Skip to main content

Composition of Titan's Surface

  • Chapter
Book cover Titan from Cassini-Huygens

Abstract

The Huygens Probe returned the first in situ data on Titan's surface composition in January 2005. Although Huygens landed on a dry plain, the Gas Chromatograph Mass Spectrometer (GCMS) showed evidence of methane moisture in the near subsurface suggesting methane precipitation at some time in the past. Heavier organic molecules were not found to be abundant in the atmosphere or at the surface, but the GCMS surface results did show ethane to be present and tentatively identified cyanogen, benzene, and carbon dioxide. During descent, aerosol particles were processed with the Aerosol Collector and Pyroliser; results suggested that the aerosols contain both nitriles and hydrocarbons. The Descent Imager/Spectral Radiometer (DISR also carried by the probe) measured the visible and near-infrared spectral reflectance of the dark plain surface at the landing site. Those data suggest a mixture of water ice, tholin-like materials, and dark neutral material with a blue slope in the near infrared; identification of water ice is suggested but inconclusive. Most remarkably DISR did not detect spectral features, beyond those for methane, for a wide range of spectrally active hydrocarbon and nitrile compounds that had been expected to be present on the surface.

The Cassini Visual and Infrared Mapping Spectrometer (VIMS) observes the spectral properties of Titan's surface through atmospheric windows between intense methane absorption bands. VIMS data show Titan's dark blue units (in RGB composites of 2.0, 1.6, and 1.3 μm) to exhibit lower relative albedos in the 1.6, 2.0, and 5 μm windows interpreted (though not unambiguously) to result from enhancement in water ice. Spectra for bright units do not exhibit depressed albedo in these windows. This gives strong evidence that the bright units are bright organic solids and not exposed water ice. The other dark equatorial unit, the dark brown unit, correlates with the vast seas of dunes discovered in the Cassini RADAR SAR (Synthetic Aperture Radar) images, suggesting that the dunes are composed of dark organic grains. If the bright materials and dark dunes are both largely organics, then they appear to consist of physically and/or chemically different hydrocarbons and/or nitriles. The VIMS and RADAR data together lead to a model where a dark blue substrate is mantled by the seas of dark organic dunes seen in SAR images and by thinner units of bright organic solids that are invisible to SAR.

Carbon dioxide has been suggested as a reasonable compositional component of Titan's surface. The GCMS did tentatively identify CO2 at the surface. VIMS observations of south mid-latitude 5 m m bright spots Hotei Regio and Tui Regio have been suggested as attributable to carbon dioxide. CO2 might explain both an unusual spectral slope in the 2.7–2.8 m m spectral region and an absorption band near 4.92 m m. However the VIMS 4.92 m m band is shifted significantly in wavelength from the position observed in the laboratory rendering the CO2 identification in VIMS Tui Regio spectra inconclusive. An alternate suggestion for the source of the 4.92 μm feature in the VIMS Tui Regio spectrum is the nitrile cyanoacetylene (HC3 N); it offers a better spectral match than does CO2. Cyanoacetylene is a known thermospheric product detected by both the Composite Infrared Spectrometer (CIRS) and the Ion and Neutral Mass Spectrometer (INMS) Cassini instruments. If Tui Regio in fact shows a high abundance of cyanoacetylene it raises questions as to by what processes such materials are concentrated.

Other surface absorption features in the 4.8–5.2 μm spectral region have been attributed to various aromatic and aliphatic hydrocarbons including benzene. Because of the low signal precision of VIMS data at these wavelengths, these features are difficult to detect, particularly in Titan's dark regions. As a result there is a debate over the certainty of their existence. One such argued absorption feature near 5.05 μm most closely matches laboratory spectra of benzene, a compound detected both at the surface by the GCMS and at high altitude by INMS in greater abundance than expected. Another absorption feature at 4.97 μ m, also in debate, is best matched by spectra of the low-molecular-weight alkanes, methane and ethane, suggestive of moist surfaces wetted with such liquids consistent with GCMS observations of subsurface methane moisture.

The Cassini RADAR measurements constrain electrical properties related to Titan's surface composition in its scat-terometry and radiometry modes. Analysis of the scatterom-etry observations yields an average dielectric constant of ε ~ 2.2. The global passive microwave radiometry map shows the effective ε to be quite uniform over the globe; >95% of the surface shows a narrow range of ε ~1.5 ± 0.3. Both data sets suggest a high degree of volume scattering indicating substantial porosity making higher- ε materials including fractured, porous water ice, possible. At the same time, these data preclude substantial exposures of solid sheets of water ice (ε ~ 3.1) in the near surface except perhaps as local outcrops as at Sinlap crater (ε ~ 2.5). The radiometry analysis also yields global maps of thermal emissivity and of volume scattering. These properties show Titan's surface on the global scale to be consistent with fluffy blankets and veneers of organics, perhaps with graded density increasing with depth. The higher emissivity of the radar-dark dunes is consistent with grains having hydrocarbon and/or nitrile rich materials.

Cassini SAR images showed the north-polar region (>70°N) to exhibit a plethora of features resembling terrestrial lakes and seas. Further support for their being liquid is provided from analysis of high-resolution microwave radi-ometry that shows the north polar lakes to have high emis-sivity (~0.985) and low equivalent dielectric constant (~1.6) consistent with methane-ethane liquid. Most significant VIMS found absorption bands in south polar lake Ontario Lacus that evidence the presence of ethane, probably in liquid solution with methane, nitrogen, and other low-molecular-weight hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen M, Pinto JP, Yung YL (1980) Titan-Aerosol photochemistry and variations related to the sunspot cycle. Astrophys J Lett 242:L125

    ADS  Google Scholar 

  • Barnes JW, Brown RH, Turtle EP, McEwen AS, Lorenz RD, Janssen M, Schaller EL, Brown ME, Buratti BJ, Sotin C, Griffith C, Clark R, Perry J, Fussner S, Barbara J, West R, Elachi C, Bouchez AH, Roe HG, Baines KH, Bellucci G, Bibring J-P, Capaccioni F, Cerroni P, Combes M, Coradini A, Cruikshank DP, Drossart P, Formisano V, Jaumann R, Langevin Y, Matson DL, McCord TB, Nicholson PD, Sicardy B (2005) A 5-micron-bright spot on Titan: evidence for surface diversity. Science 310:92–95

    ADS  Google Scholar 

  • Barnes JW, Brown RH, Radebaugh J, Buratti BJ, Sotin C, Le Mouelic S, Rodriguez S, Turtle EP, Perry J, Clark R, Baines KH, Nicholson PD (2006) Cassini observations of flow-like features in western Tui Regio, Titan. Geophys Res Lett 33:doi:10.1029/2006GL026843

    Google Scholar 

  • Barnes JW, Brown RH, Soderblom L, Buratti BJ, Sotin C, Rodriguez S, Le Mouèlic S, Baines KH, Clark R, Nicholson P (2007a) Global-scale surface spectral variations on Titan seen from Cassini/VIMS. Icarus 186:242–258

    ADS  Google Scholar 

  • Barnes JW, Radebaugh J, Brown RH, Wall S, Soderblom L, Burr D, Sotin C, Le Mouèlic S, Rodriguez S, Buratti BJ, Clark R, Baines KH, Jaumann R, Nicholson PD, Kirk RL, Lopes R, Lorenz RD, Mitchell K, Wood CA, and the Cassini RADAR Team (2007b) Near infrared spectral mapping of Titan's mountains and channels. J Geophys Res 112:doi:10.1029/2007JE002932. E11006

    Google Scholar 

  • Barnes JW, Brown RH, Soderblom L, Sotin C, Mouèlic Le, Stèphane R, Sebastien J, Ralf B, Ross A, Buratti BJ, Pitman K, Baines KH, Clark R, Nicholson P (2008) Spectroscopy, morphometry, and pho-toclinometry of Titan's dune fields from Cassini/VIMS. Icarus 195:400–414

    ADS  Google Scholar 

  • Barnes JW, Brown RH, Soderblom JM, Soderblom LA, Jaumann R, Jackson B, Le Mouélic S, Sotin C, Buratti BJ, Pitman KM, Baines KH, Clark RN, Nicholson PD, Turtle EP, Perry J (2009) Shoreline features of Titan's Ontario Lacus from Cassini/VIMS observations. Icarus 201:217–225

    ADS  Google Scholar 

  • Bernard J-M, Quirico E, Brissaud O, Montagnac G, Reynard B, McMillan P, Coll P, Nguyen M-J, Raulin F, Schmitt B (2006) Reflectance spectra and chemical structure of Titan's tholins: application to the analysis of Cassini Huygens observations. Icarus 185:301–307

    ADS  Google Scholar 

  • Bernstein MP, Cruikshank DP, Sandford SA (2005) Near-infrared laboratory spectra of solid H2O/CO2 and CH3OH/CO2 ice mixtures. Icarus 179:527–534

    ADS  Google Scholar 

  • Biemann K (2006) Complex organic matter in Titan's aerosols? Nature 444:E6

    ADS  Google Scholar 

  • Broadfoot AL, Sandel BR, Shemansky DE, Holberg JB, Smith GR, Strobel DF, McConnell JC, Kumar S, Hunten DM, Atreya SK, Donahue TM, Moos HW, Bertaux JL, Blamont JE, Pomphrey RB, Linick S (1981) Extreme ultraviolet observations from Voyager 1 encounter with Saturn. Science 212:206–211

    ADS  Google Scholar 

  • Brown RH, Cruikshank DP, Tokunaga AT, Smith RG, Clark RN (1988) Search for volatiles on icy satellites. I–Europa. Icarus 74:262–271

    ADS  Google Scholar 

  • Brown RH, Baines KH, Bellucci G, Bibring J-P, Buratti BJ, Capaccioni F, Cerroni P, Clark RN, Coradini A, Cruikshank DP, Drossart P, Formisano V, Jaumann R, Langevin Y, Matson DL, McCord TB, Mennella V, Miller E, Nelson RM, Nicholson D, Sicardy B, Sotin C (2004) The Cassini Visual and Infrared Mapping Spectrometer (VIMS) investigation. Space Sci Rev 115:111–168

    ADS  Google Scholar 

  • Brown RH, Baines KH, Bellucci G, Buratti BJ, Capaccioni F, Cerroni P, Clark RN, Coradini A, Cruikshank DP, Drossart P, Formisano V, Jaumann R, Langevin Y, Matson DL, McCord TB, Mennella V, Nelson RM, Nicholson PD, Sicardy B, Sotin C, Baugh N, Griffith CA, Hansen GB, Hibbitts CA, Momary TW, Showalter MR (2006a) Observations in the Saturn system during approach and orbital insertion, with Cassini's visual and infrared mapping spectrometer (VIMS). Astron Astrophys 446:707–716

    ADS  Google Scholar 

  • Brown RH, Clark RN, Buratti BJ, Cruikshank DP, Barnes JW, Mastrapa RME, Bauer J, Newman S, Momary T, Baines KH, Bellucci G, Capaccioni F, Cerroni P, Combes M, Coradini A, Drossart P, Formisano V, Jaumann R, Langevin Y, Matson DL, McCord TB, Nelson RM, Nicholson PD, Sicardy B, Sotin C (2006b) Composition and physical properties of enceladus' surface. Science 311:1425–1428

    ADS  Google Scholar 

  • Brown RH, Soderblom LA, Soderblom JM, Clark RN, Jaumann R, Barnes JW, Sotin C, Buratti B, Baines KH, Nicholson PD (2008) The identification of liquid ethane in Titan's Ontario Lacus. Nature 454:607–610

    ADS  Google Scholar 

  • Buratti BJ, Cruikshank DP, Brown RH, Clark RN, Bauer JM, Jaumann R, McCord TB, Simonelli DP, Hibbitts CA, Hansen GB, Owen TC, Baines KH, Bellucci G, Bibring J-P, Capaccioni F, Cerroni P, Coradini A, Drossart P, Formisano V, Langevin Y, Matson DL, Mennella V, Nelson RM, Nicholson PD, Sicardy B, Sotin C, Roush TL, Soderlund K, Muradyan A (2005) Cassini visual and infrared mapping spectrometer observations of Iapetus: detection of CO2. Astrophys J 622:L149–L152

    ADS  Google Scholar 

  • Campbell D, Black G, Carter L, Ostro S (2003) Radar evidence for liquid surfaces on Titan. Science 302:431–434

    ADS  Google Scholar 

  • Clark RN, Swayze GA, Livo KE, Kokaly RF, Sutley SJ, Dalton JB, McDougal RR, Gent CA (2003) Imaging spectroscopy: earth and planetary remote sensing with the USGS Tetracorder and expert systems. J Geophys Res 108:5-1–5-43

    Google Scholar 

  • Clark RN, Brown RH, Jaumann R, Cruikshank DP, Nelson RM, Buratti BJ, McCord TB, Lunine J, Baines KH, Bellucci G, Bibring J-P, Capaccioni F, Cerroni P, Coradini A, Formisano V, Langevin Y, Matson DL, Mennella V, Nicholson PD, Sicardy B, Sotin C, Hoefen TM, Curchin JM, Hansen G, Hibbits K, Matz K-D (2005) Compositional maps of Saturn's moon Phoebe from imaging spec-troscopy. Nature 435:66–69

    ADS  Google Scholar 

  • Clark RN, Curchin JM, Brown RH, Cruikshank DP, Jaumann R, Lunine J, Hoefen TM, Baines KH, Buratti BJ, Barnes J, Nicholson PD (2006b) Detection of widespread aromatic and aliphatic hydrocarbon deposits on Titan's surface observed by VIMS, AGU Fall Meeting Proceedings, Abstract P11A-03

    Google Scholar 

  • Clark RN, Curchin JM, Brown RH, Waite JH, Cruikshank DP, Jaumann R, Lunine J, Hoefen TM, Cravens TE, Yelle RV, Vuitton V, Baines KH, Buratti BJ, Barnes J, McCord TB, Nicholson PD (2006a) Detection of widespread aromatic and aliphatic hydrocarbon deposits on Titan's surface observed by VIMS and excess benzene observed in Titan's thermosphere observed by INMS. Bull Am Astron Soc 38:574. Abstract 48-04

    ADS  Google Scholar 

  • Clark RN, Curchin JM, Barnes J, Jaumann R, Soderblom L, Cruikshank DP, Lunine J, Stephan K, Hoefen TH, Lemouélic S, Sotin C, Baines KH, Buratti B, Nicholson P (2009b) Detection and mapping of hydrocarbon deposits on Titan, submitted to Icarus

    Google Scholar 

  • Clark RN, Curchin JM, Hoefen TM, Swayze GA (2009b) Reflectance spectroscopy of organic compounds i: alkanes. J Geophys Res 114:E03001

    Google Scholar 

  • Coustenis A, Lellouch E, Maillard JP, McKay CP (1995) Titan's surface, composition and variability from the near-infrared albedo. Icarus 118:87–104

    ADS  Google Scholar 

  • Coustenis A, Gendron E, Lai O, Véran J-P, Woillez J, Combes M, Vapillon L, Fusco T, Mugnier L, Rannou (2001) Images of Titan at 1.3 and 1.6 μ m with adaptive optics at the CFHT. Icarus 154:501–515

    ADS  Google Scholar 

  • Coustenis A, Salama A, Schultz B, Ott S, Lellouch E, Encrenaz T, Gautier D, Feuchtgruber H (2003) Titan's atmosphere from ISO mid-infrared spectroscopy. Icarus 161:383–403

    ADS  Google Scholar 

  • Coustenis A, Hirtzig M, Gendron E, Drossart P, Lai O, Combes M, Negrão A (2005) Maps of Titan's surface from 1 to 2.5 μm. Icarus 177:1, 89–105

    ADS  Google Scholar 

  • Coustenis A, Negrão A, Salama A, Schulz B, Lellouch E, Rannou P, Drossart P, Encrenaz T, Schmitt B, Boudon V, Nikitin A (2006) Titan's 3-micron spectral region from ISO high-resolution spectroscopy. Icarus 180:176–185. doi: 10.1016/j.icarus.2005. 08.007

    ADS  Google Scholar 

  • Cruikshank DP, Dalton JB, Ore CM, Dalle BJ, Stephan K, Filacchione G, Hendrix AR, Hansen CJ, Coradini A, Cerroni P, Tosi F, Capaccioni F, Jaumann R, Buratti BJ, Clark RN, Brown RH, Nelson RM, McCord TB, Baines KH, Nicholson PD, Sotin C, Meyer AW, Bellucci G, Combes M, Bibring J-P, Langevin Y, Sicardy B, Matson DL, Formisano V, Drossart P, Mennella V (2007) Surface composition of Hyperion. Nature 448:54–56

    ADS  Google Scholar 

  • Curchin JM, Shaffer CJ, Clark RN, Mc Mahon RJ, Hoefen TM (2009) Reflectance spectroscopy of cyanoacetylene (HC3 N), submitted to Icarus

    Google Scholar 

  • Danielson RE, Caldwell J, Larach DR (1973) An inversion in the atmosphere of Titan. Icarus 20:437

    ADS  Google Scholar 

  • de Pater I, Ádámkovics M, Bouchez AH, Brown ME, Gibbard SG, Marchis F, Roe HG, Schaller EL, Young E (2006) Titan imagery with Keck adaptive optics during and after probe entry. J Geophys Res 111:E7, E07S05, 1–16

    Google Scholar 

  • Elachi C, Allison MD, Borgarelli L, Encrenaz P, Im E, Janssen MA, Johnson WTK, Kirk RL, Lorenz RD, Lunine JI, Muhleman DO, Ostro SJ, Picardi G, Posa F, Rapley CG, Roth LE, Seu R, Soderblom LA, Vetrella S, Wall SD, Wood CA, Zebker HA (2004) The Cassini Titan RADAR Mapper. Space Sci Rev 115:71–110

    ADS  Google Scholar 

  • Eshelman VR, Lindal GF, Tyler GL (1983) Is Titan wet or dry? Science 221:53–55

    ADS  Google Scholar 

  • Filacchione G, Capaccioni F, McCord TB, Coradini A, Cerroni P, Bellucci G, Tosi F, DíAversa E, Formisano V, Brown RH, Baines KH, Bibring JP, Buratti BJ, Clark RN, Combes M, Cruikshank DP, Drossart P, Jaumann R, Langevin Y, Matson DL, Mennella V, Nelson RM, Nicholson PD, Sicardy B, Sotin C, Hansen G, Hibbitts K, Showalter M, Newman S (2007) Saturn's icy satellites investigated by Cassini-VIMS I. Full-disk properties: 350–5100 nm reflec-tance spectra and phase curves. Icarus 186:259–290

    ADS  Google Scholar 

  • Flasar FM (1983) Oceans on Titan? Science 221:55–57

    ADS  Google Scholar 

  • Fulchignoni M, Ferri F, Angrilli F, Ball AJ, Bar-Nun A, Barucci MA, Bettanini C, Bianchini G, Borucki W, Colombatti G, Coradini M, Coustenis A, Debei S, Falkner P, Fanti G, Flamini E, Gaborit V, Grard R, Hamelin M, Harri AM, Hathi B, Jernej I, Leese MR, Lehto A, Lion Stoppato F, López-Moreno JJ, Mäkinen T, McDonnell JAM, McKay CP, Molina-Cuberos G, Neubauer FM, Pirronello V, Rodrigo R, Saggin B, Schwingenschuh K, Seiff A, Simões F, Svedhem H, Tokano T, Towner MC, Trautner R, Withers P, Zarnecki JC (2005) In situ measurements of the physical characteristics of Titan's environment. Nature 438:785–791

    ADS  Google Scholar 

  • Goldstein RM, Jurgens RF (1992) DSN observations of Titan TDA PR 42–109. Jet Propulsion Laboratory, Pasadena CA

    Google Scholar 

  • Griffith CA (1993) Evidence for surface heterogeneity on Titan. Nature 364:511–514

    ADS  Google Scholar 

  • Griffith, CA, McKay, CP, Ferri, F (2008) Titan's Tropical Storms in an Evolving Atmosphere. Astrophys. J. 687: L41–L44.

    ADS  Google Scholar 

  • Griffith CA, Owen T, Wagener R (1991) Titans surface and troposphere, investigated with ground-based, near-infrared observations. Icarus 93:362–378

    ADS  Google Scholar 

  • Griffith CA, Owen T, Geballe TR, Rayner J, Rannou (2003) Evidence for the exposure of water ice on Titan's surface. Science 300:628–630

    ADS  Google Scholar 

  • Grossman AW, Muhleman DO (1992) Observations of Titan's radio light-curve at 3.5 cm, Bull Amer Astron Soc 24:954

    ADS  Google Scholar 

  • Grundy WM, Schmitt B (1998) The temperature-dependent near-infrared absorption spectrum of hexagonal H2 O ice. J Geophys Res 103:E11, 25809–25822

    ADS  Google Scholar 

  • Grundy WM, Schmitt B, Quirico E (2002) The temperature-dependent spectrum of methane ice I between 0.7 and 5 mm and opportunities for near-infrared remote thermometry. Icarus 155:486–496

    ADS  Google Scholar 

  • Hanel R, Conrath B, Flasar FM, Kunde V, Maguire W, Pearl J, Pirraglia J, Samuelson R, Herath L, Allison M, Cruikshank D, Gautier D, Gierasch P, Horn L, Koppany R, Ponnamperuma C (1981) Infrared observations of the saturnian system from Voyager 1. Science 212:192–200

    ADS  Google Scholar 

  • Hansen GB (2005) Ultraviolet to near-infrared absorption spectrum of carbon dioxide ice from 0.174 to 1.8 μ m. J Geophys Res 110:doi:10.1029/2005JE002531. E11003

    ADS  Google Scholar 

  • Hartung M, Herbst TM, Dumas C, Coustenis A (2006) Limits to the abundance of surface CO2 ice on Titan. J Geophys Res 111:E07S09

    Google Scholar 

  • Hirtzig M, Coustenis A, Gendron E, Drossart P, Hartung M, Negrão A, Rannou P, Combes M (2007) Titan, atmospheric and surface features as observed with Nasmyth adaptive optics system near-infrared imager and spectrograph at the time of the Huygens mission. J Geophys Res 112:E2, E02S91, 1–12

    Google Scholar 

  • Hunten DM (1974) Scientific summary. In: Hunten DM (ed) The atmosphere of Titan. Proc. NASA AMES Conf., Moffett Field, CA, NASA Spec. Publ., SP-340, pp 4–8

    Google Scholar 

  • Hunten DM, Tomasko MG, Flasar FM, Samuelson RE, Strobel DF, Stevenson DJ (1984) In: Gehrels T, Matthews MS (eds) Titan, in Saturn. University of Arizona Press, Tucson, pp 671–787

    Google Scholar 

  • Imanaka H, Khare BN, Elsila JE, Bakes ELO, McKay CP, Cruikshank DP, Sugita S, Matsui T, Zare RN (2004) Laboratory experiments of Titan tholin formed in cold plasma at various pressures, implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. Icarus 168:344–366

    ADS  Google Scholar 

  • Imanaka H, Khare BN, McKay CP, Cruikshank DP (2005) Complex refractive indices of tholins produced from various initial gas mixtures and formation pressures, Implications for Titan, the early Earth, and the outer solar system bodies. Bull Amer Astron Soc 37:772

    ADS  Google Scholar 

  • Israël G, Cabane J-F, Brun G, Niemann S, Way H, Riedler W, Steller M, Raulin F, Coscia D (2002) Huygens probe aerosol collector pyroly-ser experiment. Space Sci Rev 104:435–466

    ADS  Google Scholar 

  • Israël G, Szopa C, Raulin F, Cabane M, Niemann HB, Atreya SK, Bauer SJ, Brun J-F, Chassefière E, Coll P, Condé E, Coscia D, Hauchecorne A, Millian P, Nguyen M-J, Owen T, Riedler W, Samuelson RE, Siguier J-M, Steller M, Sternberg R, Vidal-Madjar C (2005) Complex organic matter in Titan's atmospheric aerosols from in situ pyrolysis and analysis. Nature 438:796–799

    ADS  Google Scholar 

  • Jacquemart D, Lellouch E, Bézard B, de Bergh C, Coustenis A, Lacome N, Schmitt B, Tomasko M (2008) New laboratory measurements of CH4 in Titan's conditions and a reanalysis of the DISR near-surface spectra at the Huygens landing site. Planetary Space Sci 56:613–623

    ADS  Google Scholar 

  • Janssen MA, Lorenz RD, West R, Paganelli F, Lopes RM, Kirk RL, Elachi C, Wall SD, Johnson WTK, Anderson Y, Boehmer RA, Callahan P, Gim Y, Hamilton GA, Kelleher KD, Roth L, Stiles B, Le Gall A, the Cassini RADAR Team (2009) Titan's surface at 2.2-cm wavelength imaged by the cassini radar radiometer: calibration and first results. Icarus 200:222–239

    ADS  Google Scholar 

  • Kargel JS, Croft SK, Lunine JI, Lewis JS (1991) Rheological properties of ammonia-water liquids and crystal-liquid slurries — planetologi-cal applications. Icarus 89:93–112

    ADS  Google Scholar 

  • Keller HU, Grieger B, Küppers M, Schröder SE, Skorov YV, Tomasko MG (2008) The properties of Titan's surface at the Huygens landing site from DISR observations. Planetary Space Sci 56:728–752

    ADS  Google Scholar 

  • Khare BN, Sagan C, Arakawa ET, Suits F, Callcott TA, Williams MW (1984) Optical constants of organic tholins produced in a simulated Titanian atmosphere — from soft x-ray to microwave frequencies. Icarus 60:127–137

    ADS  Google Scholar 

  • Kossaki KJ, Lorenz RD (1996) Hiding Titan's ocean: densification and hydrocarbon storage in an icy regolith, Planet. Space Sci 44:1029–1037

    ADS  Google Scholar 

  • Kress ME, McKay CP (2004) Formation of methane in comet impacts: implications for Earth, Mars, and Titan. Icarus 168:475–483

    ADS  Google Scholar 

  • Kuiper GP (1944) A satellite with an atmosphere. Astrophys J 100:378–383

    ADS  Google Scholar 

  • Lara LM, Lorenz RD, Rodrigo R (1994) Liquids and solids on the surface of Titan, results of a new photochemical model. Planet Space Sci 42:5–14

    ADS  Google Scholar 

  • Lellouch E, Schmitt B, Coustenis A, Cuby J-G (2004) Titan's 5-micron lightcurve. Icarus 168:209–214

    ADS  Google Scholar 

  • Lemmon MT, Karkoschka E, Tomasko M (1993) Titan's rotation: surface feature observed. Icarus 103:329–332

    ADS  Google Scholar 

  • Lemmon MT, Karkoschka K, Tomasko M (1995) Titan's rotational lightcurve. Icarus 113:27–38

    ADS  Google Scholar 

  • Lewis JS (1971) Satellites of the outer planets: their physical and chemical nature. Icarus 15:174–185

    ADS  Google Scholar 

  • Lindal GF, Wood GE, Hotz HB, Sweetnam DN, Eshleman VR, Tyler GL (1983) The atmosphere of Titan — an analysis of the Voyager 1 radio occultation measurements. Icarus 53:348–363

    ADS  Google Scholar 

  • Lopes R, Mitchell KL, Stofan ER, Lunine JI, Lorenz R, Paganelli F, Kirk RL, Wood CA, Wall SD, Robshaw LE, Fortes AD, Neish CD, Radebaugh J, Reffet E, Ostro SJ, Elachi C, Allison MD, Anderson Y, Boehmer R, Boubin G, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Janssen MA, Johnson WT, Kelleher K, Muhleman DO, Ori G, Orosei R, Picardi G, Posa F, Roth LE, Seu R, Shaffer S, Soderblom LA, Stiles B, Vetrella S, West RD, Wye L, Zebker HA (2006) Cryovolcanic features on Titan's surface as revealed by the Cassini Titan radar mapper. Icarus 186:395–412

    ADS  Google Scholar 

  • Lorenz RD (1996) Pillow lava on Titan, expectations and constraints on cryovolcanic processes. Planet Space Sci 44:1021–1028

    ADS  Google Scholar 

  • Lorenz RD (1998) Preliminary measurements of the cryogenic dielectric properties of water–ammonia ices: implications for radar observations of icy satellites. Icarus 136:344–348

    ADS  Google Scholar 

  • Lorenz RD, Lunine JI (1997) Titan's surface reviewed: the nature of bright and dark terrain. Planet Space Sci 45:981–992

    ADS  Google Scholar 

  • Lorenz RD, Lunine JI (2005) Titan's surface before Cassini. Planet Space Sci 53:557–576

    ADS  Google Scholar 

  • Lorenz RD, Biolluz G, Encrenaz P, Janssen MA, West RD, Muhleman DO (2003) Cassini RADAR: prospects for Titan surface investigations using the microwave radiometer. Planet Space Sci 51:353–364

    ADS  Google Scholar 

  • Lorenz RD, Wall S, Radebaugh J, Boubin G, Reffet E, Janssen M, Stofan E, Lopes R, Kirk R, Elachi C, Lunine J, Mitchell K, Paganelli F,Soderblom L, Wood C, Wye L, Zebker H, Anderson Y, Ostro S, Allison M, Boehmer R, Callahan P, Encrenaz P, Ori GG, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson W, Kelleher K, Muhleman D, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Stiles B, Vetrella S, Flamini E, West R (2006a) The sand seas of Titan Cassini RADAR observations of longitudinal dunes. Science 312:724–727

    ADS  Google Scholar 

  • Lorenz RD, Niemann HB, Harpold DN, Way SH, Zarnecki JC (2006b) Titan's damp ground: constraints on Titan surface thermal properties from the temperature evolution of the Huygens GCMS inlet. Meteoritics Planet Sci 41:1705–1714

    ADS  Google Scholar 

  • Lorenz RD, Callahan S, Gim Y, Alberti G, Flamini E, Seu R, Picardi G, Orosei R, Zebker H, Lunine J, Hamilton G, Hensley S, Johnson WTK, Schaffer S, Wall S, West R, Francescetti G (2007) Titan's shape, radius and landscape from Cassini radar altimetry. Lunar Planetary Sci XXXVIII LPI Cont No 1338:1329

    Google Scholar 

  • Lunine JI (1993) Does Titan have an ocean — a review of current understanding of Titans surface. Rev Geophys 31:133–149

    ADS  Google Scholar 

  • Lunine JI, Stevenson DJ (1987) Clathrate and ammonia hydrates at high pressure: application to the origin of methane on Titan. Icarus 70:61–77

    ADS  Google Scholar 

  • Lunine JI, Stevenson DJ, Yung YL (1983) Ethane ocean on Titan. Science 222:1229–1230

    ADS  Google Scholar 

  • McCord TB, Hansen GB, Buratti BJ, Clark RN, Cruikshank DP, D'Aversa E, Griffith CA, Baines EKH, Brown RH, Dalle Ore CM, Filacchione G, Formisano V, Hibbitts CA, Jaumann R, Lunine JI, Nelson RM, Sotin C, the Cassini VIMS Team (2006) Composition of Titan's surface from Cassini VIMS. Planet Space Sci 54:1524–1539

    ADS  Google Scholar 

  • McCord TB, Hayne P, Combe J-P, Hansen GB, Barnes JW, Rodriguez S, Le Mouélic S, Baines EKH, Buratti BJ, Sotin C, Nicholson P, Jaumann R, Nelson R, The Cassini Vims Team (2008) Titan's surface: search for spectral diversity and composition using the Cassini VIMS investigation. Icarus 194:212–242

    ADS  Google Scholar 

  • McKay CP, Coustenis A, Samuelson RE, Lemmon MT, Lorenz RD, Cabane M, Rannou P, Drossart P (2001) Physical properties of the organic aerosols and clouds on Titan. Planet Space Sci 49:79–99

    ADS  Google Scholar 

  • Mitri G, Showman AP, Lunine JI, Lorenz RD (2007) Hydrocarbon lakes on Titan. Icarus 186:385–394

    ADS  Google Scholar 

  • Mouélic Le, Stéphane P, Philippe J, Michael A, Barnes JW, Rodriguez S, Sotin C, Brown RH, Baines KH, Buratti BJ, Clark RN, Crapeau M, Encrenaz PJ, Jaumann R, Geudtner D, Paganelli F, Soderblom L, Tobie G, Wall S (2008) Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data. J Geophys Res 113:4003

    Google Scholar 

  • Muhleman DO, Grossman AO, Butler BJ, Slade MA (1990) Radar reflectivity of Titan. Science 248:975–980

    ADS  Google Scholar 

  • Muhleman DO, Grossman AO, Butler BJ (1995) Radar investigation of Mars, Mercury, and Titan. Annu Rev Earth Planet Sci 23:337–374

    ADS  Google Scholar 

  • Negrão A, Coustenis A, Lellouch E, Maillard J-P, Rannou P, Schmitt B, McKay CP, Boudon V (2006) Titan's surface albedo variations over a Titan season from near-infrared CFHT/FTS spectra. Planet Space Sci 54:1225–1246

    ADS  Google Scholar 

  • Negrão A, Hirtzig M, Coustenis A, Gendron E, Drossart P, Rannou P, Combes M, Boudon V (2007) The 2-μm spectroscopy of Huygens probe landing site on Titan with very large telescope/nasmyth adaptive optics system near-infrared imager and spectrograph. J Geophys Res 112:E2, E02S92, 1–14

    Google Scholar 

  • Nelson RM, Kamp LW, Matson DL, Irwin PGJ, Baines KH, Boryta MD, Leader FE, Jaumann R, Smythe WD, Sotin C, Clark RN, Cruikshank DP, Drossart P, Pearl JC, Hapke BW, Lunine J, Combes M, Bellucci G, Bibring J-P, Capaccioni F, Cerroni P, Coradini A, Formisano V, Filacchione G, Langevin RY, McCord TB, Mennella V, Nicholson PD, Sicardy B (2009) Saturn's Titan: surface change, ammonia, and implications for atmospheric and tectonic activity. Icarus 199:429–441

    ADS  Google Scholar 

  • Niemann HB, Atreya SK, Bauer SJ, Biemann K, Block B, Carignan GR, Donahue TM, Frost RL, Gautier D, Haberman JA, Harpold D, Hunten DM, Israël G, Lunine JI, Mauersberger K, Owen TC, Raulin F, Richards JE, Way SH (2002) The gas chromatograph mass spectrometer for the Huygens probe. Space Sci Rev 104:553–591

    ADS  Google Scholar 

  • Niemann HB, Atreya SK, Bauer SJ, Carignan GR, Demick JE, Frost RL, Gautier D, Haberman JA, Harpold DN, Hunten DM, Israël G, Lunine JI, Kasprzak WT, Owen TC, Paulkovich M, Raulin F, Raaen E, Way SH (2005) The composition of Titan's atmosphere from the GCMS on the Huygens probe, and implications for the origin of nitrogen and methane. Nature 438:779–784

    ADS  Google Scholar 

  • Paganelli F, Janssen MA, Stiles B, West R, Lorenz RD, Lunine JI, Wall SD, Callahan P, Lopes RM, Stofan E, Kirk RL, Johnson WTK, Roth L, Elachi C, Team TR (2007) Titan's surface from the Cassini Radar SAR and high resolution radiometry data of the first five flybys. Icarus 191:211–222

    ADS  Google Scholar 

  • Porco CC, Baker E, Barbara J, Beurle K, Brahic A, Burns JA, Charnoz S, Cooper N, Dawson DD, Genio D, Anthony D, Denk T, Dones L, Dyudina U, Evans MW, Fussner S, Giese B, Grazier K, Helfenstein P, Ingersoll AP, Jacobson RA, Johnson TV, McEwen A, Murray CD, Neukum G, Owen WM, Perry J, Roatsch T, Spitale J, Squyres S, Thomas P, Tiscareno M, Turtle EP, Vasavada AR, Veverka J, Wagner R, West R (2005) Imaging of Titan from the Cassini spacecraft. Nature 434:159–168

    ADS  Google Scholar 

  • Radebaugh J, Lorenz RD, Kirk RL, Lunine JI, Stofan ER, Lopes RMC, Wall SD, the Cassini Radar Team (2008) Mountains on Titan observed by Cassini Radar. Icarus 192:77–91

    ADS  Google Scholar 

  • Ramirez SI, Coll P, da Silva A, Navarro-González R, Lafait J, Raulin F (2002) Complex refractive index of Titan's aerosol analogues in the 200–900 nm domain. Icarus 156:515–529

    ADS  Google Scholar 

  • Raulin F (1985) Chimie organique dans Titan: experiences de simulation en laboratoire et speculations. In The Atmospheres of Saturn and Titan. Eur. Space Agency Spec. Publ., SP-241, pp 161–173

    Google Scholar 

  • Raulin F (1987) Organic chemistry in the oceans of Titan. Adv Space Res 7:71–81

    ADS  Google Scholar 

  • Rodriguez S, Le Mouélic S, Sotin C, Clénet H, Clark RN, Buratti B, Brown RH, McCord TB, Nicholson D, Baines KH, the VIMS Science Team (2006) Cassini/VIMS hyperspectral observations of the HUYGENS landing site on Titan. Planet Space Sci 54:1510–1523

    ADS  Google Scholar 

  • Sagan C (1974) Organic chemistry in the atmosphere. In Hunten DM (ed) The Atmosphere of Titan. NASA Spec. Publ., SP-340, pp 134–141

    Google Scholar 

  • Sagan C, Dermott SF (1982) The tide in the seas of Titan. Nature 300:731–733

    ADS  Google Scholar 

  • Sagan C, Thompson WR, Khare BN (1992) Titan: a laboratory for pre-biological organic chemistry. Account Chem Res 25:286–292

    Google Scholar 

  • Samuelson RE, Hanel RA, Kunde VG, Maguire WC (1981) Mean molecular weight and hydrogen abundance of Titan's atmosphere. Nature 292:688–693

    ADS  Google Scholar 

  • Schröder SE, Keller HU (2008) The reflectance spectrum of Titan's surface at the Huygens landing site determined by the descent imager/spectral radiometer. Planetary Space Sci 56:753–769

    ADS  Google Scholar 

  • Smith H, Lemmon MT, Lorenz RD, Sromovsky LA, Caldwell JJ, Allison MD (1996) Titan's surface revealed by HST imaging. Icarus 119:336–349

    ADS  Google Scholar 

  • Soderblom LA, Kirk RL, Lunine JI, Anderson JA, Baines KH, Barnes JW, Barrett JM, Brown RH, Buratti BJ, Clark RN, Cruikshank DP, Elachi C, Janssen MA, Jaumann R, Karkoschka E, Mouélic SLe, Lopes RM, Lorenz RD, McCord TB, Nicholson PD, Radebaugh J, Rizk B, Sotin C, Stofan ER, Sucharski TL, Tomasko MG, Wall SD (2007) Correlations between Cassini VIMS spectra and RADAR SAR images: implications for Titan's surface composition and the character of the Huygens Probe landing site. Planetary Space Sci 55:2025–2036

    ADS  Google Scholar 

  • Stevenson DJ (1992) The interior of Titan. Proceedings of the Symposium on Titan, ESA SP-338. ESA, Noordwijk, The Netherlands, pp 29–33

    Google Scholar 

  • Stofan ER, Elachi C, Lunine JI, Lorenz RD, Stiles B, Mitchell KL, Ostro S, Soderblom L, Wood C, Zebker H, Wall S, Janssen M, Kirk R, Lopes R, Paganelli F, Radebaugh J, Wye L, Anderson Y, Allison M, Boehmer R, Callahan P, Encrenaz P, Flamini E, Francescetti G, Gim Y, Hamilton G, Hensley S, Johnson WTK, Kelleher K, Muhleman D, Paillou P, Picardi G, Posa F, Roth L, Seu R, Shaffer S, Vetrella S, West R (2007) The lakes of Titan. Nature 445:61–64

    ADS  Google Scholar 

  • Strobel DF (1974) The photochemistry in the atmosphere of Titan. Icarus 21:466–470

    ADS  Google Scholar 

  • Swayze GA, Clark RN, Goetz AFH, Chrien TG, Gorelick NS (2003) Effects of spectrometer band pass, sampling, and signal-to-noise ratio on spectral identification using the Tetracorder algorithm. J Geophys Res 108:9-1–9-30

    Google Scholar 

  • Thompson WR, Squyres SW (1990) Titan and other icy satellites: dielectric properties of constituent materials and implications for radar sounding. Icarus 86:336–354

    ADS  Google Scholar 

  • Tobie G, Grasset O, Lunine JI, Mocquet A, Sotin C (2005) Titan's internal structure inferred from a coupled thermal-orbital model. Icarus 175:496–502

    ADS  Google Scholar 

  • Tobie G, Lunine J, Sotin C (2006) Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440:61–64

    ADS  Google Scholar 

  • Tokano T, McKay CP, Neubauer FM, Atreya SK, Ferri F, Fulchignoni M, Niemann HB (2006) Methane drizzle on Titan. Nature 442:432–435

    ADS  Google Scholar 

  • Tomasko MG, Buchhauser D, Bushroe M, Dafoe LE, Doose LR, Eibl A, Fellows C, Farlane EM, Prout GM, Pringle MJ, Rizk B, See C, Smith H, Tsetsenekos K (2002) The Descent Imager/Spectral Radiometer (DISR) experiment on the Huygens entry probe of Titan. Space Sci Rev 104:469–551

    ADS  Google Scholar 

  • Tomasko MG, Archinal B, Becker T, Bézard B, Bushroe M, Combes M, Cook D, Coustenis A, de Bergh C, Dafoe LE, Doose L, Douté S, Eibl A, Engel S, Gliem F, Grieger B, Holso K, Howington-Kraus E, Karkoschka E, Keller HU, Kirk R, Kramm R, Küppers M, Lanagan P, Lellouch E, Lemmon M, Lunine J, McFarlane E, Moores J, Prout GM, Rizk B, Rosiek M, Rueffer P, Schröder SE, Schmitt B, See C, Smith P, Soderblom L, Thomas N, West R (2005) Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature 438:765–778

    ADS  Google Scholar 

  • Trafton L (1972) On the possible detection of H2 in Titan's atmosphere. Ap J 175:285–293

    ADS  Google Scholar 

  • Tran BN, Joseph JC, Ferris JP, Persans PD, Chera JJ (2003) Simulation of Titan haze formation using a photochemical flow reactor — the optical constants of the polymer. Icarus 165:379–390

    ADS  Google Scholar 

  • Turtle EP, Perry JE, McEwen AS, DelGenio AD, Barbara J, West RA, Dawson DD, Porco CC (2009) Cassini imaging of Titan's high-latitude lakes, clouds, and south-polar surface changes. Geophys Res Lett 36:L02204

    Google Scholar 

  • Tyler GL, Eshleman VR, Anderson JD, Levy GS, Lindal GF, Wood GE, Croft TA (1981) Radio Science investigations of the Saturn system with Voyager 1: preliminary results. Science 212:201–206

    ADS  Google Scholar 

  • West R, Anderson Y, Boehmer R, Borgarelli L, Callahan P, Elachi C, Gim Y, Hamilton G, Hensley S, Janssen M, Johnson WTK, Kelleher K, Lorenz R, Ostro S, Roth L, Shaffer S, Stiles B, Wall S, Wye L, Zebker H (2009) Cassini RADAR sequence planning and instrument performance, IEEE Trans Geosci Remote Sensing. 47:1775–1795

    ADS  Google Scholar 

  • White TL, Cogdell JR (1973) Lunar polarization studies at 3.1 mm wavelength. Moon 6:235–249

    ADS  Google Scholar 

  • Wye LC, Zebker HA, Ostro SJ, West RD, Gim Y, Lorenz RD, the Cassini RADAR Team (2007) Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements. Icarus 188:367–385

    ADS  Google Scholar 

  • Yarger J, Lunine JI, Burke M (1993) Calorimetric studies of the ammonia-water system with application to the outer solar system. J Geophys Res 98:no. E7, 13109–13117

    ADS  Google Scholar 

  • Yung YL, Allen M, Pinto JP (1984) Photochemistry of the atmosphere of Titan — comparison between model and observations. Astrophys J Suppl Ser 55:465–506

    ADS  Google Scholar 

  • Zarnecki JC, Leese MR, Hathi B, Ball AJ, Hagermann A, Towner MC, Lorenz RD, McDonnell JAM, Green SF, Patel MR, Ringrose TJ, Rosenberg PD, Atkinson KR, Paton MD, Banaszkiewicz M, Clark BC, Ferri F, Fulchignoni M, Ghafoor NAL, Kargl G, Svedhem H, Delderfield J, Grande M, Parker DJ, Challenor PG, Geake JE (2005 A soft solid surface on Titan as revealed by the Huygens Surface Science Package. Nature 438:792–795

    ADS  Google Scholar 

Download references

Acknowledgments

This research was carried out under funding from the Cassini Flight Project managed by the Jet Propulsion Laboratory, Caltech for NASA. We thank Brent Archinal, Marc Buie, Dale Cruikshank, and Randy Kirk for their valuable critical input.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Soderblom, L.A. et al. (2009). Composition of Titan's Surface. In: Brown, R.H., Lebreton, JP., Waite, J.H. (eds) Titan from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9215-2_6

Download citation

Publish with us

Policies and ethics