctive microenvironment that allows for the generation of a new interstitium and circulation (angioarchitecture). The tumor interstitium differs from normal interstitium in several ways (i.e., an elevated intracellular pH (pHi) and pressure (pi), a lowered extracellular pH (pHe), low oxygen concentrations and low glucose levels). These differences represent important characteristics that may be modulated positively or negatively by hyperthermia, photodynamic therapy and other treatment modalities. Furthermore, the tumor microcirculation creates barriers that hinder drug delivery to the tumor mass. Systemic chemotherapy often reduces tumor burden but rarely is effective in completely eliminating the tumor. This has created the need for the development of more effective cancer therapies. To this problem, a new class of drug delivery vehicles on the order of nanometer (nanocarriers, liposomes) has been developed to minimize side effects of chemotherapy and for directly targeting cancer cells. Notwithstanding their small dimensions, the distribution of these drugs is still influenced by tumor microenvironment. An overview of ways to overcome physiological barriers and exploit tumor pathogenesis for therapeutic gain is provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Abramsson A, Berlin O, Papayan H et al.: Analysis of mural cell recruitment to tumor vessels. Circulation. 2002;105:112–117.

    PubMed  CAS  Google Scholar 

  • Adams RH, Alitala K.: Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev Cancer. 2007;8:464–478.

    CAS  Google Scholar 

  • Amatthew CB, DuBose DA, Sils IV et al.: Hyperthermia –Induced changes in vascular permeability of rats, a model system to examine therapeutic interventions. J Thermal Biol. 2000;25:381–386.

    Google Scholar 

  • Armulik A, Abramsson A, Betsholtz C.: Endothelial /Pericyte Interactions. Circ Res. 2005;97:512–523.

    PubMed  CAS  Google Scholar 

  • Asby BS, Cantab MB.: pH studies in human malignant tumors. Lancet. 1996;2:312–315.

    Google Scholar 

  • Baronzio GF, Freitas I.: Tumor microenvironment genesis and implications on cancer immune response. In “Atlas Effectors of Anti-Tumor Immunity” . ed M V. Kiselevsky. Springer Science Business 2008, pp: 25–43.

    Google Scholar 

  • Besic E.: Physical mechanisms and methods employed in drug delivery to tumors. Acta Pharm. 2007;57:249–268.

    PubMed  CAS  Google Scholar 

  • Behrooz A, Ismail-Beigi F.: Stimulation of glucose transport by Hypoxia: signals and mechanisms. New Physiol Sci 1999;14:(6) 105–110.

    CAS  Google Scholar 

  • Berges G, Benjamin L.: Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2002;3:401–410.

    Google Scholar 

  • Brizel DM, Scully SP, Harrelson JM et al.: Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res. 1996;56:5347–5350.

    PubMed  CAS  Google Scholar 

  • Campbell RB.: Tumor physiology and delivery of nanopharmaceuticals. Anticancer Agents Med Chem. 2006;6:503–512.

    PubMed  CAS  Google Scholar 

  • Campbell RB.: Battling tumors with magnetic nanotherapeutics and hyperthermia: turning up the heat. Nanomed. 2007;2:649–652.

    PubMed  CAS  Google Scholar 

  • Castano AP, Mroz P, Hamblin MR.: Photodynamic therapy and anti-tumor immunity. Nat Rev Cancer. 2006;6:535–545.

    PubMed  CAS  Google Scholar 

  • Cuenca AG, Jiang H, Hochwald SN et al.: Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer. 2006;107:459–66.

    PubMed  CAS  Google Scholar 

  • Dang CV, Semenza GL.: Oncogenic alterations of metabolism. TIBS. 1999;24:68–72.

    PubMed  CAS  Google Scholar 

  • Shapot VS.: Biochemical aspects of tumor growth. MIR Publishers, 1980.

    Google Scholar 

  • Dewhirst MW, Prosnitz L, Thrall D et al.: Hyperthermic treatment of malignant diseases: current status and a view toward the future. Semin Oncol. 1997;24:616–625.

    PubMed  CAS  Google Scholar 

  • Dougherty TJ, Gomer CJ, Henderson BW et al.: Photodynamic therapy. J Natl Cancer Inst. 1998;90:889–905.

    PubMed  CAS  Google Scholar 

  • Drummond DC, Meyer O, Hong K et al.: Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51:692–743.

    Google Scholar 

  • Dudar TE, Jain RK.: Differential response of normal and tumor microenvironment to hyperthermia. Cancer Res. 1984;44:605–612.

    PubMed  CAS  Google Scholar 

  • Duguet E, Treguer-Delapierre M, Delville M-H.: “Nanoparticules minerale fonctionnalisèes àdes fins d‘applications biomèdicales” . In Les Nanosciences vol. 3, Lahmani M, Boisseau P, Houdy P eds, Belin Editeur 2007, Paris: pp145–184.

    Google Scholar 

  • Durand RE.: Distribution and Activity of Antineoplastic Drugs in a Tumor Model. J Nat Cancer Inst. 1989;81:146–152.

    PubMed  CAS  Google Scholar 

  • Dvorak HF, Brown LF, Detmar M et al.: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol. 1995;146:1029–1039.

    PubMed  CAS  Google Scholar 

  • Ehdaie B.: Application of nanotechnology in cancer research: review of progress in the National Cancer Institute‘s Alliance for Nanotechnology. Int J Biol Sci. 2007;3:108–110.

    PubMed  Google Scholar 

  • Fajardo LF, Prionas SD.: Endothelial cells and hyperthermia. Int J Hyperthermia. 1994;3:347–353.

    Google Scholar 

  • Fattal E, Vauthier C.: Drug Delivery: Nanoparticles. In Encyclopedia of Pharmaceutical Technology. John Wiley editor 2006.

    Google Scholar 

  • Ferrara N, Davis-Smyth T.: The biology of vascular endothelial growth factor. Endocr Rev 1997; 18:4–25.

    PubMed  CAS  Google Scholar 

  • Folkman J.: Tumor Angiogenesis : therapeutic implications. N Engl J Med. 1971;285:1182–1186.

    PubMed  CAS  Google Scholar 

  • Freitas I.: Role of hypoxia in photodynamic therapy of tumors. Tumori. 1985 Jun 30;71:251–9.

    PubMed  CAS  Google Scholar 

  • Freitas I, Baronzio GF.: Tumor hypoxia, reoxygenation and oxygenation strategies: possible role in photodynamic therapy. J Photochem Photobiol B: Biol. 1991;11:3–30.

    CAS  Google Scholar 

  • Freitas I, Baronzio GF, Bono B, Griffini P et al.: Tumor interstitial fluid: misconsidered component of the internal milieu of a solid tumor. Anticancer Res. 1996;16:1491–1502.

    PubMed  CAS  Google Scholar 

  • Freitas I, Pontiggia P, Baronzio GF et al.: Perspectives for the combined use of photodynamic therapy and hyperthermia in cancer patient. In Consensus on Hyperthermia for the 1990s. Bicker H.I. editor, Plenum Press, New York, 1990: pp 511–520.

    Google Scholar 

  • Gabizon A, Papahadjopoulos D.: Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors.Proc Natl Acad Sci USA. 1988 Sep;85(18):6949–6953.

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Nygaard TG, Burlett M.: Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res. 1979;39:966–972.

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Richards B.: Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res. 1981;41:845–849.

    PubMed  CAS  Google Scholar 

  • Gollnick SO, Owczarczak B, Maier P.: Photodynamic therapy and anti-tumor immunity. Lasers Surg Med. 2006 Jun;38(5):509–515.

    PubMed  Google Scholar 

  • Gomer CJ, Ferrario A, Luna M et al.: Phptodynamic therapy: combined modality approaches targeting the tumor microenvironment. Laser Surg. 2006;38:516–521.

    Google Scholar 

  • Gregoriadis G, Ryman BE.: Fate of protein-containing liposomes injected into rats. An approach to the treatment of storage diseases. ,Eur J Biochem. 1972;24:485–491.

    PubMed  CAS  Google Scholar 

  • Griffioen AW, Molema G.: Angiogenesis:Potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev. 2000;52:238–268.

    Google Scholar 

  • Gullino PM.: The internal milieu of tumors. Prog Exp Tumor Res. 1966;8:1–25.

    PubMed  CAS  Google Scholar 

  • Gullino PM. Considerations on blood supply and fluid exchange in tumors. Prog Clin Biol Res. 1982;107:1–20.

    PubMed  CAS  Google Scholar 

  • Gullino PM, Clark SH, Grantham FH.: The interstitial fluid of solid tumors. Cancer Res. 1964;24:780–794.

    PubMed  CAS  Google Scholar 

  • Gullino PM, Grantham FH.: The vascular space of growing tumors. Cancer Res. 1964;24:1727–1732.

    PubMed  CAS  Google Scholar 

  • Gullino PM, Grantham FH, Smith SH et al.: Modification of the acid base status of the internal milieu of tumors. J Natl Cancer Inst. 1965;34:857–869.

    PubMed  CAS  Google Scholar 

  • Habash RW, Bansal R, Krewski D et al.: Thermal therapy, part 2: hyperthermia techniques. Crit Rev Biomed Eng. 2006;34:491–542.

    PubMed  Google Scholar 

  • Harris AL.: Hypoxia-a key regulatory factor in tumor growth. Nature Rev Cancer. 2002;2:38–47.

    CAS  Google Scholar 

  • Harrod-Kim P.: Tumor ablation with photodynamic therapy: introduction to mechanism and clinical applications. J Vas Intervent Radiol. 2006;17:1441–1448.

    Google Scholar 

  • Heldin CH, Rubin K, Pietras K, Ostman A.: High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer. 2004;4:806–813.

    PubMed  CAS  Google Scholar 

  • Henderson BW, Dougherty TJ.: How does photodynamic therapy work? Photochem Photobiol. 1992 Jan;55(1):145–157.

    PubMed  CAS  Google Scholar 

  • Henderson BW, Waldow SM, Potter WR et al.: Interaction of photodynamic therapy and hyperthermia: tumor response and cell survival studies after treatment of mice in vivo. Cancer Res. 1985;45:6071–6077.

    PubMed  CAS  Google Scholar 

  • Hlatky L, Hahnfeldt P, Tsionou C et al.: Vascular endothelial growth factor: environmental controls and effects in angiogenesis. Br J Cancer 1996;(Suppl XII):s151–s156.

    Google Scholar 

  • Hokland SL, Horsman MR.: The new vascular disrupting agent combretastatin-A1-disodium-phosphate (OXi4503) enhances tumor response to mild hyperthermia and thermoradiosensitization. Int J Hyperthermia. 2007;23:599–606.

    PubMed  CAS  Google Scholar 

  • Horsman MR.: Tissue physiology and the response to heat. Int J Hyperthermia. 2006;22:198–205.

    Google Scholar 

  • Horsman MR, Murata R.: Combination of vascular targeting agents with thermal or radiation therapy.Int J Radiat Oncol Biol Phys. 2002 Dec 1;54(5):1518–1523.

    PubMed  CAS  Google Scholar 

  • Horsman MR, Siemann DW.: Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res. 2006;66:11520–11539.

    PubMed  CAS  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H.: Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today. 2006;11:812–818.

    PubMed  CAS  Google Scholar 

  • Jain RK.: Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987 15;47: 3039–3051.

    Google Scholar 

  • Jain RK.: Integrative pathophysiology of solid tumors: role in detection and treatment. Cancer J Sci Am. 1998;4:S48–S57.

    PubMed  Google Scholar 

  • Jain RK.: Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev. 1990;9:253–266.

    PubMed  CAS  Google Scholar 

  • Jang SH, Wientjes MG, Lu D et al.: Drug delivery and transport to solid tumors. Pharmaceutical Res. 2003;20:1337–1350.

    CAS  Google Scholar 

  • Jirtle RL.: Chemical modification of tumor blood flow. Int J Hyperthermia. 1988;4:355–371.

    PubMed  CAS  Google Scholar 

  • Johannsen M, Gneveckow U, Eckelt L et al.: Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia. 2005;21:637–647.

    PubMed  CAS  Google Scholar 

  • Jones EL, Prosnitz LR, Dewhirst MW et al.: Thermochemoradiotherapy improves oxygenation in locally advanced breast cancer. Clin Cancer Res. 2004;10:4287–4293.

    PubMed  CAS  Google Scholar 

  • Jotterand F.: Nanomedecine: how it could reshape clinical practice. Nanomed. 2007;2:401–405.

    PubMed  Google Scholar 

  • Jyotsnendu G, Amlan R, Dasgupta S et al.: Investigation on Tc tuned nano particles of magnetic oxides for hyperthermia applications. Biomed Mater Eng. 2003;13:387–399.

    Google Scholar 

  • Kabanov AV, Gendelman HE.: Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci. 2007;32:1054–1082.

    CAS  Google Scholar 

  • Kampinga HH.: Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int J Hyperthermia. 2006;22:191–197.

    PubMed  CAS  Google Scholar 

  • Ka-Yun NG, Matsunaga TO.: Ultrasound mediated drug delivery. In “Drug Delivery:Principles and applications” Wang B, Siahaan T and Soltero RA editors, Wiley-Interscience 2005, Hoboken; pp 245–278.

    Google Scholar 

  • Kong G, Braun RD, Dewhirst W.: Characterization of the effect of hyperthermia on nanoparticles extravasation from tumor vasculature. Cancer Res. 2001; 61:3027–3032.

    PubMed  CAS  Google Scholar 

  • Konerding MA, Miodonski AJ, Lametschwandtner A.: Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc. 1995;9(4):1233–1243

    PubMed  CAS  Google Scholar 

  • Konerding MA, Steinberg F, van Ackern C, Budach V, Streffer C.: Vascular patterns of tumors: scanning and transmission electron microscopic studies on human xenografts. Strahlenther Onkol. 1992;168:444–452.

    PubMed  CAS  Google Scholar 

  • Krinik NL, Sun Y, Joyner D et al.: A polymeric drug delivery system for the simultaneous delivery of drug activable by enzymes and/or light. J Biomater SCi Polym Ed. 1994;5:303–324.

    Google Scholar 

  • Kshirsagar NA, Pandya SK, Kirodian BG.: Liposomal drug delivery system from laboratory to clinic J Postgrad Med. 2005;51 Suppl 1:S5–15

    PubMed  Google Scholar 

  • Kunz M, Ibrahim SM.: Molecular responses to hypoxia in tumor cells. Mol Cancer. 2003,17;2: 23–36.

    Google Scholar 

  • Li GC.: Thermal biology and physiology in clinical hyperthermia: current status and future needs. Cancer Res. 1984;44:4886s–4893s.

    PubMed  CAS  Google Scholar 

  • Lefor AT, MaKohon S, Ackerman NB.: The effects hyperthermia on vascular permeability in experimental liver metastasis. J Surg Oncol. 1985;28:297–300.

    PubMed  CAS  Google Scholar 

  • Leunig M, Goetz AE, Dellian M et al.: Interstitial fluid pressure in solid tumors following hyperthermia: possible correlation with therapeutic response. Cancer Res. 1992;52:487–490.

    PubMed  CAS  Google Scholar 

  • López-Lázaro M.: HIF-1: hypoxia-inducible factor or dysoxia-inducible factor? FASEB J. 2006;20:828–832.

    PubMed  Google Scholar 

  • Luo F, Liu X, Yan N, Li S.: Hypoxia-inducible transcription factor-1alpha promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway. BMC Cancer. 2006 27;6:26.

    Google Scholar 

  • Lyden D, Hattori K, Dias S et al.: Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 2001;7:1194–1201.

    PubMed  CAS  Google Scholar 

  • Maeda H, Wu J, Sawa T et al.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–284.

    PubMed  CAS  Google Scholar 

  • Maekawa S, Sugimachi K, Kitamura Y et al.: Selective treatment of metastatic lymph nodes with combination of local hyperthermia and temperature-sensitive liposomes containing bleomycin. Cancer Treat Rep. 1987;71:1053–1059.

    PubMed  CAS  Google Scholar 

  • McNeil SE.: Nanotechnology for the biologist. J Leukoc Biol. 2005 Sep;78(3):585–594.

    PubMed  CAS  Google Scholar 

  • Matsuoka F, Shinkai M, Honda H et al.: Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma. Biomagnetic Res Technol. 2004;2:3.

    Google Scholar 

  • McDonald DM, Baluk P.: Significance of blood vessel leakiness in cancer. Cancer Res. 2002;62:5381–5385.

    PubMed  CAS  Google Scholar 

  • McDonald DM, Foss AJ.: Endothelial cells of tumor vessels: abnormal but not absent. Cancer Metastasis Rev. 2000;19:109–120.

    PubMed  CAS  Google Scholar 

  • Milosevic M, Fyles A, Hedley D, Pintilie M, et al.: Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res. 2001;61:6400–6405.

    PubMed  CAS  Google Scholar 

  • Minchinton AI, Tannock I.: Drug penetration in solid tumors. Nature Rev Cancer. 2006;6: 583–592.

    CAS  Google Scholar 

  • Moghini SM, Hunter AC, Murray JC.: Long-circulating and target-specific nanoparticles: theory and practice. Pharmacol Rev. 2001;53:283–318.

    Google Scholar 

  • Morikawa S, Baluk P, Kaidoh T et al.: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002;160:985–1000.

    PubMed  Google Scholar 

  • Munn LL.: Aberrant vascular architecture in tumors and its importance in drug-based therapies. Drug Discov Today. 2003 May 1;8(9):396–403.

    PubMed  Google Scholar 

  • Needham D, Anyarambhatla G, Kong G et al.: A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 2000;60:1197–1201.

    PubMed  CAS  Google Scholar 

  • Needham D, Dewhirst MW.: The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev. 2001;53:285–305.

    PubMed  CAS  Google Scholar 

  • Nilsen NO.: Endothelial changes and microvascular leakage due to hyperthermia in chick embryos.Wirchows Arch B Cell Pathol Incl Mol Pathol. 1984;46:165–174.

    CAS  Google Scholar 

  • Nishimura Y, Hiraoka M, Jo S et al.: Microangiographic and histologic analysis of the effects of hyperthermia on murine tumor vasculature. Int J Radiat Oncol Biol Phys. 1988;15:411–420.

    PubMed  CAS  Google Scholar 

  • Oleson JR, Calderwood S-K-, Coughlin CT et al.: Biological and clinical aspects of hyperthermia in cancer therapy. Am J Clin Oncol. 1988;11:368–380.

    PubMed  CAS  Google Scholar 

  • Overgaard J, Bichel P.: The influence of hypoxia and acidity on the hyperthermic response of malignant cells in vitro. Radiology. 1977;123:511–514.

    PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Allen TM, Gabizon A et al.: Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA. 1991;88:11460–11464.

    PubMed  CAS  Google Scholar 

  • Papetti M, Herman I.: Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282:c947–c970.

    PubMed  CAS  Google Scholar 

  • Pitt WG.: Defining the role of ultrasound in drug delivery. Review article. Am J Drug Deliver. 2003;1:27–42.

    Google Scholar 

  • Ponce AM, Vujaskovic Z, Yuan F et al.: Hyperthermia mediated liposomal drug delivery. Int J Hyperthermia. 2006;22:205–213.

    PubMed  CAS  Google Scholar 

  • Rasch MH, Tijssen K, VanSteveninck J et al.: Synergistic interaction of photodynamic treatment with the sensitizer aluminum phthalocyanine and hyperthermia on loss of clonogenicity of CHO cells. Photochem-Photobiol. 1996;64:586–593.

    PubMed  CAS  Google Scholar 

  • Rawat M, Singh D, Saraf S et al.: Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull. 2006;29:1790–1798.

    PubMed  CAS  Google Scholar 

  • Reinhold HS, Endrich B.: Tumor microcirculation as a target for hyperthermia. Int J Hyperthermia 1986;2:11–137.

    Google Scholar 

  • Ribatti D, Vacca A, Danmacco F.: The role of vascular phase in solid tumor growth: a historical review. Neoplasia. 1999;1:293–302.

    PubMed  CAS  Google Scholar 

  • Roca C, Primo L, Valdembri D et al.: Hyperthermia inhbits angiogenesis by a Plasminogen Activator Inhibitor –I dependent mechanism. Cancer Res. 2003;63:1500–1507.

    PubMed  CAS  Google Scholar 

  • Sanga S, Sinek JP, Frieboes HB et al.: Mathematical modeling of cancer progression and response to chemotherapy. Expert Rev. Anticancer Ther. 2006;6:1361–1376.

    PubMed  CAS  Google Scholar 

  • Sarntinoranont M, Rooney F, Ferrari M.: Interstitial stress and fluid pressure within a growing tumor. Ann Biomed Eng. 2003;31:327–335.

    PubMed  Google Scholar 

  • Seshadri M, Spernyak JA, Mazurchuk R et al.: Tumor vascular response to photodynamic therapy and the antivascular agent 5,6-Dimethylxanthenone-4-acetic acid: implications for combination therapy. Clin Cancer Res. 2005;11:4241–4250.

    PubMed  CAS  Google Scholar 

  • Simionescu N, Simionescu M.: The cardiovascular system. In “Cell and Tissue Biology. A textbook of Histology” . Leon Weiss Editor. Urban & Schwarzenberg Publisher, Baltimore-Munich. 1998; pp. 355–398.

    Google Scholar 

  • Song CW.: Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Res. 1984;44:4721s–4730s.

    PubMed  CAS  Google Scholar 

  • Song CW, Chelstrom LM, Sung JH.: Effects of a second heating on tumor blood flow: Radiat Res.1990;122:66–71.

    PubMed  CAS  Google Scholar 

  • Song CW, Park H, Griffin RJ.: Theoretical and experimental basis of Hyperthermia. In Thermotherapy for neoplasia, inflammation, and pain: M. Kosaka, T. Sugahara, K.L. Schmidt, E. Simon editors, Springer Verlag Tokyo 2001, pp.394–407.

    Google Scholar 

  • Song CW, Park HJ, Lee CK, et al.: Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperthermia. 2005;21:761–767.

    PubMed  CAS  Google Scholar 

  • Stauffer PR.: Evolving technology for thermal therapy of cancer. Int J Hyperthermia. 2005;21: 731–744.

    PubMed  Google Scholar 

  • Sundaram J, Berlyn R., Mitragotri M et al.: An Experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J. 2003;84:3087–3310.

    PubMed  CAS  Google Scholar 

  • Takakura N, Watanabe T, Suenobu S et al.: A role for Hematopoietic stem cells in promoting angiogenesis. Cell. 2000;102:199–209.

    PubMed  CAS  Google Scholar 

  • Thorpe PE.: Vascular targeting agents as cancer therapeutics. Clin Cancer Res. 2004 Jan 15;10(2):415–427.

    PubMed  Google Scholar 

  • Trédan O, Galmarini CM, Patel K et al.: Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst. 2007;99:1441–1454.

    PubMed  Google Scholar 

  • Tozer GM, Kanthou C, Baguley BC.: Disrupting tumor blood vessels. Nat Rev Cancer. 2005;5:423–435.

    PubMed  CAS  Google Scholar 

  • Tsutsui JM, Xie F, Porter RT.: The use of microbubbles to target drug delivery. Cardiovasc Ultrasound. 2004;2:23–30.

    PubMed  Google Scholar 

  • Vaupel P.: The role of hypoxia-induced factors in tumor progression. Oncologist. 2004;9 Suppl 5:10–7.

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F.: Physiological effects of hyperthermia. Recent Res Cancer. 1987;104: 71–109.

    CAS  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P.: Blood flow, oxygen and nutrient supply and metabolic microenvironment of human tumors, a review. Cancer Res.1989;49:6449–6465.

    PubMed  CAS  Google Scholar 

  • Verma S, Watt GM, Mai Z et al.: Strategies for enhanced photodynamic therapy effects. Photochem Photobiol. 2007;83:996–1005.

    PubMed  CAS  Google Scholar 

  • Waldow SM, Henderson BW, Dougherty TJ.: Potentiation of photodynamic therapy by heat: effect of sequence and time interval between treatments in vivo. Lasers Surg Med. 1985;5(2):83–94.

    PubMed  CAS  Google Scholar 

  • Wilson BC, Patterson MS, Lilge L.: Implicit and explicit dosimetry in photodynamic therapy: a new paradigm. Lasers Med Sci. 1997;12:182–199.

    Google Scholar 

  • Xian X, Håkansson J, Ståhlberg A, Lindblom P et al.: Pericytes limit tumor cell metastasis. J Clin Invest. 2006;116:642–651. CV.

    PubMed  CAS  Google Scholar 

  • Yatvin MB, Tegmo-Larsson IM, Dennis WH.: Temperature- and pH-sensitive liposomes for drug targeting. Methods Enzymol. 1987;149:77–87.

    PubMed  CAS  Google Scholar 

  • Younes M, Lechago LV, Somano JR et al.: Wide expression of the human erythrocyte glucose transporter Glut 1 in human cancers. Cancer Res. 1996;56:1164–1167.

    PubMed  CAS  Google Scholar 

  • Zeisser-Labouèbe M, Lange N, Gurny R et al.: Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int J Pharm. 2006 Dec 1;326(1–2):174–181.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baronzio, G., Baronzio, A., Crespi, E., Freitas, I. (2009). Effects of Tumor Microenvironment on Hyperthermia, Photodynamic and Nanotherapy. In: Baronzio, G., Fiorentini, G., Cogle, C.R. (eds) Cancer Microenvironment and Therapeutic Implications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9576-4_10

Download citation

Publish with us

Policies and ethics