Skip to main content

The Thermal Evolution and Internal Structure of Saturn's Mid-Sized Icy Satellites

  • Chapter
Saturn from Cassini-Huygens

Abstract

The Cassini-Huygens mission is returning new geophysical data for the midsize, icy satellites of Saturn (i.e., satellites with radii between 100 and 1,000 km). These data have enabled a new generation of geophysical model studies for Phoebe, Iapetus, Rhea, Mimas, Tethys, Dione, as well as Enceladus (which is addressed in a separate chapter in this book). In the present chapter we consider the new model studies that have reported significant results elucidating the evolutionary histories and internal structures of these satellites. Those results have included their age, the development of their internal structures and mineralogies, which for greatest fidelity must be done concomitantly with coupled dynamical evolutions. Surface areas, volumes, bulk densities, spin rates, orbit inclinations, eccentricities, and distance from Saturn have changed as the satellites have aged. Heat is required to power the satellites' evolution, but is not overly abundant for the midsized satellites. All sources of heat must be evaluated and taken into account. This includes their intensities and when they occur and are available to facilitate evolution, both internal and dynamical. The mechanisms of heat transport must also be included. However, to model these to high fidelity the material properties of the satellite interiors must be accurately known. This is not the case. Thus, much of the chapter is devoted to discussion of what is known about these properties and how the uncertainties affect the estimation of heat sources, transport processes, and the consequential changes in composition and evolution. Phoebe has an oblate shape that may be in equilibrium with its spin period of ~9.3 h. Its orbital properties suggest that it is not one of the regular satellites, but is a captured body. Its density is higher than that of the other satellites, consistent with formation in the solar nebula rather than from material around Saturn. Oblate shape and high density are unusual for objects in this size range, and may indicate that Phoebe was heated by 26Al decay soon after its formation, which is consistent with some models of the origin of Kuiper-Belt objects. Iapetus has the shape of a hydrostatic body with a rotation period of 16 h. It subsequently despun to its current synchronous rotation state, ~79 day period. These observations are sufficient to constrain the required heating in Iapetus' early history, suggesting that it formed several My after CAI condensation. Since Saturn had to be present for Iapetus to form, this date also constrains the age of Saturn and how long it took to form. Both shape and gravitational data are available for Rhea. Gravity data were obtained from the single Cassini flyby during the prime mission and within the uncertainties cannot distinguish between hydrostatic and non-hydrostatic gravitational fields. Both Dione and Tethys display evidence of smooth terrains, with Dione's appearing considerably younger. Both are conceivably linked to tidal heating in the past, but the low rock abundance within Tethys and the lack of eccentricity excitation of Tethys' orbit today make explaining this satellite's geology challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alibert, Y., Mousis, O., 2007. Formation of Titan in Saturn's subnebula: Constraints from Huygens probe measurements. Astronomy and Astrophysics. 465, 1051–1060.

    Article  ADS  Google Scholar 

  • Amelin, Y, Krot, A. N., Hutcheon, I. D., Ulyanov, A. A., 2002. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions. Science. 297, 1678–1683.

    Article  ADS  Google Scholar 

  • Anderson, J. D., Johnson, T V., Schubert, G., Asmar, S., Jacobson, R. A., Johnston, D., Lau, E. L., Lewis, G., Moore, W. B., Taylor, A., Thomas, P. C, Weinwurm, G., 2005. Amalthea's density is less than that of water. Science. 308, 1291–1293.

    Article  ADS  Google Scholar 

  • Anderson, J. D., Schubert, G., 2007. Saturn's satellite Rhea is a homogeneous mix of rock and ice. Geophysical Research Letters. 34, L02202–L02202.

    Article  Google Scholar 

  • Anderson, J. D., Schubert, G., 2009. Rhea's gravitational field and interior structure inferred from archival data files of the 2005 Cassini Flyby. Physics of the Earth and Planetary Interiors. submitted.

    Google Scholar 

  • Atreya, S. K., Adams, E. Y, Niemann, H. B., Demick-Montelara, J. E., Owen, T. C, Fulchignoni, M., Ferri, F, Wilson, E. H., 2006. Titan's methane cycle. Planetary and Space Science. 54, 1177–87.

    Article  ADS  Google Scholar 

  • Barr, A. C, Pappalardo, R. T, 2005. Onset of convection in the icy Galilean satellites: Influence of rheology. Journal of Geophysical Research. 110, doi: 10.1029/2004 JE002371.

    Google Scholar 

  • Barr, A. C, McKinnon, W. B., 2007. Convection in Enceladus' ice shell: Conditions for initiation. Geophysical Research Letters. 34, doi: 10.1029/2006GL028799. L09202.

    Article  Google Scholar 

  • Barr, A. C, Canup, R. M., 2008. Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus. 198, 163–177.

    Article  ADS  Google Scholar 

  • Barr, A. C, Pappalardo, R. T.,Zhong, S., 2004. Convective instability in ice I with non-Newtonian rheology: Application to the icy Galilean satellites. Journal of Geophysical Research 109, E12008.

    Article  ADS  Google Scholar 

  • Blum, J., 1995. Laboratory and space experiments to study pre-planetary growth. Advances in Space Research. 15, 39–54.

    Article  ADS  Google Scholar 

  • Brown, R. H., Clark, R. N., Buratti, B. J., Cruikshank, D. P., Barnes, J. W., Mastrapa, R. M. E., Bauer, J., Newman, S., Momary, T., Baines, K. H., Bellucci, G., Capaccioni, F., Cerroni, P., Combes, M., Coradini, A., Drossart, P., Formisano, V., Jaumann, R., Langevin, Y., Matson, D. L., McCord, T. B., Nelson, R. M., Nicholson, P. D., Sicardy, B., Sotin, C, 2006. Composition and physical properties of Enceladus' surface. Science. 311, 1425–8.

    Article  ADS  Google Scholar 

  • Brownlee, D., Tsou, P., Aleon, J., Alexander, C, Araki, T., Bajt, S., Baratta, G. A., Bastien, R., Bland, P., Bleuet, P., 2006. Comet 81P/Wild 2 under a microscope. Science. 314, 1711.

    Article  ADS  Google Scholar 

  • Buratti, B. J., Hicks, M. D., Soderblom, L. A., Britt, D., Oberst, J., Hillier, J. K., 2004. Deep Space 1 photometry of the nucleus of Comet 19P/Borrelly. Icarus. 167, 16–29.

    Article  ADS  Google Scholar 

  • Buratti, B. J., Soderlund, K., Bauer, J., Mosher, J. A., Hicks, M. D., Simonelli, D. P., Jaumann, R., Clark, R. N., Brown, R. H., Cruikshank, D. P., Momary, T., 2008. Infrared.0.83–5.1(μm) photometry of Phoebe from the Cassini Visual Infrared Mapping Spectrometer. Icarus. 193, 309–322.

    Article  ADS  Google Scholar 

  • Burns, J. A., 1976. Consequences of the tidal slowing of Mercury. Icarus. 28, 453–458.

    Article  ADS  Google Scholar 

  • Burns, J. A., Matthews, M. S. (Eds.), 1986. Satellites. Univ. Arizona Press, Tucson.

    Google Scholar 

  • Canup, R. M., Ward, W. R., 2006. A common mass scaling for satellite systems of gaseous planets. Nature. 441, 834–839.

    Article  ADS  Google Scholar 

  • Castillo-Rogez, J., Johnson, T., Lee, M. H., Turner, N. J., Matson, D., Lunine, J., 2009. 26Al Decay: Heat production and a revised age for Iapetus. Icarus. in press.

    Google Scholar 

  • Castillo-Rogez, J. C, Matson, D. L., Sotin, C, Johnson, T. V., Lunine, J. I., Thomas, P. C, 2007. Iapetus' geophysics: Rotation rate, shape, and equatorial ridge. Icarus. 190, 179–202.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S., 1969. Ellipsoidal Figures of Equilibrium. Yale Univ. Press, New Haven, CT.

    MATH  Google Scholar 

  • Chapman, C. R., McKinnon, W. B., Cratering of planetary satellites. In: J. A. Burns, M. S. Matthews (Eds.), Satellites. Univ. Arizona Press, Tucson, 1986, pp. 492–580.

    Google Scholar 

  • Charnoz, S., Morbidelli, A., Dones, L., Salmon, J., 2009. Did Saturn's rings form during the Late Heavy Bombardment? Icarus. 199, 413– 428.

    Google Scholar 

  • Chen, E. M. A., Nimmo, F., 2008. Implications from Ithaca Chasma for the thermal and orbital history of Tethys. Geophysical Research Letters. 35, L19203–L19203.

    Article  ADS  Google Scholar 

  • Choblet, C, Sotin, C, 2000. 3-D thermal convection with variable viscosity: Can transient cooling be described by a quasi-static scaling law? Physics Of the Earth and Planetary Interiors. 119, 321–336.

    Article  ADS  Google Scholar 

  • Ciesla, F. J., Lauretta, D. S., Cohen, B. A., Hood, L. L., 2003. A nebular origin for chondritic fine-grained phyllosilicates. Science. 299, 549– 552.

    Article  ADS  Google Scholar 

  • Clark, R. N., Brown, R. H., Jaumann, R., Cruikshank, D. P., Nelson, R. M., Buratti, B. J., McCord, T. B., Lunine, J., Baines, K. H., Bellucci, G., Bibring, J. P., Capaccioni, F., Cerroni, P., Coradini, A., Formisano, V., Langevin, Y, Matson, D. L., Mennella, V., Nicholson, P. D., Sicardy, B., Sotin, C, Hoefen, T. M., Curchin, J. M., Hansen, G., Hibbits, K., Matz, K. D., 2005. Compositional maps of Saturn's moon Phoebe from imaging spectroscopy. Nature. 435, 66–69.

    Article  ADS  Google Scholar 

  • Clauser, C, Huenges, E., Thermal conductivity of rock and minerals. Rock Physics and Phase Relations American Geophysical Union, Washington, DC, 1995, pp. 105–125.

    Google Scholar 

  • Cohen, B. A., Coker, R. F., 2000. Modeling of liquid water on CM meteorite parent bodies and implications for amino acid racemization. Icarus. 145, 369–381.

    Article  ADS  Google Scholar 

  • Collins, G. C, Goodman, J. C, 2007. Enceladus' south polar sea. Icarus. 189, 72–82.

    Article  ADS  Google Scholar 

  • Consolmagno, G., Britt, D. T., Stoll, C. P., 1998. The porosities of ordinary chondrites: Models and interpretation. Meteoritics and Planetary Science. 33, 1221–1230.

    Article  ADS  Google Scholar 

  • Coradini, A., Cerroni, P., Magni, G., Federico, C., 1989. Formation of the satellites of the outer solar system-Sources of their atmospheres. IN: Origin and evolution of planetary and satellite atmospheres (A89–43776 19–90). University of Arizona Press, Tucson, AZ, 1989, pp. 723–762.

    Google Scholar 

  • Cruikshank, D. P., Owen, T. C., Ore, C. D., Geballe, T. R., Roush, T. L., de Bergh, C., Sandford, S. A., Poulet, F., Benedix, G. K., Emery, J. P., 2005. A spectroscopic study of the surfaces of Saturn's large satellites: H2O ice, tholins, and minor constituents. Icarus. 175, 268–283.

    Article  ADS  Google Scholar 

  • Cruikshank, D. P., Wegryn, E., Ore, C. M. D., Brown, R. H., Bibring, J. P., Buratti, B. J., Clark, R. N., McCord, T. B., Nicholson, P. D., Pendleton, Y. J., Owen, T. C., Filacchione, G., Coradini, A., Cerroni, P., Capaccioni, F., Jaumann, R., Nelson, R. M., Baines, K. H., Sotin, C., Bellucci, G., Combes, M., Langevin, Y., Sicardy, B., Matson, D. L., Formisano, V., Drossart, P., Mennella, V., 2008. Hydrocarbons on Saturn's satellites Iapetus and Phoebe. Icarus. 193, 334–343.

    Article  ADS  Google Scholar 

  • Czechowski, L., Leliwa-Kopystynski, J., 2008. The Iapetus's ridge: Possible explanations of its origin. Advances in Space Research. 42, 61–69.

    Article  ADS  Google Scholar 

  • Davaille, A., Jaupart, C., 1993. Transient high Rayleigh number thermal convection with large viscosity variations. Journal of Fluid Mechanics 253, 141–166.

    Article  ADS  Google Scholar 

  • Davaille, A., Jaupart, C., 1994. Onset of thermal convection in fluids with temperature-dependent viscosity: Application to the oceanic mantle. J. Geophys. Res. 99, 19853–19866.

    Article  ADS  Google Scholar 

  • De La Chapelle, S., Milsch, H., Castelnau, O., Duval, P., 1999. Com-pressive creep of ice containing a liquid intergranular phase: Rate-controlling processes in the dislocation creep regime. Geophysical Research Letters 26, 251–254.

    Article  ADS  Google Scholar 

  • Denk, T., Neukum, G., Helfenstein, P., Thomas, P. C., Turtle, E. P., McEwen, A. S., Roatsch, T., Veverka, J., Johnson, T. V., Perry, J. E., Owen, W. M., Wagner, R. J., Porco, C. C. 2005. The Cassini ISS Team, 2005. The first six months of Iapetus observations by the Cassini ISS Camera. Lunar and Planetary Science. 36, 2262–2263.

    MATH  ADS  Google Scholar 

  • Dermott, S. F., Murray, C. D., 1982. Asteroid rotation rates depend on diameter and type. Nature. 296, 418–421.

    Article  ADS  Google Scholar 

  • Deschamps, F., Sotin, C., 2001. Thermal convection in the outer shell of large icy satellites (Paper 2000JE001253). Journal of Geophysical Research-Part E-Planets. 106, 5107–5121.

    Article  ADS  Google Scholar 

  • Durham, W. B., Heard, H. C., Kirby, S. H., 1983. Rheology of Ice ih at High Pressure and Low Temperature. Lunar and Planetary Science. 14, 169–170.

    ADS  Google Scholar 

  • Durham, W. B., Stern, L. A., 2001. Rheological properties of water ice — applications to satellites of the outer planets Annual Review of Earth and Planetary Sciences. 29, 295–330.

    Google Scholar 

  • Durham, W. B., McKinnon, W. B., Stern, L. A., 2004. Cold compaction of porous ice and the density of Phoebe. EOS Transactions AGU. 85, P43B–07.

    Google Scholar 

  • Durham, W. B., McKinnon, W. B., Stern, L. A., 2005. Cold compaction of water ice. Geophysical Research Letters 32, 1–5.

    Article  Google Scholar 

  • Ellsworth, K., Schubert, G., 1983. Saturns icy satellites — Thermal and structural models. Icarus. 54, 490–510.

    Article  ADS  Google Scholar 

  • Eluszkiewicz, J., Leliwa-Kopystynski, J., Kossacki, K. J., Metamor-phism of solar system ices. In: B. Schmitt, et al. (Eds.), Solar System Ices. Kluwer, Dordrecht Netherlands. 1998 119–138.

    Google Scholar 

  • Emery, J. P., Burr, D. M., Cruikshank, D. P., Brown, R. H., Dalton, J. B., 2005. Near-infrared (0.8–4.0 micron) spectroscopy of Mimas, Enceladus, Tethys, and Rhea. Astronomy & Astrophysics. 435, 353–62.

    Article  ADS  Google Scholar 

  • Friedson, A. J., Stevenson, D. J., 1983. Viscosity of rock-ice mixtures and applications to the evolution of icy satellites. Icarus. 56, 1–14.

    Article  ADS  Google Scholar 

  • Garaud, P., Lin, D. N. C., 2007. The effect of internal dissipation and surface irradiation on the structure of disks and the location of the snow line around Sun-like stars. The Astrophysical Journal. 654, 606–624.

    Article  ADS  Google Scholar 

  • Gautier, D., Hersant, F., 2005. Formation and composition of planetesi-mals. Space Science Reviews. 116, 25–52.

    Article  ADS  Google Scholar 

  • Giese, B., Neukum, G., Roatsch, T., Denk, T., Porco, C. C., 2006. Topographic modeling of Phoebe using Cassini images. Planetary and Space Science. 54, 1156–66.

    Article  ADS  Google Scholar 

  • Giese, B., Wagner, R., Neukum, G., Helfenstein, P., Thomas, P. C., 2007. Tethys: Lithospheric thickness and heat flux from flexurally supported topography at Ithaca Chasma. Geophysical Research Letters. 34, L21203–L21203.

    Article  ADS  Google Scholar 

  • Giese, B., Denk, T., Neukum, G., Roatsch, T., Helfenstein, P., Thomas, P. C., Turtle, E. P., McEwen, A., Porco, C. C., 2008. The topography of Iapetus' leading side. Icarus. 193, 359–371.

    Article  ADS  Google Scholar 

  • Giese, B., Denk, T., Neukum, G., Porco, C. C., Roatsch, T., Wagner, R., 2005. The topography of Iapetus' leading side. Bulletin of the American Astronomical Society. 37, 3.

    Google Scholar 

  • Giggenbach, W. F., 1980. Geothermal gas equilibria. Geochimica et Cosmochimica Acta. 44, 2021–2032.

    Article  ADS  Google Scholar 

  • Glein, C. R., Zolotov, M. Y., Shock, E. L., 2008. The oxidation state of hydrothermal systems on early Enceladus. Icarus. 197, 157–63.

    Article  ADS  Google Scholar 

  • Goldreich, P., Soter, S., 1966. Q in the solar system. Icarus. 5, 375–389.

    Article  ADS  Google Scholar 

  • Gomes, R., Levison, H. F., Tsiganis, K., Morbidelli, A., 2005. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature. 435, 466–469.

    Article  ADS  Google Scholar 

  • Gounelle, M., Russell, S. S., 2005. On early solar system chronology: Implications of an heterogeneous spatial distribution of$̂{26}$ Al and$̂{53}$ Mn. Geochimica et Cosmochimica Acta. 69, 3129– 3144.

    Article  ADS  Google Scholar 

  • Grasset, O., Parmentier, E. M., 1998. Thermal convection in a volu-metrically heated, infinite Prandtl number fluid with strongly temperature dependent viscosity: implications for planetary evolution. Journal of Geophysical Research. 103, 18171–18181.

    Article  ADS  Google Scholar 

  • Grasset, O., Mevel, L., Mousis, O., Sotin, C., 2001. The pressure dependence of the eutectic composition in the system MgSO4-H2O: Implications for the deep liquid layer of icy satellites. Lunar Planetary Science. 32, 1524.pdf.

    ADS  Google Scholar 

  • Grimm, R. E., McSween, H. Y., 1989. Water and the thermal evolution of carbonaceous chondrite parent bodies. Meteoritics. 24, 273–274.

    ADS  Google Scholar 

  • Hartmann, W. K., 1987. A satellite-asteroid mystery and a possible early flux of scattered C-class asteroids. Icarus. 71, 57–68.

    Article  ADS  Google Scholar 

  • Hersant, F., Gautier, D., Lunine, J. I., 2004. Enrichment in volatiles in the giant planets of the Solar System. Planetary and Space Science. 52, 623–641.

    Article  ADS  Google Scholar 

  • Hersant, F., Gautier, D., Tobie, G., Lunine, J. I., 2008. Interpretation of the carbon abundance in Saturn measured by Cassini. Planetary and Space Science. 56, 1103–1111.

    Article  ADS  Google Scholar 

  • Hofmeister, A. M., 1999. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science. 283, 1699–1706.

    Article  ADS  Google Scholar 

  • Iess, L., Rappaport, N. J., Tortora, P., Lunine, J., Armstrong, J. W., As-mar, S. W., Somenzi, L., Zingoni, F., 2007. Gravity field and interior of Rhea from Cassini data analysis. Icarus. 190, 585–593.

    Article  ADS  Google Scholar 

  • Ip, W. H., 2006. On a ring origin of the equatorial ridge of Iapetus. Geophysical Research Letters. 33, 16203.

    Article  ADS  Google Scholar 

  • Johnson, T. J., Introduction to icy satellite geology. In: B. Schmitt, et al. (Eds.), Solar System Ices. Kluwer, Dordrecht, Netherlands, 1998, pp. 511–524.

    Google Scholar 

  • Johnson, T. V., Lunine, J. I., 2005. Saturn's moon Phoebe as a captured body from the outer Solar System. Nature. 435, 69–71.

    Article  ADS  Google Scholar 

  • Johnson, T. V., Castillo-Rogez, J. C., Matson, D. L., Thomas, P. C., 2009. Phobe's Shape: Possible constraints on internal structure and origin. Lunar Planetary Science. 40, 2334.pdf.

    ADS  Google Scholar 

  • Johnson, T. V., Lunine, J., 2005. Saturn satellite densities and the C/O chemistry of the solar nebula. Lunar Planetary and Science 36, 1410–1411.

    ADS  Google Scholar 

  • Kargel, J. S., 1991. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus. 94, 368–390.

    Article  ADS  Google Scholar 

  • Kargel, J. S., 1992. Ammonia-water volcanism on icy satellites: Phase relationships at one atmosphere. Icarus. 100, 556–574.

    Article  ADS  Google Scholar 

  • Kargel, J. S., Kaye, J. Z., Head, J. W., Marion, G. M., Sassen, R., Crowley, J. K., Ballesteros, O. P., Grant, S. A., Hogenboom, D. L., 2000. Europa's crust and ocean: Origin, composition, and the prospects for life. Icarus. 148, 226–265.

    Article  ADS  Google Scholar 

  • Kelley, K. A., Plank, T., Farr, L., Ludden, J., Staudigel, H., 2005. Sub-duction cycling of U, Th, and Pb. Earth and Planetary Science Letters. 234, 369–383.

    Article  ADS  Google Scholar 

  • Khurana, K. K., Burger, M. H., Leisner, J. S., Dougherty, M. K., Russell, C. T., 2007. Does Dione have a tenuous atmosphere? Eos Transactions AGU. 88, P43A–03.

    Google Scholar 

  • Khurana, K. K., Russell, C. T., Dougherty, M. K., 2008. Magnetic portraits of Tethys and Rhea. Icarus. 193, 465–474.

    Article  ADS  Google Scholar 

  • Kirk, R. L., Stevenson, D. J., 1987. Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus. 69, 91–134.

    Article  ADS  Google Scholar 

  • Kita, N. T, Huss, G. R., Tachibana, S., Amelin, Y., Nyquist, L. E., Hutcheon, I. D., Constraints on the origin of chondrules and CAIs from short-lived and long-lived radionuclides. In: A. N. Krot, et al. (Eds.), Chondrites and the Protoplanetary Disk, Vol. 341. Astronomical Society of the Pacific, Kaua'i, Hawaii, 2005, pp. 558.

    Google Scholar 

  • Korenaga, J., Jordan, T. H., 2003. Onset of convection with temperature-and depth-dependent viscosity. Geophysical Research Letters. 29, 29.

    Google Scholar 

  • Kossacki, K. J., Leliwa-Kopystynski, J., 1993. Medium-sized icy satellites: Thermal and structural evolution during Accretion. Planetary and Space Science. 41, 729–741.

    Article  ADS  Google Scholar 

  • Kuskov, O. L., Kronrod, V. A., 2001. Core sizes and internal structure of Earth's and Jupiter's satellites. Icarus. 151, 204–227.

    Article  ADS  Google Scholar 

  • Langseth, M. G., Keihm, S., Peters, K., 1976. The revised lunar heat flow values. Lunar and Planetary Science 7, 3143.

    ADS  Google Scholar 

  • Lanzerotti, L. J., Brown, W. L., Marcantonio, K. J., Johnson, R. E., 1984. Production of ammonia-depleted surface layers on the Sat-urnian satellites by ion sputtering. Nature. 312, 139.

    Article  ADS  Google Scholar 

  • Leliwa-Kopystynski, J., Maeno, N., 1993. Ice/rock porous mixtures: compaction experiments and interpretation. Journal of Glaciology. 39, 643–655.

    ADS  Google Scholar 

  • Leliwa-Kopystynski, J., Kossacki, K. J., 1994. Evolution of small icy satellites — the role of ammonia admixture. Bulletin of the American Astronomical Society 26, 1160.

    ADS  Google Scholar 

  • Leliwa-Kopystynski, J., Kossacki, K. J., 1995. Kinetics of compaction of granular ices H2O; CO2 and NH3 × H2O1-x at pressures of 2-20 MPa and in temperatures of 100–270 K. Application to the physics of the icy satellites. Planetary and Space Science. 43, 851–861.

    Article  ADS  Google Scholar 

  • Leliwa-Kopystynski, J., Kossacki, K. J., 2000. Evolution of porosity in small icy bodies. Planetary and Space Science. 48, 727–745.

    Article  ADS  Google Scholar 

  • Lissauer, J. J., Hubickyj, O., D'Angelo, G., Bodenheimer, P., 2009. Models of Jupiter's growth incorporating thermal and hydrodynamic constraints. Icarus. 199, 338–350.

    Article  ADS  Google Scholar 

  • Lorenz, R. D., Shandera, S. E., 2001. Physical properties of ammonia-rich ice: Application to Titan. Geophysical Research Letters. 28, 215–218.

    Article  ADS  Google Scholar 

  • Lunine, J. I., Stevenson, D. J., 1982. Formation of the Galilean satellites in a gaseous nebula. Icarus. 52, 14–39.

    Article  ADS  Google Scholar 

  • Mackenzie, R. A., Iess, L., Tortora, P., Rappaport, N. J., 2008. A non-hydrostatic Rhea. Geophysical Research Letters. 35, L05204– L05204.

    Article  Google Scholar 

  • Matson, D. L., Brown, R. H., 1989. Solid-state greenhouses and their implications for icy satellites. Icarus. 77, 67–81.

    Article  ADS  Google Scholar 

  • Matson, D. L., Castillo, J. C, Lunine, J., Johnson, T. V., 2007. Ence-ladus' plume: Compositional evidence for a hot interior. Icarus. 187, 569–573.

    Article  ADS  Google Scholar 

  • McCarthy, C, Cooper, R. F., Kirby, S. H., Durham, W. B., 2006. Ice/hydrate eutectics: The implications of microstructure and rhe-ology on a multiphase Europan Crust. Lunar and Planetary Science. 37, 2467.

    ADS  Google Scholar 

  • McCord, T. B., Sotin, C, 2005. Ceres: Evolution and current state. Journal of Geophysical Research. 110, E05009.

    Article  Google Scholar 

  • McKinnon, W., Geodynamics of icy satellites. In: B. Schmitt, et al. (Eds.), Solar System Ices. Kluwer, Dordrecht, Netherlands, 1998, pp. 525–550.

    Google Scholar 

  • McKinnon, W. B., On the initial thermal evolution of Kuiper Belt objects. In: B. Warmbein (Ed.), Asteroids, Comets, Meteors — ACM 2002, Vol. ESA SP-500. ESA Publications Division, Noordwijk, the Netherlands, Berlin, Germany 29 July-2 August 2002, 2002, pp 29–38.

    Google Scholar 

  • McKinnon, W. B., Zolensky, M. E., 2003. Sulfate content of Europa's ocean and shell: Evolutionary considerations and some geological and astrobiological implications. Astrobiology. 3, 879–897.

    Article  ADS  Google Scholar 

  • McKinnon, W. B., 2006. On convective instability in the ice I shells of outer solar system bodies, with detailed application to Callisto. Icarus. 183, 435–450.

    Article  ADS  Google Scholar 

  • McKinnon, W. B., Barr, A. C, The Mimas Paradox revisited plus crustal spreading on Enceladus?, Workshop on Ices, Oceans, and Fire: Satellites of the Outer Solar System, Vol. 1357. Lunar and Planetary Institute, Boulder, Colorado, 2007, pp. id.6083.

    Google Scholar 

  • McKinnon, W. B., Could Ceres be a Refugee from the Kuiper Belt?, Asteroids, Comets, Meteors 2008 LPI Contribution, Vol. LPI Contribution No. 1405, paper id. 8389. Lunar and Planetary Institute, Baltimore, Maryland, 2008.

    Google Scholar 

  • McKinnon, W. B., Prialnik, D., Stern, S. A., Coradini, A., Structure and evolution of Kuiper belt objects and dwarf planets. In: M. A. Barucci, et al. (Eds.), The Solar System Beyond Neptune. University of Arizona Press, Tucson, 2008, pp. 213–241.

    Google Scholar 

  • Melosh, H. J., Nimmo, F., 2009. An intrusive dike origin for Iapetus' enigmatic ridge? Lunar and Planetary Science. 40, #2478.

    Google Scholar 

  • Moore, J. M., Schenk, P. M., Bruesch, L. S., Asphaug, E., McKinnon, W. B., 2004. Large impact features on middle-sized icy satellites. Icarus. 171,421–43.

    Article  ADS  Google Scholar 

  • Moresi, L. N., Solomatov, V S., 1995. Numerical investigation of 2D convection with extremely large viscosity variations. Physics of Fluids. 7, 2154–2162.

    Article  MATH  ADS  Google Scholar 

  • Mosqueira, I., Estrada, P. R., 2005. On the origin of the saturnian satellite system: Did Iapetus form in-situ? Lunar and Planetary Science. 36, 1951–1952.

    Google Scholar 

  • Mostefaoui, S., Lugmair, G. W., Hoppe, P., 2005. 60Fe: A heat source for planetary differentiation from a nearby supernova explosion. The Astrophysical Journal. 625, 271–277.

    Article  ADS  Google Scholar 

  • Mousis, O., Gautier, D., Bockelee-Morvan, D., 2002. An evolutionary turbulent model of Saturn's subnebula: Implications for the origin of the atmosphere of Titan. Icarus. 156, 162–175.

    Article  ADS  Google Scholar 

  • Multhaup, K., Spohn, T., 2007. Stagnant lid convection in the mid-sized icy satellites of Saturn. Icarus. 186, 420–435.

    Article  ADS  Google Scholar 

  • Nagel, K., Breuer, D., Spohn, T, 2004. A model for the interior structure, evolution, and differentiation of Callisto. Icarus. 169, 402–412.

    Article  ADS  Google Scholar 

  • Najita, J., Williams, J. P., 2005. An 850 μm survey for dust around solar-mass stars. The Astrophysical Journal. 635, 625–635.

    Article  ADS  Google Scholar 

  • Nakamura, T, Abe, O., Internal friction of snow and ice at low frequency. Proceedings of the Sixth International Conference on Internal Friction and Ultrasonic Attenuation in Solids. University of Tokyo Press, Tokyo, 1977, p. 285.

    Google Scholar 

  • Cassini RADAR observations of Enceladus, Tethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe. Icarus. 183, 479–490.

    Article  ADS  Google Scholar 

  • Parmentier, E. M., Sotin, C., Travis, B. J., 1994. Turbulent 3D thermal convection in an infinite Prandtl number, volumetrically heated fluid: Implications for mantle dynamics. Geophysical Journal International. 116, 241–251.

    Article  ADS  Google Scholar 

  • Peale, S. J., Rotational histories of the natural satellites. In: J. A. Burns (Ed.), Planetary Satellites. University of Arizona Press, Tucson, AZ, 1977, pp. 87–112.

    Google Scholar 

  • Peale, S. J., 1999. Origin and evolution of the natural satellites. Annual Review of Astronomy and Astrophysics. 37, 533–602.

    Article  ADS  Google Scholar 

  • Petrenko, V. F., Whitworth, R. W., 1999. Physics of Ice. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Porco, C. C., Baker, E., Barbara, J., Beurle, K., Brahic, A., Burns, J. A., Charnoz, S., Cooper, N., Dawson, D. D., Del Genio, A. D., Denk, T., Dones, L., Dyudina, U., Evans, M. W., Giese, B., Grazier, K., Helfenstein, P., Ingersoll, A. P., Jacobson, R. A., Johnson, T. V., McEwen, A., Murray, C. D., Neukum, G., Owen, W. M., Perry, J., Roatsch, T., Spitale, J., Squyres, S., Thomas, P. C., Tiscareno, M., Turtle, E., Vasavada, A. R., Veverka, J., Wagner, R., West, R., 2005. Cassini imaging science: Initial results on Phoebe and Iapetus. Science. 307, 1237–1242.

    Article  ADS  Google Scholar 

  • Prialnik, D., Bar-Nun, A., 1990. Heating and melting of small icy satellites by the decay of Al–26. Astrophysical Journal. 355, 281–286.

    Article  ADS  Google Scholar 

  • Prialnik, D., Bar-Nun, A., 1992. Crystallization of amorphous ice as the cause of Comet P/Halley's outburst at 14 AU. Astronomy and Astrophysics (ISSN 0004–6361). 258.

    Google Scholar 

  • Prialnik, D., Merk, R., 2008. Growth and evolution of small porous icy bodies with an adaptive-grid thermal evolution code. I. Application to Kuiper belt objects and Enceladus. Icarus. 197, 211–20.

    Google Scholar 

  • Prinn, R. G., Fegley, B., 1981. Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae — Implications for satellite composition. Astrophysical Journal. 249, 308–317.

    Article  ADS  Google Scholar 

  • Prinn, R. G., Fegley, B., Solar nebula chemistry: Origin of planetary, satellite, and cometary volatiles. In: S. Atreya, et al. (Eds.), Origin and Evolution of Planetary and Satellite Atmospheres. University of Arizona Press, Tucson, Arizona, 1989, pp. 78–136.

    Google Scholar 

  • Richardson, J. E., Melosh, H. J., Lisse, C. M., Carcich, B., 2007. A ballistics analysis of the deep impact ejecta plume: Determining comet tempel 1's gravity, mass, and density. Icarus. 190, 357–390.

    Article  ADS  Google Scholar 

  • Roberts, J. H., Nimmo, F., 2008. Tidal heating and the long-term stability of a subsurface ocean on Enceladus. Icarus. 194, 675–689.

    Article  ADS  Google Scholar 

  • Roberts, J. H., Nimmo, F., 2009. Tidal dissipation due to despinning and the equatorial ridge on Iapetus. Lunar and Planetary Science. 40, #1927.

    Google Scholar 

  • Robuchon, G., C, C., Tobie, G., Cadek, O., Sotin, C., Grasset, O., 2009. Coupling of thermal evolution and despinning of early Iape-tus. Icarus. Submitted.

    Google Scholar 

  • Ross, R. G., Kargel, J. S., Thermal conductivity of solar system ices, with special reference to Martian Polar Caps. Solar System Ices. Kluwer, Dordrecht, 1998.

    Google Scholar 

  • Schenk, P. M., Moore, J. M., Geologic landforms and processes on icy satellites. In: B. Schmitt, et al. (Eds.), Solar System Ices. Kluwer, Dordrecht, Netherlands. 1998 551–578.

    Google Scholar 

  • Schenk, P. M., McKinnon, W. B., 2009. One-hundred-km-scale basins on Enceladus: Evidence for an active ice shell. Geophys. Res. Lett. 36, in press.

    Google Scholar 

  • Schenk, P. M., Moore, J. M., 2009. Eruptive volcanism on saturn's icy moon Dione. Lunar and Planetary Science. 40, id.2465.

    Google Scholar 

  • Schubert, G., Spohn, T., Reynolds, R. T., Thermal histories, compositions, and internal structures of the moons of the solar system. In: J. A. Burns, M. S. Matthews (Eds.), Satellites. University of Arizona Press, Tucson, 1986, pp. 224–292.

    Google Scholar 

  • Schubert, G., Anderson, J. D., Spohn, T., McKinnon, W. B., Interior composition, structure and dynamics of the Galilean satellites. In: F. Bagenal, et al. (Eds.), Jupiter: The Planet, Satellites and Magnetosphere. Cambridge University Press, Cambridge, U.K. 2004, pp. 281–306.

    Google Scholar 

  • Schubert, G., Anderson, J. D., Travis, B. J., Palguta, J., 2007. Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating. Icarus. 188, 345–355.

    Article  ADS  Google Scholar 

  • Scott, H. P., Williams, Q., Ryerson, F. J., 2002. Experimental constraints on the chemical evolution of large icy satellites. Earth and Planetary Science Letters. 203, 399–412.

    Article  ADS  Google Scholar 

  • Shock, E. L., McKinnon, W. B., 1993. Hydrothermal processing of cometary volatiles — Applications to Triton. Icarus. 106, 464–477.

    Article  ADS  Google Scholar 

  • Shoshany, Y., Prialnik, D., Podolak, M., 2002. Monte Carlo modeling of the thermal conductivity of porous cometary ice. Icarus. 157, 219–227.

    Article  ADS  Google Scholar 

  • Showman, A. P., Malhotra, R., 1997. Tidal evolution into the Laplace resonance and the resurfacing of Ganymede. Icarus. 127, 93–111.

    Article  ADS  Google Scholar 

  • Shu, F. H., Johnstone, D., Hollenbach, D., 1993. Photoevaporation of the solar nebula and the formation of the giant planets. Icarus. 106, 92–101.

    Article  ADS  Google Scholar 

  • Shukolyukov, A., Lugmair, G. W., 1993. Fe-60 in eucrites. Earth and Planetary Science Letters (ISSN 0012–821X). 119, 159–166.

    Article  ADS  Google Scholar 

  • Sohl, F., Spohn, T., Breuer, D., Nagel, K., 2002. Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus. 157, 104–119.

    Article  ADS  Google Scholar 

  • Sohl, F., Hussmann, H., Schwentker, B., Spohn, T., Lorenz, R. D., 2003. Interior structure models and tidal Love numbers of Titan. Journal of Geophysical Research. E. Planets. 108, 5130.

    Article  ADS  Google Scholar 

  • Solomatov, V. S., Moresi, L. N., 2000. Scaling of time-dependent stagnant lid convection: Application to small-scale convection on Earth and other terrestrial planets. Journal of Geophysical Research. 105, 21795–21818.

    Article  ADS  Google Scholar 

  • Solomatov, V. S., Barr, A. C., 2006. Onset of convection in fluids with strong temperature-dependent, power-law viscosity. Physics of the Earth and Planetary Interiors. 155, 140–145.

    Article  ADS  Google Scholar 

  • Sotin, C., Labrosse, S., 1999. Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: Applications to the transfer of heat through planetary mantles. Physics of the Earth and Planetary Interiors. 112, 171–190.

    Article  ADS  Google Scholar 

  • Sotin, C., Castillo, J. C., Tobie, G., Matson, D. L., 2006. Onset of convection in mid-sized icy satellites. EGU. EGU06-A-08124.

    Google Scholar 

  • Sotin, C., Tobie, G., Wahr, J., McKinnon, W. B., Tides and tidal heating on Europa. In: R. T. Pappalardo, et al. (Eds.), Europa. University of Arizona Press, Tucson, 2009.

    Google Scholar 

  • Squyres, S. W., Croft, S. K., The tectonics of icy satellites. In: J. A. Burnes, M. S. Matthews (Eds.), Satellites. University of Arizona Press, Tucson, AZ, 1986, pp. 293–341.

    Google Scholar 

  • Squyres, S. W., Reynolds, R. T., Summers, A. L., Shung, F., 1988. Ac-cretional heating of the satellites of Saturn and Uranus. Journal of Geophysical Research. 93, 8779–8794.

    Article  ADS  Google Scholar 

  • Stevenson, D. J., Harris, A. W., Lunine, J. I., Origins of satellites. In: J. A. Burns, M. S. Matthews (Eds.), Satellites. University of Arizona Press, Tucson, 1986, pp. 39–88.

    Google Scholar 

  • Tachibana, S., Huss, G. R., Kita, N. T., Shimoda, G., Morishita, Y., 2006. 60Fe in Chondrites: Debris from a nearby supernova in the early solar system? The Astrophysical Journal. 639, L87–L90.

    Article  ADS  Google Scholar 

  • Takeuchi, H., Saito, M., Seismic surface waves. Methods in Computational Physics. Academic Press, New York, 1972, pp. 217–295.

    Google Scholar 

  • Thomas, P. C., Armstrong, J. W., Asmar, S. W., Burns, J. A., Denk, T., Giese, B., Helfenstein, P., Iess, L., Johnson, T. V., McEwen, A., Nicolaisen, L., Porco, C., Rappaport, N., Richardson, J., Somenzi, L., Tortora, P., Turtle, E. P., Veverka, J., 2007a. Hyperion's spongelike appearance. Nature. 448, 50–53.

    Article  ADS  Google Scholar 

  • Thomas, P. C., Burns, J. A., Helfenstein, R., Squyres, S., Veverka, J., Porco, C., Turtle, E. P., McEwen, A., Denk, T., Giese, B., Roatsch, T., Johnson, T. V., Jacobson, R. A., 2007b. Shapes of the saturnian icy satellites and their significance. Icarus. 190, 573–584.

    Article  ADS  Google Scholar 

  • Tobie, G., Grasset, O., Lunine, J. I., Mocquet, A., Sotin, C., 2005a. Titan's internal structure inferred from a coupled thermal-orbital model. Icarus. 175, 496–502.

    Article  ADS  Google Scholar 

  • Tobie, G., Mocquet, A., Sotin, C., 2005b. Tidal dissipation within large icy satellites: Applications to Europa and Titan. Icarus. 177, 534–549.

    Article  ADS  Google Scholar 

  • Tobie, G., Cadek, O., Sotin, C., 2008. Solid tidal friction above a liquid water reservoir as the origin of the south pole hotspot on Enceladus. Icarus. 196, 642–652.

    Article  ADS  Google Scholar 

  • Travis, B. J., Schubert, G., 2005. Hydrothermal convection in carbonaceous chondrite parent bodies. Earth and Planetary Science Letters. 240, 234–250.

    Article  ADS  Google Scholar 

  • Turcotte, D. L., Schubert, G., 1982. Geodynamics. John Wiley & Sons, New York.

    Google Scholar 

  • Turcotte, D. L., Schubert, G., 2002. Geodynamics, 2nd edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Turrini, D., Marzari, F., Beust, H., 2008. A new perspective on the irregular satellites of Saturn-I. Dynamical and collisional history. Monthly Notices of the Royal Astronomical Society. 391, 1029–1051.

    Article  ADS  Google Scholar 

  • Van Schmus, W. R., Natural radioactivity of the crust and mantle. In: T. J. Ahrens (Ed.), Global Earth physics: A Handbook of Physical Constants. American Geophysical Union., Washington, DC, 1995, pp. 283–291.

    Google Scholar 

  • Vanhala, H. A. T., Boss, A. P., 2002. Injection of radioactivities into the forming solar system. Astrophysical Journal. 575, 1144–1150.

    Article  ADS  Google Scholar 

  • Verbiscer, J., Peterson, D. E., Skrutskie, M. F., Cushing, M., Helfenstein, P., Nelson, M. J., Smith, J. D., Wilson, J. C., Ammonia Hydrate on Tethys' Trailing Hemisphere. Vol. 1406. Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX, 77058– 1113, USA, 2008, pp. 156–157.

    Google Scholar 

  • Wahr, J., Selvans, Z. A., Mullen, M. E., Barr, A. C., Collins, G. C., Selvans, M. M., Pappalardo, R. T., 2009. Modeling stresses on satellites due to non-synchronous rotation and orbital eccentricity using gravitational potential theory. Icarus. 200, 188–206.

    Article  ADS  Google Scholar 

  • Waite, J. H., Lewis, W. S., Magee, B. A., Lunine, J. I., McKinnon, W. B., Glein, C. R., Mousis, O., Young, D. T., Brockwell, T., Westlake, J., Nguyen, M.-J., Teolis, B., Niemann, H., McNutt, R. L., Perry, M., Ip, W. H., 2009. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature. 460, 487–490.

    Article  ADS  Google Scholar 

  • Waite, J. H., Jr., Combi, M. R., Wing-Huen, I., Cravens, T. E., McNutt, R. L., Jr., Kasprzak, W., Yelle, R., Luhmann, J., Niemann, H. B., Gell, D., Magee, B., Fletcher, G., Lunine, J., Wei-Ling, T., 2006. Cassini Ion and Neutral Mass Spectrometer: Enceladus plume composition and structure. Science. 311, 1419–22.

    Article  ADS  Google Scholar 

  • Wasserburg, G. J., Papanastassiou, D. A., Some short-lived nuclides in the early Solar System. In: C. A. Barnes, et al. (Eds.), Essays in Nuclear Astrophysics, ed. CA Barnes, DD Clayton, and DN Schramm. Cambridge University Press, New York, 1982, p. 77.

    Google Scholar 

  • Wasson, J. T., Kalleymen, G. W., 1988. Composition of chondrites. Philosophical Transactions Royal Society of London A. 325, 535–544.

    Article  ADS  Google Scholar 

  • Wong, M. H., Lunine, J. I., Atreya, S. K., Johnson, T., Mahaffy, P. C., Owen, T. C., Encrenaz, T., Oxygen and other volatiles in the giant planets and their satellites. In: G. MacPherson, W. Huebner (Eds.), Oxygen in Earliest Solar System Materials and Processes Miner-alogical Society of America, Chantilly, VA, 2008, pp. 219–246.

    Google Scholar 

  • Young, E. D., Simon, J. I., Galy, A., Russell, S. S., Tonui, E., Lovera, O., 2005. Supra-Canonical 26Al/27Al and the residence time of CAIs in the Solar protoplanetary disk. Science. 308, 223–227.

    Article  ADS  Google Scholar 

  • Zaranek, S. E., Parmentier, E. M., 2004. The onset of convection in fluids with strongly temperature-dependent viscosity cooled from above with implications for planetary lithospheres. Earth and Planetary Science Letters. 224, 371–386.

    Article  ADS  Google Scholar 

  • Zolotov, M. Y., Shock, E. L., 2003. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. Journal of Geophysical Research. 108.

    Google Scholar 

  • Zolotov, M. Y., 2007. An oceanic composition on early and today's Enceladus. Geophysical Research Letters. 34, L23203.

    Article  ADS  Google Scholar 

  • Zschau, J., Tidal friction in the solid earth: loading tides versus body tides. In: P. Brosche, J. Sundermann (Eds.), Tidal Friction and the Earth's Rotation. Springer, Berlin, 1978.

    Google Scholar 

Download references

Acknowledgments

This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, Under a contract with the National Aeronautics and Space Administration. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged. W.B.M. thanks the Cassini Data Analysis Program.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

18.1 Appendix: Glossary of Symbols

  • A = constant (Eq. 18.9)

  • C = polar moment of inertia of the satellite (Eq. 18.4)

  • C 0 = initial concentration of radiogenic elements. (Eq. 18.2)

  • C p = temperature-dependent specific heat (Eqs. 18.3, 18.6, 18.8)

  • C22 = second degree gravitational harmonic (i.e., ellipticity of the equator) (Eq. 18.1)

  • D = the semi-major axis of the orbit (Eq. 18.4)

  • e = eccentricity (Eq. 18.5)

  • dE/dt = average tidal heat produced during one orbit (Eq. 18.5)

  • g = gravity (Eq. 18.12)

  • G = universal gravitational constant (Eqs. 18.1, 18.4 through 18.7)

  • h a = fraction of mechanical energy retained as heat (Eq. 18.6)

  • H R = volumetric radiogenic heating rate (Eq. 18.2)

  • Hm = internal heating rate (radiogenic, tidal dissipation) (Eq. 18.8)

  • M o,i = initial power produced by radiogenic decay per unit mass of element i (Eq. 18.2)

  • J 2 = second degree gravitational harmonic. = −(C 20) (i.e., oblateness) (Eq. 18.1)

  • k = thermal conductivity (Eqs. 18.8 and 18.13)

  • k 2 = the periodic, potential, tidal Love number (Eqs. 18.4 and 18.5)

  • M = satellite mass (Eq. 18.1)

  • M p = Saturn's mass (Eq. 18.4)

  • n = number of radiogenic elements included in the sum (Eq. 18.2)

  • n = mean orbital motion (Eq. 18.5)

  • q conv = convective heat flux (Eq. 18.13)

  • Q = the dissipation factor (Eqs. 18.4, 18.5, 18.10, 18.11)

  • Qact = the activation energy (typically 60kJ/mol for ice) (Eq. 18.9)

  • r = distance from the center of the satellite (Eqs. 18.1, 18.6, and 18.8)

  • R = satellite radius (Eqs. 18.1, 18.3, and 18.7)

  • R eq = equatorial radius of the satellite (Eqs. 18.4 and 18.5)

  • Rgas = the perfect gas constant (Eqs. 18.9 and 18.11)

  • R a = Rayleigh number (Eq. 18.13)

  • Ra TBL = thermal boundary layer Rayleigh number (Eqs. 18.12 and 18.13)

  • t = time (Eq. 18.8)

  • t 0-CAIs = time since CAIs formation (Eq. 18.2)

  • T = temperature (Eq. 18.8)

  • T i = temperature of the planetesimals (Eq. 18.6)

  • ΔT = increase in the internal temperature (Eq. 18.3)

  • ΔT η = viscous temperature scale is then defined by (Eq. 18.10)

  • ΔTt TBL = temperature variation across thermal boundary layer (Eqs. 18.11 and 18.13)

  • T m = temperature of convective interior (Eq. 18.11)

  • T c = temperature at the base of the conductive lid (Eq. 18.11)

  • T m = temperature of the convective interior (Eq. 18.10)

  • T(r) = temperature profile resulting from accretion (Eq. 18.6)

  • V eq = second degree equatorial gravitational potential (Eq. 18.1)

  • x s = mass fraction of silicates (Eq. 18.2)

  • α = thermal expansion coefficient (Eq. 18.12)

  • δ = thickness of thermal boundary layer (Eqs. 18.12 and 18.13)

  • γ = moment of inertia (Eq. 18.3)

  • η = viscosity (Eqs. 18.9 and 18.12)

  • κ = thermal diffusivity (Eq. 18.12)

  • λ = longitude (Eq. 18.1)

  • λ i decay constant of radiogenic element i (Eq. 18.2)

  • <V> = mean satellitesimal encounter velocity

  • Ω = the initial angular rate (Eq. 18.3)

  • ρ = the density (Eqs. 18.2,18.6, 18.8, 18.12)

  • ρ¯ = the satellite's mean density (Eq. 18.7)

  • Ψ = porosity (Eq. 18.7)

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Matson, D.L., Castillo-Rogez, J.C., Schubert, G., Sotin, C., McKinnon, W.B. (2009). The Thermal Evolution and Internal Structure of Saturn's Mid-Sized Icy Satellites. In: Dougherty, M.K., Esposito, L.W., Krimigis, S.M. (eds) Saturn from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9217-6_18

Download citation

Publish with us

Policies and ethics