Skip to main content

The Characteristics of Infrasound, its Propagation and Some Early History

  • Chapter
  • First Online:
Book cover Infrasound Monitoring for Atmospheric Studies

Abstract

Infrasound is inaudible sound as it consists of frequencies lower than 20 Hz, i.e. the human hearing threshold. Low frequency acoustic signals were first discovered after the eruption of the Krakatoa (Indonesia) in 1883. Owing to its low frequency content, this infrasound traveled up to four times around the globe while reaching altitudes over 100 k. The ability to detect explosions with infrasound resulted in substantial scientific and societal interest during World War I and the era of atmospheric nuclear testing. This interest diminished as nuclear tests were confined to the underground under the Limited Test Ban Treaty in 1963. Recently, with the signature of the Comprehensive Nuclear-Test-Ban Treaty, infrasound gained renewed attention as it is being used as a verification technique. This chapter describes the physical characteristics of infrasound, in relation to other atmospheric waves. The propagation through the highly dynamic atmosphere is addressed with an introduction to the characteristics of the medium. Next, some highlights of the remarkable history of infrasound are given, and early instrumental developments are shown. This chapter aims at establishing the framework for the study of infrasound and its application to atmospheric sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.D. (1912) S. Fujiwhara über die abnormale Verbreitung von Schallwellen in der Atmosphäre. Meteorologische Zeitschrift November:543–544

    Google Scholar 

  2. Balachandran NK (1968) Acoustic-gravity wave propagation in a temperature- and wind-stratified atmosphere. J Atmos Sci 25:818–826

    Article  Google Scholar 

  3. Balachandran NK (1970) Effects of winds on the dispersion of acoustic-gravity waves. J Acoust Soc Am 48:211–220

    Article  Google Scholar 

  4. Balachandran NK (1979) Infrasound signals from thunder. J Geophys Res 84:1735–1745

    Article  Google Scholar 

  5. Balachandran NK, Donn WL, Rind D (1977) Concorde sonic booms as an atmospheric probe. Science 197:47–49

    Article  Google Scholar 

  6. Bass HE (1972) Atmospheric absorption of sound: analytical expressions. J Acoust Soc Am 52:821–825

    Article  Google Scholar 

  7. Benioff H, Gutenberg B (1939) Waves and currents recorded by electromagnetic barographs. Bull Am Meteorol Soc 20:421–426

    Google Scholar 

  8. Blanc E, Le Pichon A, Ceranna L, Farges T, Marty J, Herry (2010) Global scale monitoring of acoustic and gravity waves for the study of the atmospheric dynamics. This volume, pp. 641–658

    Google Scholar 

  9. Brachet N, Brown D, Le Bras R, Mialle P, Coyne J (2010) Monitoring and earth’s atmosphere with the global IMS infrasound network, this volume, pp. 73–114

    Google Scholar 

  10. Campus P, Christie Dr (2010) Worldwide observations of infrasonic waves. This volume, pp. 181–230

    Google Scholar 

  11. Carpenter EW, Harwood G, Whiteside T (1961) Microbarograph records from the Russian large nuclear explosions. Nature 98:857

    Article  Google Scholar 

  12. Cook RK, Bedard AJ Jr (1971) On the measurement of infrasound. Geophys J R Astr Soc 26:5–11

    Google Scholar 

  13. Cox EF (1947) Microbarometric pressures from large high explosives blasts. J Acoust Soc Am 19:832–846

    Article  Google Scholar 

  14. Cox EF (1949) Abnormal audibility zones in long distance propagation through the atmosphere. J Acoust Soc Am 21:6–16

    Article  Google Scholar 

  15. Daniels FB (1959) Noise-reducing line microphone for frequencies below 1 cps. J Acoust Soc Am 31:529–531

    Article  Google Scholar 

  16. Davison C (1917) Sound-areas of great explosion. Nature 98:438–439

    Article  Google Scholar 

  17. Donn WL, Balachandran NK (1974) Meteors and meteorites detected by infrasound. Science 185:707–709

    Article  Google Scholar 

  18. Donn WL, Balachandran NK (1981) Mount St. Helens eruption of 18 May 1980: air waves and explosive yield. Science 213:539–541

    Article  Google Scholar 

  19. Donn WL, Posmentier ES (1964) Ground-coupled air waves from the great Alaskan earthquake. J Geophys Res 69:5357–5361

    Article  Google Scholar 

  20. Donn WL, Posmentier ES (1967) Infrasonic waves for the marine storm of April 7, 1966. J Geophys Res 72:2053–2061

    Article  Google Scholar 

  21. Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astr Soc 26:111–133

    Google Scholar 

  22. Donn WL, Rind D (1972) Microbaroms and the temperature and wind of the upper atmosphere. J Atmos Sci 29:156–172

    Article  Google Scholar 

  23. Donn WL, Rind D (1979) Monitoring stratospheric winds with Concorde generated infrasound. J Appl Meteorol 18:945–952

    Article  Google Scholar 

  24. Donn WL, Pfeffer RL, Ewing M (1963) Propagation of air waves from nuclear explosions. Science 139:307–317

    Article  Google Scholar 

  25. Donn WL, Balachandran NK, Kaschak G (1974) Atmospheric infrasound radiated by bridges. J Acoust Soc Am 56:1367–1370

    Article  Google Scholar 

  26. Donn WL, Balachadran NK, Rind D (1975) Tidal wind control of long-range rocket infrasound. J Geophys Res 80:1162–1164

    Article  Google Scholar 

  27. Dörr JN (1915) Über die Hörbarkeit von Kanonendonner, Explosionen u. dgl. Meteorologische Zeitschrift Mai:207–215

    Google Scholar 

  28. Drob DP, Picone JM, Garcés MA (2003) The global morphology of infrasound propagation. 108:4680

    Google Scholar 

  29. de Groot-Hedlin CD, Hedlin MAH, Drob DP (2010) Atmospheric variability and infrasound monitoring. This volume, PP. 469–504

    Google Scholar 

  30. Gainville O, Blanc-Benon Ph, Blanc E, Roche R, Millet C, Le Piver F, Despres B, Piserchia PF (2010) Misty picture: a unique experiment for the interpretation of the infrasound propagation from large explosive sources. This volume, pp. 569–592

    Google Scholar 

  31. Garcés MA, Hansen RA, Lindquist KG (1998) Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys J Int 135:255–263

    Article  Google Scholar 

  32. Georges TM, Beasley WH (1977) Refractions of infrasound by upper-atmospheric winds. J Acoust Soc Am 61:28–34

    Article  Google Scholar 

  33. Gossard EE, Hooke WH (1975) Waves in the atmosphere. Elsevier Amsterdam

    Google Scholar 

  34. Grover FH (1971) Experimental noise reducers for an active microbarograph array. Geophys J R Astr Soc 26:41–52

    Google Scholar 

  35. Grover FH (1977) A survey of atmospheric waves recording at Blacknest. AWRE Report No. O 51/77, UK

    Google Scholar 

  36. Gutenberg B (1939) The velocity of sound waves and the temperature in the stratosphere above Southern California. Bull Am Meteorol Soc 20:192–201

    Google Scholar 

  37. Hunt JN, Palmer R, Penney W (1960) Atmospheric waves caused by large explosions. Phil Trans Roy Soc London A 252:275–315

    Article  Google Scholar 

  38. Holton JR (1979) An introduction to dynamic meteorology. Academic Press, London

    Google Scholar 

  39. Kulichkov S (2010) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. This volume, pp. 505–534

    Google Scholar 

  40. Lamb H (1932) Hydrodynamics. Dover, New York

    Google Scholar 

  41. Le Pichon A, Vergoz J, Cansi Y, Ceranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. This volume, pp. 623–640

    Google Scholar 

  42. Lindemann FRS, Dobson GMB (1922) A theory of meteors, and the density and temperature of the outer atmosphere to which it leads. Proc Roy Soc 102:411–437

    Google Scholar 

  43. Liszka L (1978) Long-distance focusing of concorde sonic boom. J Acoust Soc Am 64:631–635

    Article  Google Scholar 

  44. Lott F, Millet C (2010) The representation of gravity waves in atmospheric general circulation models (GCMs). This volume, pp. 679–694

    Google Scholar 

  45. Meinardus W (1915) Die Hörweite des Kanonendonners bei der Belagerung von Antwerpen. Meteorologische Zeitschrift Mai: 199–206

    Google Scholar 

  46. Meteorological Office (1956) Handbook of meteorological instruments. Her Majesty’s Stationary Office, London

    Google Scholar 

  47. McAdie AG (1912) Taal, Asama-Yama and Katmai. Bull Seism Soc Am 2:233–242

    Google Scholar 

  48. Mutschlecner JP, Whitaker RW (2010) Some atmospheric effects on infrasound signal amplitudes, This volume pp. 449–468

    Google Scholar 

  49. NOAA, NASA, USAF (1976) US Standard Atmosphere, 1976. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  50. Norris D, Gibson R, Bongiovanni K (2010) Numerical methods to model infrasonic propagation through realistic specifications of the atmosphere. This volume, pp. 535–568

    Google Scholar 

  51. Pain HJ (1983) The physics of vibrations and waves. Wiley, Great Britain

    Google Scholar 

  52. Pierce AD (1963) Propagation of acoustic-gravity waves from a small source above the ground in an isothermal atmosphere. J Acoust Soc Am 35:1798–1807

    Article  Google Scholar 

  53. Pierce AD, Posey JW (1971) Theory of the excitation and propagation of Lamb’s atmospheric edge mode from nuclear explosions. Geophys J R Astr Soc 26:341–368

    Google Scholar 

  54. Ponceau D, Bosca L (2010) Specifications of low-noise broadband microbarometers. This volume, pp. 115–136

    Google Scholar 

  55. Posmentier (1967) A theory of microbaroms. Geophys J R Astr Soc 13:487–501

    Google Scholar 

  56. Rind DH, Donn WL (1978) Infrasound observations of variability during stratospheric warmings. J Atmos Sci 35:546–553

    Article  Google Scholar 

  57. Salby ML (1996) Fundamentals of atmospheric physics. Academic Press, San Diego

    Google Scholar 

  58. Shaw WN, Dines WH (1904) The study of the minor fluctuations of atmospheric pressure. Q J R Meteorol Soc 31:39–52

    Article  Google Scholar 

  59. Steel D (2008) Tunguska at 100. Nature 453:1157–1159

    Article  Google Scholar 

  60. Symons GJ (1888) The eruption of Krakatoa and subsequent phenomena, Trübner, London

    Google Scholar 

  61. Rothwell P (1947) Calculation of sound rays in the atmosphere. J Acoust Soc Am 19:205–221

    Article  Google Scholar 

  62. Thomas JE, Pierce AD, Flinn EA, Craine LB (1971) Bibliography on infrasonic waves. Geophys J R Astr Soc 26:399–426.

    Google Scholar 

  63. Van Everdingen E (1914) De hoorbaarheid in Nederland van het kanongebulder bij Antwerpen op 7–9 October 1914. Hemel en Dampkring 6:81–85

    Google Scholar 

  64. Verbeek RDM (1885) Krakatau (Uitgegeven op last van zijne excellentie den Gouverneur-Generaal van Nederlandsch-Indië). Landsdrukkerij, Batavia

    Google Scholar 

  65. Von dem Borne G (1910) Über die schallverbreitung bei Explosionskatastrophen. Physikalische Zeitschrift XI:483–488

    Google Scholar 

  66. Walker KT, Hedlin MAH (2010) A review of wind-noise reduction methodologies. This volume, pp. 137–180

    Google Scholar 

  67. Wegener A (1925) Die äußere Hörbarkeitzone. Zeitsch Geophys I:297–314

    Google Scholar 

  68. Whipple FJW (1923) The high temperature of the upper atmosphere as an explanation of zones of audibility. Nature 111:187

    Article  Google Scholar 

  69. Whipple FJW (1930) The great Siberian meteor and the waves, seismic and arial, which it produced. Q J R Meteorol Soc 56:287–304

    Google Scholar 

  70. Whipple FJW (1935) The propagation of sound to great distances. Q J R Meteorol Soc 61:285–308

    Article  Google Scholar 

  71. Whipple FJW (1939) The upper atmosphere, density and temperature, direct measurements and sound evidence. Q J R Meteorol Soc 65:319–323

    Article  Google Scholar 

  72. Whitehouse W (1870) On a new instrument for recording minute variations of atmospheric pressure. Proc Roy Soc 19:491–493

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Läslo G. Evers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Evers, L.G., Haak, H.W. (2010). The Characteristics of Infrasound, its Propagation and Some Early History. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9508-5_1

Download citation

Publish with us

Policies and ethics