Skip to main content

The IMS Infrasound Network: Design and Establishment of Infrasound Stations

  • Chapter
  • First Online:

Abstract

The signing of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) on 24 September 1996 and the establishment of the International Monitoring System (IMS) for Treaty verification has led to a rapid development in the use of infrasound monitoring technology for the detection of nuclear explosions. The IMS includes a 60-station infrasound monitoring network that is designed to reliably detect infrasonic signals from a 1-kiloton atmospheric nuclear explosion at two or more network stations. The stations in this network are located uniformly over the face of the globe. Each station consists of an array of high-sensitivity microbarometer sensors arranged in an optimal configuration for the detection of signals from atmospheric explosions. The construction of this global infrasound monitoring system is nearing completion. In this chapter, we focus on the fundamental design principles for IMS infrasonic array stations with an emphasis on the recent developments in array design, improvements in infrasound sensor technology, and advances in background noise reduction that can potentially improve the monitoring capability and reliability of the global network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alcoverro B (1998) Acoustic filters design and experimental results. Proceedings workshop on infrasound. DASE, Commissariat à l’Énergie, Bruyères-le-Châtel, France, 21–24 July 1998

    Google Scholar 

  • Alcoverro B (2002) Frequency response of noise reducers. Proceedings infrasound technology workshop, De Bilt, The Netherlands, 28–31 October, 2002

    Google Scholar 

  • Alcoverro B (2008) The design and performance of infrasound noise-reducing pipe arrays. Handbook of signal processing in acoustics, chap. 80, Springer, New York, pp 1473–1486

    Google Scholar 

  • Alcoverro B, Le Pichon A (2005) Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance. J Acoust Soc Am 117:1717–1727

    Article  Google Scholar 

  • Alcoverro B, Martysevich P, Starovoit Y (2005) Mechanical sensitivity of microbarometers MB2000 (DASE, France) and Chaparral 5 (USA) to vertical and horizontal ground motion. Inframatics 9:1–10

    Google Scholar 

  • Armstrong WT (1998) Comparison of infrasound correlation over differing array baselines. Proceedings of the 20th annual seismic research symposium, Santa Fe, New Mexico, 21–23 September 1998, pp 543–554

    Google Scholar 

  • Bass HE, Shields FD (2004) The use of arrays of electronic sensors to separate infrasound from wind noise. Proceedings of the 26th seismic research review, Orlando, Florida, 21–23 September 2004, pp 601–607

    Google Scholar 

  • Bedard Jr, AJ, Bartram BW, Keane AN, Welsh DC, Nishiyama RT (2004) The infrasound network (ISNET): background, design details, and display capability as an 88D adjunct tornado detection tool. Proceedings of the 22nd conference on severe local storms, Hyannis, MA, American Meteorological Society, Paper 1.1

    Google Scholar 

  • Bhattacharyya J, Bass HA, Drob DP, Whitaker RW, ReVelle DO, Sandoval TD (2003) Description and analysis of infrasound and seismic signals recorded from the Watusi explosive experiment, September 2002. Proceedings of the 25th seismic research review, Tucson, Arizona, 23–25 September 2003, pp 587–596

    Google Scholar 

  • Blanc E, Plantet JL (1998) Detection capability of the IMS infrasound network: a more realistic approach. Proceedings workshop on infrasound, Commissariat à l’Énergie Atomique, Bruyères-le-Châtel, France, 21–24 July 1998

    Google Scholar 

  • Blandford RR (1997) Design of infrasonic arrays. Air Force Technical Applications Center Report, AFTAC-TR-97-013

    Google Scholar 

  • Blandford RR (2000) Need for a small subarray at IMS infrasound stations – implications of shuttle and S. Pacific nuclear signals. Proceedings infrasound workshop, Passau, Germany, 2–6 October 2000

    Google Scholar 

  • Blandford RR (2004) Optimal infrasound array design for 1 kt atmospheric explosions. Proceedings infrasound technology workshop, Hobart, Australia, 29 November–2 December 2004

    Google Scholar 

  • Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32:L09803. doi:10.1029/2005GL022486

    Article  Google Scholar 

  • Bowman JR, Shields G, O’Brien MS (2007) Infrasound station ambient noise estimates and models: 2003–2006. Proceedings infrasound technology workshop, Tokyo, Japan, 13–16 November 2007

    Google Scholar 

  • Brachet N, Brown D, Le Bras R, Mialle P, Coyne J (2010) Monitoring the earth’s atmosphere with the global IMS infrasound network. This volume, pp. 73–114

    Google Scholar 

  • Brown D, Collins C, Kennett B (2003) The Woomera infrasound and seismic experiment. Proceedings infrasound technology workshop, La Jolla, California, 27–30 October 2003

    Google Scholar 

  • Campus P, Hoffmann T (2006) The IMS infrasound network: the challenge continues. Inframatics 13:26–28

    Google Scholar 

  • Campus P, Demirovic E, Forbes A, Kramer A, Martysevich P, Stefanova S (2007). The IMS infrasound network: current status and future prospectives. Proceedings of the 2007 infrasound workshop, Tokyo, Japan, 13–16 November 2007

    Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: the PMCC method. Geophys Res Lett 22:1021–1024

    Article  Google Scholar 

  • Cansi Y, Le Pichon A (2008) Infrasound event detection using the progressive multi-channel correlation algorithm. Handbook of signal processing in acoustics, chap. 77. Springer, New York, pp 1425-1435

    Google Scholar 

  • Capon J (1969) High resolution frequency wavenumber spectrum analysis. Proc IEEE 57:1408–1418

    Article  Google Scholar 

  • Christie DR (1989) Long nonlinear waves in the lower atmosphere. J Atmos Sci 46:1462–1491

    Article  Google Scholar 

  • Christie DR (1999) Wind-noise-reducing pipe arrays. Report IMS-IM-1999-1, International Monitoring System Division, Comprehensive Nuclear-Test-Ban Treaty Organization, Vienna, Austria, 22pp

    Google Scholar 

  • Christie DR (2002) Wind-noise-reducing pipe arrays for IMS infrasound stations in Antarctica. Report IMS-IM-2002-1, International Monitoring System Division, Comprehensive Nuclear-Test-Ban Treaty Organization, Vienna, Austria, 10pp

    Google Scholar 

  • Christie DR (2006) Wind noise reduction at infrasound monitoring stations. Proceedings infrasound technology workshop, Fairbanks, Alaska, 25–28 September 2006

    Google Scholar 

  • Christie DR (2007a) Recent developments in infrasound monitoring technology: application to CTBT verification. CTBTO Spectrum, Issue 10, August 2007 pp 18–19, 24 (available online at http://www.ctbto.org)

  • Christie DR (2007b) Optimum array design for the detection of distant atmospheric explosions: influence of the spatial correlation of infrasonic signals. Proceedings infrasound technology workshop, Tokyo, Japan, 13–16 November 2007

    Google Scholar 

  • Christie DR (2007c) Recent progress in wind noise reduction at infrasound monitoring stations. Proceedings infrasound technology workshop, Tokyo, Japan, 13–16 November 2007

    Google Scholar 

  • Christie DR (2008) Wind-noise-reduction at IMS infrasound stations. Proceedings infrasound technology workshop, Bermuda, 3–7 November 2008

    Google Scholar 

  • Christie DR, Kennett BLN (2007) Detection of nuclear explosions using infrasound techniques. Final Report AFRL-RV-HA-TR-2007-1151, Air Force Research Laboratory, Hanscom AFB, MA, Available from United States Technical Information Service

    Google Scholar 

  • Christie DR, Vivas Veloso JA, Campus P, Bell M, Hoffmann T, Langlois A, Martysevich P, Demirovic E, Carvalho J (2001) Detection of atmospheric nuclear explosions: the infrasound component of the International Monitoring System. Kerntechnik 66:98–101

    Google Scholar 

  • Christie DR, Kennett BLN, Tarlowski C (2005a) Detection of distant atmospheric explosions: Implications for the design of IMS infrasound array stations. Proceedings infrasound technology workshop, Papeete, Tahiti, 28 November –2 December 2005

    Google Scholar 

  • Christie DR, Kennett BLN, Tarlowski C (2005b) Detection of regional and distant atmospheric explosions. Proceedings of the 27th seismic research review, Rancho Mirage, California, 20–22 September 2005, pp 817–827

    Google Scholar 

  • Christie DR, Kennett BLN, Tarlowski C (2006) Detection of atmospheric explosions at IMS monitoring stations using infrasound techniques. Proceedings of the 28th seismic research review, Orlando, Florida, 19–21 September 2006, pp 882–892

    Google Scholar 

  • Christie DR, Kennett BLN, Tarlowski C (2007) Advances in infrasound technology with application to nuclear explosion monitoring. Proceedings of the 29th monitoring research review, Denver, Colorado, 25–27 September 2007, pp 825–835

    Google Scholar 

  • Clauter DA, Blandford RR (1997) Capability modeling of the proposed International Monitoring System 60-station infrasonic network. Proceedings infrasound workshop for CTBT monitoring, Santa Fe, New Mexico, 25–28 August 1997, p 225

    Google Scholar 

  • Cook RK (1962) Strange sounds in the atmosphere. Part I. Sound 1:12–16

    Google Scholar 

  • Cook RK, Bedard AJ Jr (1971) On the measurement of infrasound. Geophys J R astr Soc 26:5–11

    Google Scholar 

  • Cordero F, Matheson H, Johnson DP (1957) A nonlinear instrument diaphragm. J Res Nat Bur Stand 58:333–337

    Google Scholar 

  • de Groot-Hedlin CD, Hedlin MAH, Drob DP (2010) Atmospheric variability and infrasound monitoring. This volume, pp. 469–504

    Google Scholar 

  • Daniels FB (1959) Noise-reducing line microphone for frequencies below 1 cps. J Acoust Soc Am 31:529–531

    Article  Google Scholar 

  • Evers LG, Haak HW (2010) The Characteristics of Infrasound, its propagation and some early history. This volume, pp. 3–26

    Google Scholar 

  • Garcés M, McNamara S, Drob D, Brachet N (2006) A ray-based automatic infrasonic source location algorithm. Proceedings infrasound technology workshop, Fairbanks, Alaska, 25–28 September 2006

    Google Scholar 

  • Gossard EE (1969) The effect of bandwidth on the interpretation of the cross-spectra of wave recordings from spatially separated sites. J Geophys Res 74:325–335

    Article  Google Scholar 

  • Gossard EE, Hooke WH (1975) Waves in the atmosphere: atmospheric infrasound and gravity waves, chap. 9, sect. 65. Elsevier, New York

    Google Scholar 

  • Gossard EE, Sailors DB (1970) Dispersion bandwidth deduced from coherency of wave recordings from spatially separated sites. J Geophys Res 75:1324–1329

    Article  Google Scholar 

  • Green DN (2008) Assessing the detection capability of the International Monitoring System infrasound network. AWE Report 629/08, AWE Aldermaston, 91pp

    Google Scholar 

  • Grover FH (1971) Experimental noise reducers for an active microbarograph array. Geophys J R astr Soc 26:41–52

    Google Scholar 

  • Haubrich RA (1968) Array design. Bull Seis Soc Am 58:977–991

    Google Scholar 

  • Hedlin MAH (2001) Recent experiments in infrasonic noise reduction: the search for that elusive, broadband, filter. Proceedings infrasound technology workshop, Kailua-Kona, Hawaii, 12–15 November 2001

    Google Scholar 

  • Hedlin MAH, Alcoverro B (2005) The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters. J Acoust Soc Amer 117:1880–1888

    Article  Google Scholar 

  • Hedlin MAH, Berger J (2001) Evaluation of infrasonic noise reduction filters. Proceedings of the 23rd seismic research review, Jackson Hole, Wyoming, 2–5 October 2001, pp 121–130

    Google Scholar 

  • Hedlin MAH, Raspet R (2003) Infrasonic wind-noise reduction by barriers and spatial filters. J Acoust Soc Am 114:1379–1386

    Article  Google Scholar 

  • Hedlin MAH, Alcoverro B, D’Spain G (2003) Evaluation of rosette infrasonic noise reducing spatial filters. J Acoust Soc Am 114:1807–1820

    Article  Google Scholar 

  • Hedlin M, Arrowsmith S, Berger J, Walker K, Zumberge M (2004) Experiments in infrasound at the Piñon Flat observatory in California. Proceedings infrasound technology workshop, Hobart, Australia, 29 November–2 December 2004

    Google Scholar 

  • Herrin E, Golden P, Hedlin MAH (2001a) Investigation of wind noise reducing filters. Proceedings infrasound technology workshop, Kailua-Kona, Hawaii, 12–15 November 2001

    Google Scholar 

  • Herrin E, Sorrells GG, Negaru P, Swanson JG, Golden P, Mulcahy C (2001b) Comparative evaluation of selected infrasound noise reduction methods. Proceedings of the 23rd seismic research review, Jackson Hole, Wyoming, 2–5 October 2001, pp 131-139

    Google Scholar 

  • Kennett BLN, Brown DJ, Sambridge M, Tarlowski C (2003) Signal parameter estimation for sparse arrays. Bull Seism Soc Am 93:1765–1772

    Article  Google Scholar 

  • Le Pichon A, Vergoz J, Green D, Brachet N, Cerranna L, Evers L (2008) Ground-truth events as benchmark for assessing the infrasound detection capability. Proceedings infrasound technology workshop, Bermuda, 3–7 November 2008

    Google Scholar 

  • Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers L, Brachet N (2009) Assessing the performance of the International Monitoring System infrasound network: geographical coverage and temporal variabilities. J Geophys Res 114, D08112, doi:10.1029/2008JD010907

    Google Scholar 

  • Liszka L (2008a) Infrasound: a summary of 35 years of research. IRF Scientific Report 291, Swedish Institute of Space Physics, Umeå, Sweden, 150pp

    Google Scholar 

  • Mack H, Flinn EA (1971) Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere. Geophys J R astr Soc 26:255–269

    Google Scholar 

  • McCormack D (2002) Towards characterization of infrasound signals. Proceedings infrasound technology workshop, De Bilt, The Netherlands, 28–31 October 2002

    Google Scholar 

  • Mutschlecner JP (1998) Variation and uncertainty in infrasonic signals. Proceedings of the 20th seismic research symposium, Santa Fe, New Mexico, 21–23 September 1998, pp 605–611

    Google Scholar 

  • Mutschlecner JP, Whitaker RW (1990) The correction of infrasound signals for upper atmospheric winds. Forth international symposium on long range sound propagation, NASA Conference Publication 3101

    Google Scholar 

  • Mutschlecner JP, Whitaker RW, Auer LH (1999) An empirical study of infrasonic propagation. Los Alamos National Laboratory Technical Report LA-13620-MS

    Google Scholar 

  • Mutschlecner JP, Whitaker RW (2010) Some atmospheric effects on infrasound signal amplitudes. This volume, pp. 449–468

    Google Scholar 

  • National Academy of Sciences (2002) Technical issues related to the comprehensive nuclear test ban treaty. National Academy of Sciences Report, National Academy Press, Washington, DC, ISBN 0-309-08506-3

    Google Scholar 

  • Noel SD, Whitaker RW (1991) Comparison of noise reduction systems. Los Alamos National Laboratory Technical Report LA-12003-MS

    Google Scholar 

  • Norris D, Gibson R (2004) Validation studies using a TDPE propagation model and near real-time atmospheric specifications. Proceedings Infrasound Technology Workshop, Hobart, Australia, 29 November –2 December 2004

    Google Scholar 

  • Ponceau D, Bosca L (2010) Specifications of low-noise broadband microbarometers. This volume, pp. 115–136

    Google Scholar 

  • Rost S, Thomas C (2002) Array seismology: methods and applications. Rev Geophys 40, doi:10.1029/2000RG000100

    Google Scholar 

  • Shields FD (2005) Low-frequency wind noise correlation in microphone arrays. J Acoust Soc Am 117:3489–3496

    Article  Google Scholar 

  • Talmadge CL, Shields D, Gilbert KE (2001) Characterization and suppression of wind noise using a large-scale infrasound sensor array. Proceedings infrasound technology workshop, Kailua-Kona, Hawaii, 12–15 November 2001

    Google Scholar 

  • Walker K, Zumberge M, Berger J, Hedlin M, Matoza R, Durdevic P, Walsh P (2005) Progress in optical fiber infrasound sensor research. Proceedings infrasound technology workshop, Papeete, Tahiti, 28 November – December 2005

    Google Scholar 

  • Walker K, Zumberge M, Berger J, Hedlin M (2006) Determining infrasound phase velocity direction with a three-arm OFIS. Proceedings of the 28th seismic research review, Orlando, Florida, 19–21 September 2006, pp 882–892

    Google Scholar 

  • Walker KT, Zumberge M, Hedlin M, Berger J, Shearer P (2007) Resolving infrasound signals with arrays of optical fiber infrasound sensors (OFIS): low wind noise, superb back azimuth (and elevation angle) resolution, and a compact design. Proceedings infrasound technology workshop, Tokyo, Japan, 13–16 November 2007

    Google Scholar 

  • Walker KT, Zumberge MA, Hedlin MAH, Shearer PM (2008) Methods for determining infrasound phase velocity direction with an array of line sensors. J Acoust Soc Am 124:2090–2099

    Article  Google Scholar 

  • Walker KT, Hedlin MAH (2010) A review of wind-noise reduction methodologies. This volume, pp. 137–180

    Google Scholar 

  • Whitaker RW, Mutschlecner JP (2006) Revisiting yield, direction, and signal type. Proceedings of the 28th seismic research review, Orlando, Florida, 19–21 September 2006, 957–963

    Google Scholar 

  • Whitaker RW, Mutschlecner JP (2008) A comparison of infrasound signals refracted from stratospheric and thermospheric altitudes. J Geophys Res 113, doi:10.1029/2007JD008852

    Google Scholar 

  • Whitaker RW, Sandoval TD, Mutschlecner JP (2003) Recent infrasound analysis. Proceedings of the 25th seismic research review, Tucson, Arizona, 23–25 September 2003, pp 646–653

    Google Scholar 

  • Wilson CR, Osborne D, Lawson K, Wilson I (2001) Installation of IS55 array at Windless Bight, Antarctica. Proceedings infrasound technology workshop, Kailua-Kona, Hawaii, 12–15 November 2001

    Google Scholar 

  • Woodward R, Israelsson H, Bondár I, McLaughlin K, Bowman JR, Bass H (2005) Understanding wind-generated infrasound noise. Proceedings of the 27th seismic research review, Rancho Mirage, California, 20–22 September 2005, pp 866–875

    Google Scholar 

  • Zumberge MA, Berger J, Hedlin MH, Husmann E, Nooner S, Hilt R, Widmer-Schnidrig R (2003) An optical fiber infrasound sensor: a new lower limit on atmospheric pressure noise between 1 and 10 Hz. J Acoust Soc Am 113:2474–2479

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Christie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Christie, D.R., Campus, P. (2010). The IMS Infrasound Network: Design and Establishment of Infrasound Stations. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9508-5_2

Download citation

Publish with us

Policies and ethics