Skip to main content

The Use of Neurocognitive Endophenotypes in Large-Scale Family Genetic Studies of Schizophrenia

  • Chapter
The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes

Abstract

Neurocognitive deficits are core features of schizophrenia and are among the most promising candidate endophenotypes for genetic studies of this disorder. The detection of gene-endophenotype associations requires large family cohort or case-control samples that are often only possible to collect through multisite collaborations, which presents considerable challenges for the use of endophenotypes. This chapter focuses on the rationale for using neurocognitive tasks of working memory, attention, and verbal declarative memory in large-scale, collaborative efforts to apply an endophenotype approach to schizophrenia. As an example, we describe the Consortium on the Genetics of Schizophrenia (COGS), a seven-site research network that investigates the genetic architecture of these neurocognitive and other candidate endopheno-types in families with schizophrenia. After providing a brief overview of the rigorous recruitment, data acquisition, and quality assurance procedures established by the COGS, we present recent results from this project that support utility of these procedures and the validity of neurocognitive endophenotypes. We conclude with a discussion of preliminary COGS findings that point toward specific candidate genes and future directions for this and other large-scale endophenotype studies of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gottesman II, Shields J. Schizophrenia and Genetics; A Twin Study Vantage Point. New York: Academic Press; 1972.

    Google Scholar 

  2. Braff DL, Freedman R. Endophenotypes in studies of the genetics of schizophrenia. In: Davis KL, Charney DS, Coyle JT, Nemeroff C, eds. Neuropsychopharmacology: The Fifth Generation of Progress. Philadelphia: Lippincott Williams & Wilkens; 2002:703–716.

    Google Scholar 

  3. Gottesman II, Gould TD. The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry 2003;160(4):636–645.

    Article  PubMed  Google Scholar 

  4. Nuechterlein KH, Barch DM, Gold JM, Goldberg TE, Green MF, Heaton RK. Identification of separable cognitive factors in schizophrenia. Schizophrenia Research 2004;72:29–39.

    Article  PubMed  Google Scholar 

  5. Gold JM. Cognitive deficits as treatment targets in schizophrenia. Schizophrenia Research 2004;72:21–28.

    Article  PubMed  Google Scholar 

  6. Green MF, Kern, R. S., Braff, D. L., Mintz, J. Neurocognitive deficits and functional outcome in schizophrenia: Are we measuring the “right stuff”?. Schizophrenia Bulletin 2000;26(1):119–136.

    PubMed  CAS  Google Scholar 

  7. Green MF, Kern, R.S., Heaton, R.K. Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophrenia Research 2004;72:41–51.

    Article  PubMed  Google Scholar 

  8. Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR. Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophrenia Bulletin Jan 2007;33(1):69–94.

    Article  PubMed  Google Scholar 

  9. Goldman-Rakic PS. Working memory dysfunction in schizophrenia. Journal of Neuropsychiatry and Clincial Neuroscience 1994;6:348–357.

    CAS  Google Scholar 

  10. Miyake A, Shah P. Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. New York: Cambridge University Press; 1999.

    Google Scholar 

  11. Baddeley AD. Working Memory. New York: Oxford University Press; 1986.

    Google Scholar 

  12. Perry W, Heaton RK, Potterat E, Roebuck T, Minassian A, Braff DL. Working memory in schizophrenia: Transient “online” storage versus executive functioning. Schizophrenia Bulletin 2001;27:157–176.

    PubMed  CAS  Google Scholar 

  13. Lee J, Park S. Working memory impairments in schizophrenia: A meta-analysis. Journal of Abnormal Psychology 2005;114(4):599–611.

    Article  PubMed  Google Scholar 

  14. Barch DM. The cognitive neuroscience of schizophrenia. Annual Review of Clinical Psychology 2005;1(1):321–353.

    Article  PubMed  Google Scholar 

  15. Aleman A, Hijman R, de Haan EHF, Kahn RS. Memory impairment in schizophrenia: A meta-analysis. American Journal of Psychiatry 1999;156(9):1358–1366.

    PubMed  CAS  Google Scholar 

  16. Gold JM, Carpenter C, Randolph C, Goldberg TE, Weinberger DR. Auditory working memory and Wisconsin Card Sorting Test performance in schizophrenia. Archives of General Psychiatry 1997;54(2):159–165.

    PubMed  CAS  Google Scholar 

  17. Conklin HM, Curtis CE, Calkins ME, Iacono WG. Working memory functioning in schizophrenia patients and their first-degree relatives: cognitive functioning shedding light on etiology. Neuropsychologia 2005;43(6):930–942.

    Article  PubMed  Google Scholar 

  18. Heaton RK, Gladsjo JA, Palmer BW, Kuck J, Marcotte TD, Jeste DV. Stability and course of neuropsychological defi-cits in schizophrenia. Archives of General Psychiatry 2001;58(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  19. Hill SK, Schuepbach D, Herbener ES, Keshavan MS, Sweeney JA. Pretreatment and longitudinal studies of neuropsychological deficits in antipsychotic-naïve patients with schizophrenia. Schizophrenia Research 2004;68(1):49–63.

    Article  PubMed  Google Scholar 

  20. Park S, Püschel J, Sauter BH, Rentsch M, Hell D. Spatial working memory deficits and clinical symptoms in schizo phrenia: A 4-month follow-up study. Biological Psychiatry 1999;46(3):392–400.

    Article  PubMed  CAS  Google Scholar 

  21. Park S, Püschel J, Sauter BH, Rentsch M, Hell D. Spatial selective attention and inhibition in schizophrenia patients during acute psychosis and at 4-month follow-up. Biological Psychiatry 2002;51(6):498–506.

    Article  PubMed  Google Scholar 

  22. Tyson PJ, Laws KR, Roberts KH, Mortimer AM. A longitudinal analysis of memory in patients with schizophrenia. Journal of Clinical and Experimental Neuropsychology 2005;27(6):718–734.

    Article  PubMed  CAS  Google Scholar 

  23. Barch DM, Carter CS, Braver TS, Sabb FW, MacDonald A, III, Noll DC, Cohen JD. Selective deficits in prefrontal cortex function in medication-naive patients with schizophrenia. Archives of General Psychiatry 2001;58(3):280–288.

    Article  PubMed  CAS  Google Scholar 

  24. Carter C, Robertson L, Nordahl T, Chaderjian M. Spatial working memory deficits and their relationship to negative symptoms in unmedicated schizophrenia patients. Biological Psychiatry 1996;40(9):930–932.

    Article  PubMed  CAS  Google Scholar 

  25. Trandafir A, Meary A, Schurhoff F, Leboyer M, Szoke A. Memory tests in first-degree adult relatives of schizophrenic patients: a meta-analysis. Schizophrenia Research Jan 31 2006;81(2–3):217–226.

    Article  PubMed  CAS  Google Scholar 

  26. Snitz BE, MacDonald AW, Carter CS. Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophrenia Bulletin 2006;32:179–194.

    Article  PubMed  Google Scholar 

  27. Ando J, Ono Y, Wright MJ. Genetic structure of spatial and verbal working memory. Behavioral Genetics 2001;31:615–624.

    Article  CAS  Google Scholar 

  28. Hansell NK, Wright MJ, Luciano M, Geffen GM, Geffen LB, Martin NG. Genetic covariation between event-related potential (ERP) and behavioral non-ERP measures of working-memory, processing speed, and IQ. Behavioral Genetics 2005;5(6):695–706.

    Article  Google Scholar 

  29. Wager TD, Smith EE. Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective and Behavioral Neuroscience 2003;3(4):255–274.

    Article  Google Scholar 

  30. Cannon TD, Glahn DC, Kim J, et al. Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia. Archives of General Psychiatry 2005;62(10):1071–1080.

    Article  PubMed  Google Scholar 

  31. Seidman LJ, Thermenos HW, Poldrack RA, Peace NK, Koch JK, Faraone SV, Tsuang MT. Altered brain activation in dorsolateral prefrontal cortex in adolescents and young adults at genetic risk for schizophrenia: an fMRI study of working memory. Schizophernia Research Jul 2006;85(1–3):58–72.

    Article  Google Scholar 

  32. Thermenos HW, Goldstein JM, Buka SL, Poldrack RA, Koch JK, Tsuang MT, Seidman LJ. The effect of working memory performance on functional MRI in schizophrenia. Schizophernia Research May 1 2005;74(2–3):179–194.

    Article  Google Scholar 

  33. Karlsgodt KH, van Erp TG, Poldrack RA, Bearden CE, Nuechterlein KH, Cannon TD. Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biological Psychiatry Mar 1 2008;63(5):512–518.

    Article  PubMed  Google Scholar 

  34. Wechsler D. Wechsler Memory Scale — Third Edition. San Antonio, Texas: The Psychological Corporation/ Harcourt Brace & Company; 1997.

    Google Scholar 

  35. Bleuler E. Dementia Praecox or the Group of Schizophrenias. New York: International Universities Press; 1950.

    Google Scholar 

  36. Kraepelin E. Dementia Praecox and Paraphrenia. Edinburgh: E. & S. Livingston; 1919.

    Google Scholar 

  37. Cornblatt BA, Keilp JG. Impaired attention, genetics, and the pathophysiology of schizophrenia. Schizophrenia Bulletin 1994;20:31–46.

    PubMed  CAS  Google Scholar 

  38. Nuechterlein KH. Vigilance in schizophrenia and related disorders. In: Steinhauer SR, Gruzelier JH, Zubin J, eds. Handbook of Schizophrenia, Neuropsychology, Psychophysiology and Information Processing. Vol 5. Amsterdam: Elsevier Science; 1991:397–433.

    Google Scholar 

  39. Nestor PG, Han SD, Niznikiewicz M, Salisbury D, Spencer K, Shenton ME, McCarley RW. Semantic disturbance in schizophrenia and its relationship to the cognitive neuroscience of attention. Biol Psychol Jul–Aug 2001;57(1–3):23–46.

    Article  PubMed  CAS  Google Scholar 

  40. Cohen JD, Braver TS, O'Reilly RC. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges. Philosophical Transactions of the Royal Society of London-Series B Oct 29 1996;351(1346):1515–1527.

    Article  PubMed  CAS  Google Scholar 

  41. Chen WJ, Faraone S V. Sustained attention deficits as markers of genetic susceptibility to schizophrenia. American Journal of Medical Genetics Spring 2000;97(1):52–57.

    Article  PubMed  CAS  Google Scholar 

  42. Cornblatt BA, Malhotra AK. Impaired attention as an endophenotype for molecular genetic studies of schizophrenia. American Journal Medical Genetics Jan 8 2001;105(1):11–15.

    Article  CAS  Google Scholar 

  43. Nuechterlein KH, Asarnow RF, Subotnik KL, Fogelson DL, Ventura J, Torquato R, et al. Neurocognitive vulnerability factors for schizophrenia: Convergence across genetic risk studies and longitudinal trait/state studies. In: Dworkin R, ed. Origins and Development of Schizophrenia: Advances in Experimental Psychopathology. Washington, D.C: American Psychological Association; 1998:299–327.

    Chapter  Google Scholar 

  44. Heinrichs RW, Zakzanis KK. Neurocognitive deficit in schizophrenia: A quantitative review of the evidence. Neuropsychology 1998;12:426–445.

    Article  PubMed  CAS  Google Scholar 

  45. Finkelstein JRJ, Cannon TD, Gur RE, Gur RC, Moberg P. Attentional dysfunctions in neuroleptic-naive and neurolep-tic-withdrawn schizophrenic patients and their siblings. Journal of Abnormal Psychology 1997;106:203–212.

    Article  PubMed  CAS  Google Scholar 

  46. Wohlberg GW, Kornetsky C. Sustained attention in remitted schizophrenics. Archives of General Psychiatry 1973;28:533–537.

    PubMed  CAS  Google Scholar 

  47. Nuechterlein KH, Dawson ME, Ventura J, Yee-Bradbury C. Longitudinal stability of vigilance and span of apprehension deficits in the early phase of schizophrenia. Sixth Annual Meeting of the Society for Research in Psychopathology. Cambridge, MA; 1991.

    Google Scholar 

  48. Cornblatt BA, Risch NJ, Faris G, Friedman D, Erlenmeyer-Kimling L. The Continuous Performance Test, Identical Pairs Version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Research 1988;26:223–238.

    Article  PubMed  CAS  Google Scholar 

  49. Chen WJ, Liu SK, Chang CJ, Lien YJ, Chang YH, Hwu HG. Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. American Journal of Psychiatry Sept 1998; 155(9):1214–1220.

    PubMed  CAS  Google Scholar 

  50. Grove WM, Lebow BS, Clementz BA, Cerri A, Medus C, Iacono WG. Familial prevalence and coaggregation of schizotypy indicators: a multitrait family study. Journal of Abnormal Psychology May 1991;100(2):115–121.

    Article  PubMed  CAS  Google Scholar 

  51. Seidman LJ, Thermenos HW, Koch JK, et al. Auditory verbal working memory load and thalamic activation in nonpsy-chotic relatives of persons with schizophrenia: an fMRI replication. Neuropsychology Sept 2007;21(5):599–610.

    Article  PubMed  Google Scholar 

  52. Thermenos HW, Seidman LJ, Breiter H, Goldstein JM, Goodman JM, Poldrack R, Faraone SV, Tsuang MT. Functional MRI during auditory verbal working memory in non-psychotic relatives of persons with schizophrenia: A pilot study. Biological Psychiatry 2004;55:490–500.

    Article  PubMed  Google Scholar 

  53. Delawalla Z, Csernansky JG, Barch DM. Prefrontal cortex function in nonpsychotic siblings of individuals with schizophrenia. Biological Psychiatry Mar 1 2008;63(5):490–497.

    Article  PubMed  Google Scholar 

  54. Seidman LJ, Breiter HC, Goodman JM, et al. A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands. Neuropsychology Oct 1998;12(4):505–518.

    Article  PubMed  CAS  Google Scholar 

  55. Nuechterlein KH. Signal detection in vigilance tasks and behavioral attributes among offspring of schizophrenic mothers and among hyperactive children. Journal of Abnormal Psychology 1983;92:4–28.

    Article  PubMed  CAS  Google Scholar 

  56. Nuechterlein KH, Parasuraman R, Jiang Q. Visual sustained attention: Image degradation produces rapid sensitivity decrement over time. Science 1983;220:327–329.

    Article  PubMed  CAS  Google Scholar 

  57. Cornblatt BA, Lenzenweger MF, Erlenmeyer-Kimling L. The continuous performance test, identical pairs version: II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Research Jul 1989;29(1):65–85.

    Article  PubMed  CAS  Google Scholar 

  58. Delis D, Kramer J, Kaplan E, Ober B. California Verbal Learning Test: Second Edition. Adult version. Manual. New York: The Psychological Corporation; 2000.

    Google Scholar 

  59. Cirillo M, Seidman LJ. A review of verbal declarative memory function in schizophrenia: From clinical assessment to genetics and brain mechanisms. Neuropsychol Review 2003;13:43–77.

    Article  Google Scholar 

  60. Heinrichs RW, Zakzanis KK. Neurocognitive deficits in schizophrenia: A quantitative review of the evidence. Neuropsychology 1998;12(3):426–445.

    Article  PubMed  CAS  Google Scholar 

  61. Harvey PD, Palmer BW, Heaton RK, Mohamed S, Kennedy J, Brickman A. Stability of cognitive performance in older patients with schizophrenia: an 8-week test-retest study. American Journal of Psychiatry 2005;162:110–117.

    Article  PubMed  Google Scholar 

  62. Joyce E. Origins of cognitive dysfunction in schizophrenia: clues from age at onset. British Journal of Psychiatry 2005;186:93–95.

    Article  PubMed  Google Scholar 

  63. Saykin AJ, Shtasel DL, Gur RE, Kester DB, Mozley LH, Stafiniak P, Gur RC. Neuropsychological deficits in neuro-leptic naive patients with first-episode schizophrenia. Archives of General Psychiatry 1994;51:124–131.

    PubMed  CAS  Google Scholar 

  64. Sitskoorn MM, Aleman A, Ebisch SJ, Appels MC, Kahn RS. Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis. Schizophrenia Research Dec 1 2004;71(2–3):285–295.

    Article  PubMed  Google Scholar 

  65. Bouchard T, Jr. Genetic and environmental influences on adult intelligence and special mental abilities. Human Biology 1988;70:257–279.

    Google Scholar 

  66. Lee JH, Flaquer A, Stern Y, Tycko B, Mayeux R. Genetic influences on memory performance in familial Alzheimer disease. Neurology 2004;62:414–421.

    PubMed  CAS  Google Scholar 

  67. Tuulio-Henriksson A, Haukka J, Partonen T, et al. Heritability and number of quantitative trait loci of neurocognitive functions in families with schizophrenia American Journal of Medical Genetics 2002;114:483–490.

    Article  PubMed  Google Scholar 

  68. Gur RE, Nimgaonkar VL, Almasy L, et al. Neurocognitive endophenotypes in a multiplex multigenerational family study of schizophrenia. American Journal of Psychiatry May 2007;164(5):813–819.

    Article  PubMed  Google Scholar 

  69. Ranganath C, Minzenberg MJ, Ragland JD. The cognitive neuroscience of memory function and dysfunction in schizophrenia. Biological Psychiatry Jul 1 2008;64(1):18–25.

    Article  PubMed  Google Scholar 

  70. Boos HB, Aleman A, Cahn W, Pol HH, Kahn RS. Brain volumes in relatives of patients with schizophrenia: a meta-analy-sis. Archives of General Psychiatry Mar 2007;64(3):297–304.

    Article  PubMed  Google Scholar 

  71. Achim AM, Bertrand MC, Sutton H, et al. Selective abnormal modulation of hippocampal activity during memory formation in first-episode psychosis. Archives of General Psychiatry Sep 2007;64(9):999–1014.

    Article  PubMed  Google Scholar 

  72. Thermenos HW, Seidman LJ, Poldrack RA, Peace NK, Koch JK, Faraone SV, Tsuang MT. Elaborative verbal encoding and altered anterior parahippocampal activation in adolescents and young adults at genetic risk for schizophrenia using FMRI. Biological Psychiatry Feb 15 2007;61(4):564–574.

    Article  PubMed  Google Scholar 

  73. Ragland JD, Gur RC, Valdez J, et al. Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. American Journal of Psychiatry Jun 2004;161(6):1004–1015.

    Article  PubMed  Google Scholar 

  74. Kurtz MM, Ragland JD, Moberg PJ, Gur RC. The Penn Conditional Exclusion Test: A new measure of executive-function with alternate forms for repeat administration. Archives of Clinical Neuropsychology 2004;19:191–201.

    Article  PubMed  Google Scholar 

  75. Glahn DC, Gur RC, Ragland JD, Gur RE. Reliability, performance characteristics, and construct validity and initial application of the visual object learning test (VOLT). Neuropsychology 1997;11:602–612.

    Article  PubMed  CAS  Google Scholar 

  76. Gur RC, Ragland JD, Moberg PJ, Turner TH, Bilker WB, Kohler C, Siegel SJ, Gur RE. Computerized neurocognitive scanning: I. Methodology and validation in healthy people. Neuropsychopharmacology 2001;25(5):766–788.

    Article  PubMed  CAS  Google Scholar 

  77. Gur RC, Jaggi JL, Ragland JD, Resnick SM, Shtasel DL, Muenz L, Gur RE. Effects of memory processing on regional brain activation: cerebral blood flow in normal subjects. International Journal of Neuroscience 1993;72:31–44.

    Article  PubMed  CAS  Google Scholar 

  78. Kohler CG, Turner TH, Bilker WB, Brensinger CM, Siegel SJ, Kanes SJ, Gur RE, Gur RC. Facial emotion recognition in schizophrenia: intensity effects and error pattern. American Journal of Psychiatry 2003;160:1768–1774.

    Article  PubMed  Google Scholar 

  79. Gur RC, Ragland JD, Moberg PJ, Bilker WB, Kohler C, Siegel SJ, Gur RE. Computerized neurocognitive scanning: II. The profile of schizophrenia. Neuropsychopharmacology 2001;25(5):777–788.

    Article  PubMed  CAS  Google Scholar 

  80. Gur RE, Calkins ME, Gur RC, Horan WP, Nuechterlein KH, Seidman LJ, Stone WS. The Consortium on the Genetics of Schizophrenia (COGS): Neurocognitive Endophenotypes. Schizophrenia Bulletin 2007;33:49–68.

    Article  PubMed  Google Scholar 

  81. Calkins ME, Dobie DJ, Cadenhead KS, et al. The Consortium on the Genetics of Endophenotypes in Schizophrenia: model recruitment, assessment, and endophenotyping methods for a multisite collaboration. Schizophrenia Bulletin Jan 2007;33(1):33–48.

    Article  PubMed  Google Scholar 

  82. Schork NJ, Greenwood TA, Braff DL. Statistical genetics concepts and approaches in schizophrenia and related neuropsychi-atric research. Schizophrenia Bulletin Jan 2007;33(1):95–104.

    Article  PubMed  Google Scholar 

  83. Braff DL, Freedman R, Schork NJ, Gottesman, II. Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophrenia Bulletin Jan 2007;33(1):21–32.

    Article  PubMed  Google Scholar 

  84. Lander ES, Schork NJ. The genetic dissection of complex traits. Science 1994;265:2037–2048.

    Article  PubMed  CAS  Google Scholar 

  85. Nurnberger JI, Jr., Blehar MC, Kaufmann CA, et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Archives of General Psychiatry Nov 1994;51(11):849–859; discussion 863–844.

    PubMed  Google Scholar 

  86. Andreasen NC. The Scale for the Assessment of Negative Symptoms (SANS). Iowa CIty, Iowa: The University of Iowa; 1983.

    Google Scholar 

  87. Andreasen NC. The Scale for the Assessment of Positive Symptoms. Iowa City, Iowa: The University of Iowa; 1984.

    Google Scholar 

  88. Kendler KS, Lieberman, J.A., Walsh, D. The structured interview for schizotypy (SIS): a preliminary report. Schizophrenia Bulletin 1989;15:559–571.

    PubMed  CAS  Google Scholar 

  89. NIMH. Genetics Initiative: Family Interview for Genetic Studies (FIGS). Rockville, Md: National Institute of Mental Health; 1992.

    Google Scholar 

  90. Horan WP, Braff DL, Nuechterlein KH, et al. Verbal working memory impairments in individuals with schizophrenia and their first-degree relatives: Findings from the Consortium on the Genetics of Schizophrenia. Schizophrenia Research Apr 10, 2008.

    Google Scholar 

  91. Radant AD, Dobie DJ, Calkins ME, et al. Successful multi-site measurement of antisaccade performance deficits in schizophrenia. Schizophrenia Research Jan 2007;89(1–3):320–329.

    Article  PubMed  Google Scholar 

  92. Swerdlow NR, Sprock J, Light GA, et al. Multi-site studies of acoustic startle and prepulse inhibition in humans: initial experience and methodological considerations based on studies by the Consortium on the Genetics of Schizophrenia. Schizophrenia Research May 2007;92(1–3):237–251.

    Article  PubMed  Google Scholar 

  93. Chapman LJ, Chapman, J. P. Problems in the measurement of cognitive deficits. Psychological Bulletin 1973;79:380–385.

    Article  PubMed  CAS  Google Scholar 

  94. Chapman LJ, Chapman, J. P. The measurement of differential deficit. Journal of Psychiatric Research 1978;14(1, Suppl. 4):303–311.

    Article  PubMed  CAS  Google Scholar 

  95. Perry W, Heaton, R. K., Potterat, E., Roebuck, T., Minassian, A., Braff, D. L. Working memory in schizophrenia: Transient “online” storage versus executive functioning. Schizophrenia Bulletin 2001;27(1):157–176.

    PubMed  CAS  Google Scholar 

  96. Kendler KS. The super-normal control group in psychiatric genetics: possible artifactual evidence for coaggregation. Psychiatric Genetics 1990;1:45–53.

    Article  Google Scholar 

  97. Greenwood TA, Braff DL, Light GA, et al. Initial heritabil-ity analyses of endophenotypic measures for schizophrenia: the consortium on the genetics of schizophrenia. Archives of General Psychiatry Nov 2007;64(11):1242–1250.

    Article  PubMed  Google Scholar 

  98. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal of Human Genetics 1998;62:1198–1211.

    Article  PubMed  CAS  Google Scholar 

  99. Toulopoulou T, Picchioni M, Rijsdijk F, Hua-Hall M, Ettinger U, Sham P, Murray R. Substantial genetic overlap between neurocognition and schizophrenia: genetic modeling in twin samples. Archives of General Psychiatry Dec 2007;64(12):1348–1355.

    Article  PubMed  Google Scholar 

  100. Tuulio-Henriksson A, Arajarvi R, Partonen T, Haukka J, Varilo T, Schreck M. Familial loading associates with impairment in visual span among healthy siblings of schizophrenia patients. Biological Psychiatry 2003;54(623–628).

    Article  PubMed  Google Scholar 

  101. Hopper JL, Mathews JD. Extensiosn to multivariate normal models for pedigree analysis. Annals of Human Genetics 1982;46:373–383.

    Article  PubMed  CAS  Google Scholar 

  102. Almasy L, Dyer TD, Blangero J. Bivariate quantitative trait linkage analysis: pleiotropy versus co-incident linkages. Genetic Epidemiology 1997;14:953–958.

    Article  PubMed  CAS  Google Scholar 

  103. Owen MJ, O'Donovan MC, Gottesman II. Schizophrenia. In: McGuffin P, Owen MJ, Gottesman II, eds. Psychiatric Genetics & Genomics. Oxford: Oxford University Press; 2002:247–266.

    Google Scholar 

  104. Sullivan PF. The Genetics of Schizophrenia. PLoS Med. Vol 2; 2005.

    Google Scholar 

  105. Baron M. Genetics of schizophrenia and the new millennium: progress and pitfalls. American Journal of Human Genetics 2001;68:299–312.

    Article  PubMed  CAS  Google Scholar 

  106. Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry Jan 2005;10(1):40–68; image 45.

    Article  PubMed  CAS  Google Scholar 

  107. Gogos JA, Gerber DJ. Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends in Pharmacological Science Apr 2006;27(4):226–233.

    Article  CAS  Google Scholar 

  108. Risch N, Botstein D. A manic depressive history. Nature Genetics Apr 1996;12(4):351–353.

    Article  PubMed  CAS  Google Scholar 

  109. Mutsuddi M, Morris DW, Waggoner SG, Daly MJ, Scolnick EM, Sklar P. Analysis of high-resolution HapMap of DTNBP1 (Dysbindin) suggests no consistency between reported common variant associations and schizophrenia. American Journal of Human Genetics 2006;79:903–909.

    Article  PubMed  CAS  Google Scholar 

  110. Greenwood TA, Light GA, Cadenhead KS, et al. Initial analyses of 94 candidate genes and twelve endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Biological Psychiatry, 64:82S, 63rd Annual Meeting of the Society for Biological Psychiatry 2008.

    Google Scholar 

  111. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics Jan 2002;30(1):97–101.

    Article  PubMed  CAS  Google Scholar 

  112. Flint J, Munafo MR. The endophenotype concept in psychiatric genetics. Psychological Medicine Feb 2007;37(2):163–180.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horan, W.P., Greenwood, T.A., Braff, D.L., Gur, R.E., Green, M.F. (2009). The Use of Neurocognitive Endophenotypes in Large-Scale Family Genetic Studies of Schizophrenia. In: Ritsner, M.S. (eds) The Handbook of Neuropsychiatric Biomarkers, Endophenotypes and Genes. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9464-4_12

Download citation

Publish with us

Policies and ethics