Skip to main content

Genomics, Biological Features, and Biotechnological Applications of Escherichia coli B: “Is B for better?!”

  • Chapter

Abstract

Strains of Escherichia coli B, especially BL21, have been widely used for overproducing recombinant proteins, ethanol, and other biomolecules. Almost all laboratory strains of E. coli are derivatives of non-pathogenic K-12 or B strains. While most genetic and metabolic studies have been performed with K-12 strains, little has been done on B strains. Recently, genome sequences of two E. coli strains of the B lineage, REL606 and BL21(DE3), have been determined, and results of multi-omics analyses were compared between B and K-12. As compared to K-12, B strains show a number of phenotypes such as faster growth in minimal media, lower acetate production, higher expression levels of recombinant proteins, and less degradation of such proteins during purification. In this review, we summarize the unique biological features of the B strains and overview their academic and industrial applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blanco, M., A. Urios, and A. Martinez. 1998. New Escherichia coli WP2 tester strains highly sensitive to reversion by oxidative mutagens. Mutat. Res. 413:95–101.

    PubMed  CAS  Google Scholar 

  • Blattner, F. R., G. Plunkett, 3rd, C. A. Bloch, N. T. Perna, V. Burland, M. Riley, J. Collado-Vides, J. D. Glasner, C. K. Rode, G. F. Mayhew, J. Gregor, N. W. Davis, H. A. Kirkpatrick, M. A. Goeden, D. J. Rose, B. Mau, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–74.

    Article  PubMed  CAS  Google Scholar 

  • Boulter, J., B. Gielow, M. McFarland, and N. Lee. 1974. Metabolism of D-arabinose by Escherichia coli B/r. J. Bacteriol. 117:920–3.

    PubMed  CAS  Google Scholar 

  • Cha, H. J., R. Srivastava, V. N. Vakharia, G. Rao, and W. E. Bentley. 1999. Green fluorescent protein as a noninvasive stress probe in resting Escherichia coli cells. Appl. Environ. Microbiol. 65:409–14.

    PubMed  CAS  Google Scholar 

  • Choi, J. H., K. C. Keum, and S. Y. Lee. 2006. Production of recombinant proteins by high cell density culture of Escherichia coli. Chem. Eng. Sci. 61:876–85.

    Article  CAS  Google Scholar 

  • Choi, J. H., S. J. Lee, and S. Y. Lee. 2003. Enhanced production of insulin-like growth factor I fusion protein in Escherichia coli by coexpression of the down-regulated genes identified by transcriptome profiling. Appl. Environ. Microbiol. 69:4737–42.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, T. F., D. E. Rozen, and R. E. Lenski. 2003. Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc. Natl. Acad. Sci. USA 100:1072–7.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, V. S., and R. E. Lenski. 2000. The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 407:736–9.

    Article  PubMed  CAS  Google Scholar 

  • Covert, M. W., E. M. Knight, J. L. Reed, M. J. Herrgard, and B. O. Palsson. 2004. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429:92–6.

    Article  PubMed  CAS  Google Scholar 

  • Daegelen, P., F. W. Studier, R. E. Lenski, S. Cure, and J. F. Kim. Tracing ancestors and relatives of Escherichia coli B, and the derivation of B strains REL606 and BL21(DE3). submitted.

    Google Scholar 

  • de Crecy, E., D. Metzgar, C. Allen, M. Penicaud, B. Lyons, C. J. Hansen, and V. de Crecy-Lagard. 2007. Development of a novel continuous culture device for experimental evolution of bacterial populations. Appl. Microbiol. Biotechnol. 77:489–96.

    Article  PubMed  CAS  Google Scholar 

  • Delbruck, M. 1946. Bacterial viruses or bacteriophages. Biol. Rev. 21:30–40.

    Article  CAS  Google Scholar 

  • Delbruck, M., and S. E. Luria. 1942. Interference between bacterial viruses. I. Interference between two bacterial viruses acting upon the same host, and the mechanism of virus growth. Arch. Biochem. 1:111–41.

    CAS  Google Scholar 

  • Diaz, E., A. Ferrandez, M. A. Prieto, and J. L. Garcia. 2001. Biodegradation of aromatic compounds by Escherichia coli. Microbiol. Mol. Biol. Rev. 65:523–69.

    Article  PubMed  CAS  Google Scholar 

  • Dumon-Seignovert, L., G. Cariot, and L. Vuillard. 2004. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr. Purif. 37:203–6.

    Article  PubMed  CAS  Google Scholar 

  • Eiteman, M. A., and E. Altman. 2006. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24:530–6.

    Article  PubMed  CAS  Google Scholar 

  • Elena, S. F., and R. E. Lenski. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4:457–69.

    Article  PubMed  CAS  Google Scholar 

  • Elsinghorst, E. A., and R. P. Mortlock. 1994. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster. J. Bacteriol. 176:7223–32.

    PubMed  CAS  Google Scholar 

  • Feist, A. M., C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J. Broadbelt, V. Hatzimanikatis, and B. O. Palsson. 2007. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3:121.

    Article  PubMed  CAS  Google Scholar 

  • Fong, S. S., A. P. Burgard, C. D. Herring, E. M. Knight, F. R. Blattner, C. D. Maranas, and B. O. Palsson. 2005. In silico design and adaptive evolution of Escherichia coli for production of lactic acid. Biotechnol. Bioeng. 91:643–8.

    Article  PubMed  CAS  Google Scholar 

  • Francetic, O., D. Belin, C. Badaut, and A. P. Pugsley. 2000. Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. Embo J. 19: 6697–703.

    Article  PubMed  CAS  Google Scholar 

  • Franchini, A. G., and T. Egli. 2006. Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152:2111–27.

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse, D., S. Haworth, T. Cebula, E. Gocke, L. Kier, T. Matsushima, C. Melcion, T. Nohmi, T. Ohta, S. Venitt, et al. 1994. Recommendations for the performance of bacterial mutation assays. Mutat. Res. 312:217–33.

    PubMed  CAS  Google Scholar 

  • Gross, C. A. 1996. Function and regulation of the heat shock proteins. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, D. Schneider, and H. E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC, pp. 1382–99.

    Google Scholar 

  • Haeusser, D. P., and P. A. Levin. 2008. The great divide: coordinating cell cycle events during bacterial growth and division. Curr. Opin. Microbiol. 11:94–9.

    Article  PubMed  CAS  Google Scholar 

  • Han, M. J., and S. Y. Lee. 2006. The Escherichia coli proteome: past, present, and future prospects. Microbiol. Mol. Biol. Rev. 70:362–439.

    Article  PubMed  CAS  Google Scholar 

  • Harder, K. J., H. Nikaido, and M. Matsuhashi. 1981. Mutants of Escherichia coli that are resistant to certain beta-lactam compounds lack the ompF porin. Antimicrob. Agents Chemother. 20:549–52.

    PubMed  CAS  Google Scholar 

  • Hayashi, K., N. Morooka, Y. Yamamoto, K. Fujita, K. Isono, S. Choi, E. Ohtsubo, T. Baba, B. L. Wanner, H. Mori, and T. Horiuchi. 2006. Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol. Syst. Biol. 2:2006 0007.

    Article  PubMed  Google Scholar 

  • Helmstetter, C. E. 1968. DNA synthesis during the division cycle of rapidly growing Escherichia coli B/r. J. Mol. Biol. 31:507–18.

    Article  PubMed  CAS  Google Scholar 

  • Herrera, G., A. Martinez, M. Blanco, and J. E. O’Connor. 2002. Assessment of Escherichia coli B with enhanced permeability to fluorochromes for flow cytometric assays of bacterial cell function. Cytometry 49:62–9.

    Article  PubMed  Google Scholar 

  • Herrera, G., A. Urios, V. Aleixandre, and M. Blanco. 1993. Mutability by polycyclic hydrocarbons is improved in derivatives of Escherichia coli WP2 uvrA with increased permeability. Mutat. Res. 301:1–5.

    Article  PubMed  CAS  Google Scholar 

  • Ishii, N., K. Nakahigashi, T. Baba, M. Robert, T. Soga, A. Kanai, T. Hirasawa, M. Naba, K. Hirai, A. Hoque, P. Y. Ho, Y. Kakazu, K. Sugawara, S. Igarashi, S. Harada, T. Masuda, N. Sugiyama, T. Togashi, M. Hasegawa, Y. Takai, K. Yugi, K. Arakawa, N. Iwata, Y. Toya, Y. Nakayama, T. Nishioka, K. Shimizu, H. Mori, and M. Tomita. 2007. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science 316:593–7.

    Google Scholar 

  • Jansson, P. E., A. A. Lindberg, B. Lindberg, and R. Wollin. 1981. Structural studies on the hexose region of the core in lipopolysaccharides from Enterobacteriaceae. Eur. J. Biochem. 115:571–7.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, K. F. 1993. The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J. Bacteriol. 175:3401–7.

    PubMed  CAS  Google Scholar 

  • Jeong, H., V. Barbe, D. Vallenet, S.-H. Choi, C. H. Lee, S.-W. Lee, B. Vacherie, S. H. Yoon, D.-S. Yu, L. Cattolico, C.-G. Hur, H.-S. Park, B. Sègurens, M. Blot, D. Schneider, F. W. Studier, S. C. Kim, T. K. Oh, R. E. Lenski, P. Daegelen, and J. F. Kim. Genome sequencing and comparative analysis of Escherichia coli B REL606 and BL21(DE3). submitted.

    Google Scholar 

  • Jeong, K. J., and S. Y. Lee. 2002. Excretion of human beta-endorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Appl. Environ. Microbiol. 68:4979–85.

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc, D. J., and R. P. Mortlock. 1971. Metabolism of D-arabinose: a new pathway in Escherichia coli. J. Bacteriol. 106:90–6.

    PubMed  CAS  Google Scholar 

  • Lederberg, J. 2004. E. coli K-12. Microbiol. Today 31:116.

    Google Scholar 

  • Lederberg, S. 1966. Genetics of host-controlled restriction and modification of deoxyribonucleic acid in Escherichia coli. J. Bacteriol. 91:1029–36.

    PubMed  CAS  Google Scholar 

  • Legrain, C., V. Stalon, and N. Glansdorff. 1976. Escherichia coli ornithine carbamolytransferase isoenzymes: evolutionary significance and the isolation of λ argF and λ argI transducing bacteriophages. J. Bacteriol. 128:35–8.

    PubMed  CAS  Google Scholar 

  • Lenski, R. E., M. R. Rose, S. C. Simpson, and S. C. Tadler. 1991. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Nat. 138.

    Google Scholar 

  • Michelsen, O., M. J. Teixeira de Mattos, P. R. Jensen, and F. G. Hansen. 2003. Precise determinations of C and D periods by flow cytometry in Escherichia coli K-12 and B/r. Microbiology 149:1001–10.

    Article  PubMed  CAS  Google Scholar 

  • Miroux, B., and J. E. Walker. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260:289–98.

    Article  PubMed  CAS  Google Scholar 

  • Nandakumar, M. P., A. Cheung, and M. R. Marten. 2006. Proteomic analysis of extracellular proteins from Escherichia coli W3110. J. Proteome Res. 5:1155–61.

    Article  PubMed  CAS  Google Scholar 

  • Neidhardt, F. C., and H. E. Umbarger. 1996. Chemical composition of Escherichia coli. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, D. Schneider, and H. E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC, pp. 13–16.

    Google Scholar 

  • Neijssel, O. M., M. J. Teixeira de Mattos, and D. W. Tempest. 1996. Growth yield and energy distribution. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, D. Schneider, and H. E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC, pp. 1683–92.

    Google Scholar 

  • Nikaido, H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67:593–656.

    Article  PubMed  CAS  Google Scholar 

  • Nikaido, H. 1996. Outer membrane. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, D. Schneider, and H. E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC, pp. 29–47.

    Google Scholar 

  • Philippe, N., E. Crozat, R. E. Lenski, and D. Schneider. 2007. Evolution of global regulatory networks during a long-term experiment with Escherichia coli. Bioessays 29:846–60.

    Article  PubMed  Google Scholar 

  • Phue, J. N., B. Kedem, P. Jaluria, and J. Shiloach. 2007. Evaluating microarrays using a semiparametric approach: application to the central carbon metabolism of Escherichia coli BL21 and JM109. Genomics 89:300–5.

    Article  PubMed  CAS  Google Scholar 

  • Phue, J. N., S. B. Noronha, R. Hattacharyya, A. J. Wolfe, and J. Shiloach. 2005. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses. Biotechnol. Bioeng. 90:805–20.

    Article  PubMed  CAS  Google Scholar 

  • Pieper, D. H., and W. Reineke. 2000. Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. 11:262–70.

    Article  PubMed  CAS  Google Scholar 

  • Posfai, G., G. Plunkett, 3rd, T. Feher, D. Frisch, G. M. Keil, K. Umenhoffer, V. Kolisnychenko, B. Stahl, S. S. Sharma, M. de Arruda, V. Burland, S. W. Harcum, and F. R. Blattner. 2006. Emergent properties of reduced-genome Escherichia coli. Science 312:1044–6.

    Article  PubMed  CAS  Google Scholar 

  • Pugsley, A. P., and J. P. Rosenbusch. 1983. OmpF porin synthesis in Escherichia coli strains B and K-12 carrying heterologous ompB and/or ompF loci. FEMS Microbiol. Lett. 16:143–47.

    Article  CAS  Google Scholar 

  • saiSree, L., M. Reddy, and J. Gowrishankar. 2001. IS186 insertion at a hot spot in the lon promoter as a basis for Lon protease deficiency of Escherichia coli B: identification of a consensus target sequence for IS186 transposition. J. Bacteriol. 183:6943–6.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, U. 2001. Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. Biotechnol. 73:129–69.

    PubMed  CAS  Google Scholar 

  • Schneider, D., E. Duperchy, J. Depeyrot, E. Coursange, R. Lenski, and M. Blot. 2002. Genomic comparisons among Escherichia coli strains B, K-12, and O157:H7 using IS elements as molecular markers. BMC Microbiol. 2:18.

    Article  PubMed  Google Scholar 

  • Seo, J. H., D. G. Kang, and H. J. Cha. 2003. Comparison of cellular stress levels and green-fluorescent-protein expression in several Escherichia coli strains. Biotechnol. Appl. Biochem. 37:103–7.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, H. P., and K. K. Mortensen. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115:113–28.

    Article  PubMed  CAS  Google Scholar 

  • Studier, F. W., and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189:113–30.

    Article  PubMed  CAS  Google Scholar 

  • Swartz, J. R. 1996. Escherichia coli recombinant DNA technology. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Shaechter, and H. E. Umbarger (eds.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, DC, pp. 1693–1712.

    Google Scholar 

  • Tian, G., D. Lim, J. D. Oppenheim, and W. K. Maas. 1994. Explanation for different types of regulation of arginine biosynthesis in Escherichia coli B and Escherichia coli K12 caused by a difference between their arginine repressors. J. Mol. Biol. 235:221–30.

    Article  PubMed  CAS  Google Scholar 

  • Tsilibaris, V., G. Maenhaut-Michel, and L. Van Melderen. 2006. Biological roles of the Lon ATP-dependent protease. Res. Microbiol. 157:701–13.

    Article  PubMed  CAS  Google Scholar 

  • Umbarger, H. E. 1996. Biosynthesis of the branched-chain amino acids. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, D. Schneider, and H. E. Umbarger (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC, pp. 442–57.

    Google Scholar 

  • Vallenet, D., L. Labarre, Z. Rouy, V. Barbe, S. Bocs, S. Cruveiller, A. Lajus, G. Pascal, C. Scarpelli, and C. Medigue. 2006. MaGe: a microbial genome annotation system supported by synteny results. Nucl. Acids Res. 34:53–65.

    Article  PubMed  CAS  Google Scholar 

  • Vostiar, I., J. Tkac, and C. F. Mandenius. 2004. Off-line monitoring of bacterial stress response during recombinant protein production using an optical biosensor. J. Biotechnol. 111:191–201.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, P., A. Naidoo, D. J. Wedd, and D. G. Gatehouse. 1990. Comparison of Salmonella typhimurium TA102 with Escherichia coli WP2 tester strains. Mutagenesis 5:285–91.

    Article  PubMed  CAS  Google Scholar 

  • Witkin, E. M. 1946. Inherited differences in sensitivity to radiation in Escherichia coli. Proc. Natl. Acad. Sci. USA 32:59–68.

    Article  PubMed  CAS  Google Scholar 

  • Xia, X. X., M. J. Han, S. Y. Lee, and J. S. Yoo. 2008. Comparison of the extracellular proteomes of Escherichia coli B and K-12 strains during high cell density cultivation. Proteomics 8:2089–103.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S. H., M. J. Han, H. Jeong, C. H. Lee, X. X. Xia, J. H. Shim, S. Y. Lee, T. K. Oh, and J. F. Kim. Comparative multi-omics systems analysis of closely related Escherichia coli strains. submitted.

    Google Scholar 

  • Yoon, S. H., M. J. Han, S. Y. Lee, K. J. Jeong, and J. S. Yoo. 2003. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol. Bioeng. 81:753–67.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S. H., C. G. Hur, H. Y. Kang, Y. H. Kim, T. K. Oh, and J. F. Kim. 2005. A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinformatics 6:184.

    Article  PubMed  CAS  Google Scholar 

  • Yu, B. J., B. H. Sung, M. D. Koob, C. H. Lee, J. H. Lee, W. S. Lee, M. S. Kim, and S. C. Kim. 2002. Minimization of the Escherichia coli genome using a Tn5-targeted Cre/loxP excision system. Nat. Biotechnol. 20:1018–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihyun F. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yoon, S.H., Jeong, H., Kwon, SK., Kim, J.F. (2009). Genomics, Biological Features, and Biotechnological Applications of Escherichia coli B: “Is B for better?!”. In: Lee, S.Y. (eds) Systems Biology and Biotechnology of Escherichia coli . Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9394-4_1

Download citation

Publish with us

Policies and ethics