Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 359))

The discovery of binary pulsars in 1974 [1] opened up a new testing ground for relativistic gravity. Before this discovery, the only available testing ground for relativistic gravity was the solar system. As Einstein's theory of General Relativity (GR) is one of the basic pillars of modern science, it deserves to be tested, with the highest possible accuracy, in all its aspects. In the solar sys tem, the gravitational field is slowly varying and represents only a very small deformation of a flat spacetime. As a consequence, solar system tests can only probe the quasi-stationary (non-radiative) weak-field limit of relativis tic gravity. By contrast binary systems containing compact objects (neutron stars or black holes) involve spacetime domains (inside and near the compact objects) where the gravitational field is strong. Indeed, the surface relativistic gravitational field h 00 ≈ 2 GM/c 2 R of a neutron star is of order 0.4, which is close to the one of a black hole (2GM/c 2 R = 1) and much larger than the surface gravitational fields of solar system bodies: (2GM/c 2 R)Sun ∼ 10−6, (2GM/c 2 R)Earth ∼ 10−9. In addition, the high stability of “pulsar clocks” has made it possible to monitor the dynamics of its orbital motion down to a precision allowing one to measure the small (∼ (v/c)5) orbital effects linked to the propagation of the gravitational field at the velocity of light between the pulsar and its companion.

The recent discovery of the remarkable double binary pulsar PSR J0737— 3039 [2, 3] (see also the contributions by M. Kramer and by N. D'Amico and M. Burgay to this volume) has renewed the interest in the use of binary pulsars as test-beds of gravity theories. The aim of this chapter is to provide an introduction to the theoretical frameworks needed for interpreting binary pulsar data as tests of GR and alternative gravity theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Hulse and J. H. Taylor: Discovery of a pulsar in a binary system, Astro-phys. J. 195, L51 (1975).

    Article  ADS  Google Scholar 

  2. M. Burgay et al.: An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system, Nature 426, 531 (2003).

    Article  ADS  Google Scholar 

  3. A. G. Lyne et al.: A double-pulsar system: A rare laboratory for relativistic gravity and plasma physics, Science 303, 1153 (2004).

    Article  ADS  Google Scholar 

  4. F. K. Manasse: J. Math. Phys. 4, 746 (1963).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. P. D. D'Eath: Phys. Rev. D 11, 1387 (1975).

    Article  ADS  Google Scholar 

  6. R. E. Kates: Phys. Rev. D 22, 1853 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  7. D. M. Eardley: Astrophys. J. 196, L59 (1975).

    Article  ADS  Google Scholar 

  8. C. M. Will, D. M. Eardley: Astrophys. J. 212, L91 (1977).

    Article  ADS  Google Scholar 

  9. T. Damour: Gravitational radiation and the motion of compact bodies, in Grav itational Radiation, edited by N. Deruelle and T. Piran, North-Holland, Amsterdam, pp. 59–144 (1983).

    Google Scholar 

  10. K. S. Thorne and J. B. Hartle: Laws of motion and precession for black holes and other bodies, Phys. Rev. D 31, 1815 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  11. C. M. Will: Theory and Experiment in Gravitational Physics, Cambridge University Press (1993) 380 p.

    Google Scholar 

  12. V. A. Brumberg and S. M. Kopejkin: Nuovo Cimento B 103, 63 (1988)

    Article  ADS  Google Scholar 

  13. T. Damour, M. Soffel and C. M. Xu: General relativistic celestial mechanics. 1. Method and definition of reference system, Phys. Rev. D 43, 3273 (1991); General relativistic celestial mechanics. 2. Translational equations of motion, Phys. Rev. D 45, 1017 (1992); General relativistic celestial mechanics. 3. Rota tional equations of motion, Phys. Rev. D 47, 3124 (1993); General relativistic celestial mechanics. 4. Theory of satellite motion, Phys. Rev. D 49, 618 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  14. G.'t Hooft and M. J. G. Veltman: Regularization and renormalization of gauge fields, Nucl. Phys. B 44, 189 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Damour and N. Deruelle: Radiation reaction and angular momentum loss in small angle gravitational scattering, Phys. Lett. A 87, 81 (1981).

    Article  ADS  Google Scholar 

  16. T. Damour: Probl`eme des deux corps et freinage de rayonnement en relativité générale, C.R. Acad. Sci. Paris, Série II, 294, 1355 (1982).

    MathSciNet  Google Scholar 

  17. T. Damour: The problem of motion in Newtonian and Einsteinian gravity, in Three Hundred Years of Gravitation, edited by S.W. Hawking and W. Israel, Cambridge University Press, Cambridge, pp. 128–198 (1987).

    Google Scholar 

  18. P. Jaranowski, G. Schäfer: Third post-Newtonian higher order ADM Hamilton dynamics for two-body point-mass systems, Phys. Rev. D 57, 7274 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  19. L. Blanchet, G. Faye: General relativistic dynamics of compact binaries at the third post-Newtonian order, Phys. Rev. D 63, 062005-1-43 (2001).

    Google Scholar 

  20. T. Damour, P. Jaranowski, G. Schäfer: Dimensional regularization of the grav itational interaction of point masses, Phys. Lett. B 513, 147 (2001).

    Article  MATH  ADS  Google Scholar 

  21. Y. Itoh, T. Futamase: New derivation of a third post-Newtonian equation of motion for relativistic compact binaries without ambiguity, Phys. Rev. D 68, 121501(R), (2003).

    Article  ADS  Google Scholar 

  22. L. Blanchet, T. Damour, G. Esposito-Farèse: Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates, Phys. Rev. D 69, 124007 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  23. M. E. Pati, C. M. Will: Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order, Phys. Rev. D 65, 104008-1-21 (2001).

    Google Scholar 

  24. C. Königsdörffer, G. Faye, G. Schäfer: Binary black-hole dynamics at the third-and-a-half post-Newtonian order in the ADM formalism, Phys. Rev. D 68, 044004-1-19 (2003).

    Google Scholar 

  25. S. Nissanke, L. Blanchet: Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order, Class. Quantum Grav. 22, 1007 (2005).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. L. Blanchet: Gravitational radiation from post-Newtonian sources and in-spiralling compact binaries, Living Rev. Rel. 5, 3 (2002); Updated article: http://www.livingreviews.org/lrr-2006-4

    Google Scholar 

  27. T. Damour, N. Deruelle: General relativitic celestial mechanics of binary system I. The post-Newtonian motion, Ann. Inst. Henri Poincaré 43, 107 (1985).

    MATH  MathSciNet  Google Scholar 

  28. T. Damour: Gravitational radiation reaction in the binary pulsar and the quadrupole formula controversy, Phys. Rev. Lett. 51, 1019 (1983).

    Article  ADS  Google Scholar 

  29. R. Blandford, S. A. Teukolsky: Astrophys. J. 205, 580 (1976).

    Article  ADS  Google Scholar 

  30. T. Damour, N. Deruelle: General relativitic celestial mechanics of binary system II. The post-Newtonian timing formula, Ann. Inst. Henri Poincaré 44, 263 (1986).

    MATH  MathSciNet  Google Scholar 

  31. T. Damour, J. H. Taylor: Strong field tests of relativistic gravity and binary pulsars, Phys. Rev. D 45, 1840 (1992).

    Article  ADS  Google Scholar 

  32. T. Damour: Strong-field tests of general relativity and the binary pulsar, in Proceedings of the 2nd Canadian Conference on General Relativity and Rela-tivistic Astrophysics, edited by A. Coley, C. Dyer, T. Tupper, World Scientific, Singapore, pp. 315–334 (1988).

    Google Scholar 

  33. T. Damour, G. Esposito-Farèse: Tensor—multi—scalar theories of gravitation, Class. Quant. Grav. 9, 2093 (1992).

    Article  MATH  ADS  Google Scholar 

  34. T. Damour, G. Esposito-Farèse: Non—perturbative strong-field effects in tensor— scalar theories of gravitation, Phys. Rev. Lett. 70, 2220 (1993).

    Article  ADS  Google Scholar 

  35. T. Damour, G. Esposito-Farèse: Tensor—scalar gravity and binary-pulsar exper iments, Phys. Rev. D 54, 1474 (1996), arXiv:gr-qc/9602056.

    Article  ADS  Google Scholar 

  36. T. Damour, G. Esposito-Farèse: Gravitational-wave versus binary-pulsar tests of strong-field gravity, Phys. Rev. D 58, 042001 (1998).

    Article  ADS  Google Scholar 

  37. J. M. Weisberg, J. H. Taylor: Relativistic binary pulsar B1913+16: thirty years of observations and analysis, To appear in the proceedings of Aspen Winter Conference on Astrophysics: Binary Radio Pulsars, Aspen, Colorado, 11–17 Jan 2004., arXiv:astro-ph/0407149.

    Google Scholar 

  38. T. Damour, J. H. Taylor: On the orbital period change of the binary pulsar Psr-1913+16, The Astrophysical Journal 366, 501 (1991).

    Article  ADS  Google Scholar 

  39. C. M. Will, H. W. Zaglauer: Gravitational radiation, close binary systems, and the Brans-Dicke theory of gravity, Astrophys. J. 346, 366 (1989).

    Article  ADS  Google Scholar 

  40. J. H. Taylor, A. Wolszczan, T. Damour, J. M. Weisberg: Experimental con straints on strong field relativistic gravity, Nature 355, 132 (1992).

    Article  ADS  Google Scholar 

  41. I. H. Stairs, S. E. Thorsett, J. H. Taylor, A. Wolszczan: Studies of the relativis-tic binary pulsar PSR B1534+12: I. Timing analysis, Astrophys. J. 581, 501 (2002).

    Article  ADS  Google Scholar 

  42. K. Nordtvedt: Equivalence principle for massive bodies. 2. Theory, Phys. Rev. 169, 1017 (1968).

    ADS  Google Scholar 

  43. T. Damour and G. Schäfer: New tests of the strong equivalence principle using binary pulsar data, Phys. Rev. Lett. 66, 2549 (1991).

    Article  ADS  Google Scholar 

  44. I. H. Stairs et al.: Discovery of three wide-orbit binary pulsars: implications for binary evolution and equivalence principles, Astrophys. J. 632, 1060 (2005).

    Article  ADS  Google Scholar 

  45. N. Wex: New limits on the violation of the Strong Equivalence Principle in strong field regimes, Astronomy and Astrophysics 317, 976 (1997), gr-qc/9511017.

    ADS  Google Scholar 

  46. V. M. Kaspi et al.: Discovery of a young radio pulsar in a relativistic binary orbit, Astrophys. J. 543, 321 (2000).

    Article  ADS  Google Scholar 

  47. M. Bailes, S. M. Ord, H. S. Knight, A. W. Hotan: Self-consistency of relativistic observables with general relativity in the white dwarf-neutron star binary pulsar PSR J1141-6545, Astrophys. J. 595, L49 (2003).

    Article  ADS  Google Scholar 

  48. M. Kramer et al.: eConf C041213, 0038 (2004), astro-ph/0503386.

    Google Scholar 

  49. M. Kramer et al.: Tests of general relativity from timing the double pulsar, Science 314, 97–102 (2006).

    Article  ADS  Google Scholar 

  50. S. M. Ord, M. Bailes and W. van Straten: The Scintillation Velocity of the Relativistic Binary Pulsar PSR J1141-6545, arXiv:astro-ph/0204421.

    Google Scholar 

  51. T. Damour, G. Esposito-Farèse: Binary-pulsar versus solar-system tests of tensor—scalar gravity, 2007, in preparation.

    Google Scholar 

  52. T. Damour, R. Ruffini: Sur certaines vérifications nouvelles de la relativité générale rendues possibles par la découverte d'un pulsar membre d'un système binaire, C.R. Acad. Sci. Paris (Série A) 279, 971 (1974).

    ADS  Google Scholar 

  53. B. M. Barker, R. F. O'Connell: Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments, Phys. Rev. D 12, 329 (1975).

    Article  ADS  Google Scholar 

  54. M. Kramer: Astrophys. J. 509, 856 (1998).

    Article  ADS  Google Scholar 

  55. J. M. Weisberg and J. H. Taylor: Astrophys. J. 576, 942 (2002).

    Article  ADS  Google Scholar 

  56. I. H. Stairs, S. E. Thorsett, Z. Arzoumanian: Measurement of gravitational spin—orbit coupling in a binary pulsar system, Phys. Rev. Lett. 93, 141101 (2004).

    Article  ADS  Google Scholar 

  57. A. W. Hotan, M. Bailes, S. M. Ord: Geodetic Precession in PSR J1141-6545, Astrophys. J. 624, 906 (2005).

    Article  ADS  Google Scholar 

  58. T. Damour, G. Schäfer: Higher order relativistic periastron advances and binary pulsars, Nuovo Cim. B 101, 127 (1988).

    Article  ADS  Google Scholar 

  59. J.M. Lattimer, B.F. Schutz: Constraining the equation of state with moment of inertia measurements, Astrophys. J. 629, 979 (2005).

    Article  ADS  Google Scholar 

  60. I. A. Morrison, T. W. Baumgarte, S. L. Shapiro, V. R. Pandharipande: The moment of inertia of the binary pulsar J0737-3039A: constraining the nuclear equation of state, Astrophys. J. 617, L135 (2004).

    Article  ADS  Google Scholar 

  61. A. S. Eddington: The Mathematical Theory of Relativity, Cambridge University Press, London (1923).

    MATH  Google Scholar 

  62. L. I. Schiff: Am. J. Phys. 28, 340 (1960).

    Article  ADS  MathSciNet  Google Scholar 

  63. R. Baierlein: Phys. Rev. 162, 1275 (1967).

    Article  ADS  Google Scholar 

  64. C. M. Will: Astrophys. J. 163, 611 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  65. C. M. Will, K. Nordtvedt: Astrophys. J. 177, 757 (1972).

    Article  MathSciNet  ADS  Google Scholar 

  66. C. M. Will: The confrontation between general relativity and experiment, Liv ing Rev. Rel. 4, 4 (2001) arXiv:gr-qc/0103036; update (2005) in arXiv:gr-qc/0510072.

    ADS  MathSciNet  Google Scholar 

  67. P. Jordan, Nature (London) 164, 637 (1949); Schwerkraft und Weltall (Vieweg, Braunschweig, 1955); Z. Phys. 157, 112 (1959).

    Article  MATH  ADS  Google Scholar 

  68. M. Fierz: Helv. Phys. Acta 29, 128 (1956).

    MATH  MathSciNet  Google Scholar 

  69. C. Brans, R. H. Dicke: Mach's principle and a relativistic theory of gravitation, Phys. Rev. 124, 925 (1961).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  70. T. Damour, G. Esposito-Farèse: Testing gravity to second postNewtonian order: A Field theory approach, Phys. Rev. D 53, 5541 (1996), arXiv:gr-qc/9506063.

    Article  ADS  MathSciNet  Google Scholar 

  71. T. Damour, A. M. Polyakov: The string dilaton and a least coupling principle, Nucl. Phys. B 423, 532 (1994) arXiv:hep-th/9401069; String theory and gravity, Gen. Rel. Grav. 26, 1171 (1994), arXiv:gr-qc/9411069.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  72. T. Damour, D. Vokrouhlicky: The equivalence principle and the moon, Phys. Rev. D 53, 4177 (1996), arXiv:gr-qc/9507016.

    Article  ADS  Google Scholar 

  73. J. Khoury, A. Weltman: Chameleon fields: Awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93, 171104 (2004).

    Article  ADS  Google Scholar 

  74. J. Khoury, A. Weltman: Chameleon cosmology, Phys. Rev. D 69, 044026 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  75. P. Brax, C. van de Bruck, A. C. Davis, J. Khoury, A. Weltman: Detecting dark energy in orbit: The cosmological chameleon, Phys. Rev. D 70, 123518 (2004).

    Article  ADS  Google Scholar 

  76. T. Damour, F. Piazza, G. Veneziano: Runaway dilaton and equivalence prin ciple violations, Phys. Rev. Lett. 89, 081601 (2002), arXiv:gr-qc/0204094; Vi olations of the equivalence principle in a dilaton-runaway scenario, Phys. Rev. D 66, 046007 (2002).

    Article  ADS  Google Scholar 

  77. T. Damour, G. Esposito-Farèse: Testing gravity to second postNewtonian order: A Field theory approach, Phys. Rev. D 53, 5541 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  78. T. Damour, K. Nordtvedt: General relativity as a cosmological attractor of tensor scalar theories, Phys. Rev. Lett. 70, 2217 (1993); Tensor—scalar cosmo-logical models and their relaxation toward general relativity, Phys. Rev. D 48, 3436 (1993).

    Article  ADS  Google Scholar 

  79. J. B. Hartle: Slowly rotating relativistic stars. 1. Equations of structure, Astro-phys. J. 150, 1005 (1967).

    Article  ADS  Google Scholar 

  80. G. Esposito-Farèse: Binary-pulsar tests of strong-field gravity and gravitational radiation damping, in Proceedings of the tenth Marcel Grossmann Meeting, July 2003, edited by M. Novello et al., World Scientific (2005), p. 647, arXiv:gr-qc/0402007.

    Google Scholar 

  81. B. Bertotti, L. Iess, P. Tortora: A test of general relativity using radio links with the Cassini spacecraft, Nature 425, 374 (2003).

    Article  ADS  Google Scholar 

  82. S. S. Shapiro et al: Phys. Rev. Lett 92, 121101 (2004).

    Article  ADS  Google Scholar 

  83. I. I. Shapiro, in General Relativity and Gravitation 12, edited by N. Ashby, D. F. Bartlett, and W. Wyss, Cambridge University Press, Cambridge, p. 313 (1990).

    Google Scholar 

  84. J. G. Williams, S. G. Turyshev, D. H. Boggs: Progress in lunar laser rang ing tests of relativistic gravity, Phys. Rev. Lett. 93, 261101 (2004), arXiv:gr-qc/0411113.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Publishing Limited

About this chapter

Cite this chapter

Damour, T. (2009). Binary Systems as Test-Beds of Gravity Theories. In: Colpi, M., Casella, P., Gorini, V., Moschella, U., Possenti, A. (eds) Physics of Relativistic Objects in Compact Binaries: From Birth to Coalescence. Astrophysics and Space Science Library, vol 359. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9264-0_1

Download citation

Publish with us

Policies and ethics