Skip to main content

A Review of Wind-Noise Reduction Methodologies

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

The bane of infrasound signal detection and characterization is the noise generated by wind. In this chapter, we review the physics of wind, current theories on how wind can generate “noise,” and both mature and developing techniques for reducing wind noise. This subject is not completely documented in peer-reviewed journals, and we have extended our review to include nonpeer-reviewed results that appear to be robust. Specifically, we review Daniels’ filters, pipe rosettes, microporous hoses, optical fiber line sensors, distributed sensors, rigid porous media filters, and wind barriers. We discuss the advantages, disadvantages, and potential of each technology. We conclude with a summary of the state of affairs in noise-reduction research and the potential impact of these technologies on future global infrasound monitoring and research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcoverro B (1998) Acoustic filters design and experimental results. Proceedings Workshop on Infrasound. DASE, Commissariat à l’Energie, Bruyères-le-Châtel, France, 21–24 July 1998

    Google Scholar 

  • Alcoverro B, Le Pichon A (2005) Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance. J Acoust Soc Am 117:1717–1727

    Article  Google Scholar 

  • Arrowsmith SJ, Hedlin MAH (2005) Observations of infrasound from surf in southern California. Geophys Res Lett 32:L09810. doi:10.1029/2005GL022761

    Article  Google Scholar 

  • Attenborough K (1983) Acoustical characteristics of rigid fibrous absorbents and granular materials. J Acoust Soc Am 73:783–799

    Article  Google Scholar 

  • Attenborough K, Sabatier JM, Bass HE, Bolen LN (1986) The acoustic transfer function at the surface of a layered poroeleastic soil. J Acoust Soc Am 79:1353–1359

    Article  Google Scholar 

  • Batchelor GK (1951) Pressure fluctuations in isotropic turbulence. Proc Cambridge Philos Soc 47:359–374

    Article  Google Scholar 

  • Bedard Jr. AJ, Whitaker RW, Greene GE, Mutschlecner P, Nishiyama RT, and Davidson M (1992) Measurements of pressure fluctuations near the surface of the Earth. 10th Symposium on turbulence and diffusion, Portland, OR, September 29 – October, 1992, American Meteorological Society, 45 Beacon St, Boston, MA, pp. 293–296

    Google Scholar 

  • Bedard Jr. AJ, Bartram BW, Entwistle B, Golden J, Hodanish S, Jones RM, Nishiyama RT, Keane AN, Mooney L, Nicholls M, Szoke EJ, Thaler E, and Welsh DC (2004) Overview of the ISNET data set and conclusions and recommendations from a March 2004 workshop to review ISNET data. U.S. National Oceanic and Atmospheric Administration, Environmental Technology Laboratory, Boulder, CO, p. 20

    Google Scholar 

  • Benade AH (1968) On the propagation of sound waves in a cylindrical conduit. J Acoust Soc Am 44:616–623

    Article  Google Scholar 

  • Berman S, Stearns CR (1977) Near-Earth turbulence and coherence measurements at Aberdeen Proving Ground, Maryland. Boundary-Layer Meteorol 11:485–506

    Article  Google Scholar 

  • Bowman HS, Bedard AJ (1971) Observations of infrasound and subsonic disturbances related to severe weather. Geophys J Roy Astron Soc 26:215–242

    Article  Google Scholar 

  • Burridge R (1971) The acoustics of pipe arrays. Geophys J R astr Soc 26:53–69

    Google Scholar 

  • Chen WF (1997) Handbook of structural engineering. CRC Press, Boca Raton, pp 12–50

    Google Scholar 

  • Cook RK, Bedard AJ (1971) On the measurement of infrasound. Geophys J R Astr Soc 26:5–11

    Google Scholar 

  • Christie D (1999) The infrasound segment of the CTBTO’s international monitoring system. IUGG, XXII General Assembly, B.7 (abstract)

    Google Scholar 

  • Christie DR, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. This volume, pp. 27–72

    Google Scholar 

  • Campus P, Christie DR (2010) Worldwide observations of infrasonic waves. This volume, pp. 181–230

    Google Scholar 

  • Christie D, Kennett BLN, and Tarlowski C (2007) Advances in infrasound technology with application to nuclear explosion monitoring. Proceeding of the 29th monitoring research review. Los Alamos National Laboratory, Los Alamos, New Mexico, pp. 825–835

    Google Scholar 

  • Daniels FB (1952) Acoustical energy generated by the ocean waves. J Acoust Soc Am 24:83

    Article  Google Scholar 

  • Daniels FB (1959) Noise-reducing line microphone for frequencies below 1 c/s. J Acoust Soc Am 31:529–531

    Article  Google Scholar 

  • deWolf DA (1983) A random motion model of fluctuations in a nearly transparent medium. Radio Sci 18:138–142

    Article  Google Scholar 

  • Dillion K, Howard W, Shields FD (2007) Advances in distributed arrays for detection of infrasonic events [abstract]. J Acoust Soc Am 122:2960

    Article  Google Scholar 

  • Evers LG, Haak HW (2010) The Characteristics of Infrasound, its propagation and some early history. This volume, pp. 3–26

    Google Scholar 

  • Favre AJ, Gaviglio J, Dumas R (1962) Corrélations spatio-temporelles en écoulements turbulents. Mécanique de la turbulence (Coll Intern Du CNRS à Marseille), Paris, ed. CNRS, 419–445

    Google Scholar 

  • Frenkiel FN, Klebanoff PS (1966) Space-time correlations in turbulence. In: Pai SI (ed) Dynamics of fluids and plasmas. Academic Press, New York. pp. 257–274

    Google Scholar 

  • Garcés M, Willis M, Hetzer C, Le Pichon A, Drob D (2004) On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys Res Lett 31:L19304. doi:10.1029/2004GL020696

    Article  Google Scholar 

  • Garcés M, Hetzer C, Merrifield M, Willis M, Aucan J (2003) Observations of surf infrasound in Hawaii. Geophys Res Lett 30(24):2264. doi:10.1029/2003GL018614

    Article  Google Scholar 

  • Garcés M, Park J (2007) A rotary subwoofer as an infrasonic source. Infrasound Technology Workshop. Tokyo, Japan. 13–16 November

    Google Scholar 

  • George WK, Beuther PD, Arndt REA (1984) Pressure spectra in turbulent free shear flows. J Fluid Mech 148:155–191

    Article  Google Scholar 

  • Georges TM, Greene GE (1975) Infrasound from convective storms. Part IV. Is it useful for storm warnings? J Appl Meteor 14:1303–1316

    Article  Google Scholar 

  • Goedecke GH, Auvermann HJ (1997) Acoustic scattering by atmospheric turbules. J Acoust Soc Am 102:759–771

    Article  Google Scholar 

  • Gossard EE (1956) Gravity waves in the lower troposphere over southern California, Report 709. Naval Electronics Lab, San Diego, CA

    Google Scholar 

  • Grover FH (1971) Experimental Noise Reducers for an Active Microbarograph Array. Geophys J Roy Astr Soc 26:41–52

    Google Scholar 

  • Haak HW, de Wilde GJ (1996) Microbarograph systems for the infrasonic detection of nuclear explosions, KNMI publication, WR 96–06

    Google Scholar 

  • Hedlin MAH, Raspet R (2003) Infrasonic wind noise reduction by barriers and spatial filters. J Acoust Soc Am 114:1379–1386

    Article  Google Scholar 

  • Hedlin MAH, Alcoverro B, D’Spain G (2003) Evaluation of rosette infrasonic noise-reducing spatial filters. J Acoust Soc Am 114:1807–1820

    Article  Google Scholar 

  • Hedlin MAH, Alcoverro B (2005) The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters. J Acoust Soc Am 117:1880–1888

    Article  Google Scholar 

  • Herrin E, Sorrells GG, Negraru P, Swanson JG, Golden P, Mulcahy C (2001) Comparative evaluation of selected infrasound noise reduction methods. Proceedings of the 23rd Seismic Research Review. Los Alamos National Laboratory, Los Alamos, New Mexico, pp. 131–139

    Google Scholar 

  • Hill RJ, Wilczak JM (1995) Pressure structure functions and spectra for locally isotropic turbulence. J Fluid Mech 296:247–269

    Article  Google Scholar 

  • Howard W, Dillion K, Shields FD (2007) Acoustical properties of porous hose wind noise filters. J Acoust Soc Am 122:2985

    Google Scholar 

  • Kaimal JC, Eversole RA, Lenschow DH, Stankov BB, Kahn PH, Businger JA (1982) Spectral characteristics of the convective boundary layer over uneven terrain. J Atmos Sci 39:1098–1114

    Google Scholar 

  • Kolmogorov AN (1941) Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303

    Google Scholar 

  • Koracin D, Berkowicz R (1988) Nocturnal boundary-layer height: observations by acoustic sounders and predictions in terms of surface-layer parameters. Boundary-Layer Meteorol 43:65–83

    Article  Google Scholar 

  • Landau LD and Lifshitz EM (1959) Fluid mechanics: course of theoretical physics, vol. 6. Addison-Wesley Series in advanced physics. London, Paris, Frankfurt: Pergamon Press, p. 536

    Google Scholar 

  • Larson RJ, Craine LB, Thomas JE, Wilson CR (1971) Correlation of winds and geographic features with production of certain infrasonic signals in the atmosphere. Geophys J R astr Soc 26:201–214

    Google Scholar 

  • Lettau H (1939) Atmosphärische Turbulenz. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  • Liszka L (2008) Infrasound: a summary of 35 years of infrasound research. Institutet for rymdfysik, IRF Scientific report 291, ISBN 978-91-977255-0-7

    Google Scholar 

  • McBride WE, Bass HE, Raspet R, Gilbert KE (1992) Scattering of sound by atmospheric turbulence: Predictions in a refractive shadow zone. J Acoust Soc Am 91:1336–1340

    Article  Google Scholar 

  • McKisic JM (1997) Infrasound and the infrasonic monitoring of atmospheric nuclear explosions: a literature review, final report submitted to the DOE and Phillips Lab, PL-TR-97-2123

    Google Scholar 

  • McDonald JA, Douze EJ, Herrin E (1971) The structure of atmospheric turbulence and its application to the design of pipe arrays. Geophys J R astr Soc 26:99–109

    Google Scholar 

  • McDonald JA, Herrin E (1974) Properties of pressure fluctuations in an atmospheric boundary layer. Boundary-Layer Meteorol 8:419–436

    Article  Google Scholar 

  • Miles NL, Wyngaard JC, Otte MJ (2004) Turbulent pressure statistics in the atmospheric boundary layer from large-eddy simulation. Boundary-Layer Meteorol 113:161–185

    Article  Google Scholar 

  • Monin AS, Yaglom AM (1975) Statistical fluid mechanics: mecahnics of turbulence, vol. 2. MIT Press, Cambridge, p. 874

    Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere. Trans Geophys Inst Akad Nauk USSR 151:163–187

    Google Scholar 

  • Nishiyama RT, Bedard AJ Jr (1991) A Quad-Disc static pressure probe for measurement in adverse atmospheres: with a comparative review of static pressure probe designs. Rev Sci Instrum 62:2193–2204

    Article  Google Scholar 

  • Noel SD, Whitaker RW (1991) Comparison of noise reduction systems. Los Alamos National Lab report LA-12003-MS

    Google Scholar 

  • Obukhov AM (1941) Spectral energy distribution in a turbulent flow. Izv Akad Nauk SSSR Ser Georgr I Geofiz 5:453–466

    Google Scholar 

  • Olson HF (1947) Elements of acoustical engineering, 2nd edn. D. Van Nostrand Company, Princeton, NJ

    Google Scholar 

  • Panofsky HA (1962) Scale analysis of atmospheric turbulence at 2 meters. Q J R Meteorol Soc 88:57

    Article  Google Scholar 

  • Panofsky HA, Dutton JA (1984) Atmospheric turbulence: models and methods for engineering applications. John Wiley, New York, p 397

    Google Scholar 

  • Panofsky HA, Mazzola C (1971) Variances and spectra of vertical velocity just above the surface layer. Boundary-Layer Meteorol 2:30–37

    Article  Google Scholar 

  • Pidwirny M, Budikova D (2006) Local and regional wind systems. In: Cutler J (ed) Encyclopedia of Earth, Cleveland (Washington, DC: Environmental Information Coalition, National Council for Science and the Environment)

    Google Scholar 

  • Priestley JT (1966) Calculation of the effectiveness of infrasonic line microphones for reducing wind noise. National Bureau of Standards Report 9380

    Google Scholar 

  • Raspet R, Webster J, Dillon K (2006) Framework for wind noise studies. J Acoustic Soc Am 199:834–843

    Article  Google Scholar 

  • Rockway JW, Hower GL, Craine LB, Thomas JE (1974) Applications of ray-tracing to observations of mountain-associated infrasonic waves. Geophys J R astr Soc 35:259–266

    Google Scholar 

  • Sabatier JM, Bass HE, Bolen LN, Attenborough K, Sastry VVSS (1986) The interaction of airborne sound with the porous ground: the theoretical formulation. J Acoust Soc Am 79:1345–1352

    Article  Google Scholar 

  • Sabatier JM, Raspet R, Frederickson CK (1993) An improved procedure for the determination of ground parameters using level difference measurements. J Acoust Soc Am 94:396–399

    Article  Google Scholar 

  • Shams QA, Zuckerwar AJ, Sealey BS (2005) Compact nonporous windscreen for infrasonic measurements. J Acoust Soc Am 118:1335–1340

    Article  Google Scholar 

  • Shields FD (2005) Low-frequency wind noise correlation in microphone arrays. J Acoust Soc Am 117:3489–3496

    Article  Google Scholar 

  • Strasberg M (1988) Dimensional analysis of windscreen noise. J. Acoust Soc Am 83:544–548

    Article  Google Scholar 

  • Taylor GI (1938) The spectrum of turbulence. Proc Roy Soc A164:476–490

    Article  Google Scholar 

  • Thuillier RH, Lappe UO (1964) Wind and temperature profile characteristics from observations on a 1400 ft tower. J Appl Meteorol 3:299–306

    Article  Google Scholar 

  • Walker KT, Zumberge MA, Hedlin MAH, Shearer P (2008) Methods for determining infrasound phase velocity direction with an array of line sensors. J Acoust Soc Am 124:2090–2099

    Article  Google Scholar 

  • Walker KT, Zumberge M, Hedlin M, Berger J, Shearer P (2007) Resolving infrasound signals with arrays of optical fiber infrasound sensors (OFIS): low wind noise, superb back azimuth (and elevation angle) resolution, and a compact design. Infrasound technology workshop. Tokyo, Japan. 13–16 November

    Google Scholar 

  • Walker KT, Dzieciuch M, Zumberge M, and DeWolf S (2007) M-sequences and an array of speakers form a sensor calibrator down to 8 Hz: Application to the OFIS at the new Camp Elliott OFIS array. Infrasound technology workshop. Tokyo, Japan. 13–16 November

    Google Scholar 

  • Wyngaard JC, Siegel A, Wilczak J (1994) On the response of a turbulent-pressure probe and the measurement of pressure transport. Boundary-Layer Meteorol 69:379–396

    Article  Google Scholar 

  • Zumberge MA, Berger J, Hedlin MAH et al (2003) An optical fiber infrasound sensor: A new lower limit on atmospheric pressure noise between 1 and 10 Hz. J Acoust Soc Am 113:2474–2479

    Article  Google Scholar 

Download references

Acknowledgements

We thank Rich Raspet and Doug Shields for clarifying discussions and an anonymous reviewer for constructive comments that improved this manuscript. This work was supported by the U.S. Army Space and Missile Defense Command.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristoffer T. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Walker, K.T., Hedlin, M.A. (2010). A Review of Wind-Noise Reduction Methodologies. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9508-5_5

Download citation

Publish with us

Policies and ethics