Skip to main content

Nonlinear Oscillations in the Conduction System of the Heart – A Model

  • Conference paper
Complex Dynamics in Physiological Systems: From Heart to Brain

Abstract

The effects of the interaction of the phase space trajectory of a modified van der Pol oscillator with a hyperbolic saddle are discussed. It is shown that the refractory period is obtained and that the saddle affects the way the model reacts both to parameter change and to external perturbation. We obtain results comparable to effects observed in recordings of heart rate variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Keener, J. Sneyd, Mathematical Physiology, Interdisciplinary Applied Mathematics 8 (Springer, New York, 1998).

    Google Scholar 

  2. K. Grudzinski, J.J. Żebrowski, R. Baranowski, “A model of the sino-atrial and the atrio- ventricular nodes of the conduction system of the human heart”, Biomed. Eng. 51,210–214 (2006).

    Google Scholar 

  3. J.J. Żebrowski, K. Grudziński,. Buchner, P. Kuklik, J. Gac, G. Gielerak, P. Sanders, R. Baranowski, “A nonlinear oscillator model reproducing various phenomena in the dynamics of the conduction system of the heart”, to appear in Chaos 17, Focus Issue “Cardiovascular Physics”, (2007).

    Google Scholar 

  4. K. Grudziński, J.J. Żebrowski, “Modeling cardiac pacemakers with relaxation oscillators”, Physica A 336, 153–152 (2004).

    Article  Google Scholar 

  5. G. Bub, L. Glass, “Bifurcations in a discontinuous circle map: a theory for a chaotic cardiac arrhythmia”, Int. J. Bifurcations and Chaos 5, 359–371 (1995).

    Article  Google Scholar 

  6. D. di Bernardo, M.G. Signorini, S. Cerutti, “A model of two nonlinear coupled oscillators for the study of heartbeat dynamics”, Int. J. Bifurcations and Chaos 8, 1975–1985 (1998).

    Article  Google Scholar 

  7. J.M.T. Thompson, H.B. Steward, Nonlinear Dynamics and Chaos(Wiley, New York, 2002).

    Google Scholar 

  8. B. van der Pol, J. van der Mark, “The heartbeat considered as a relaxation oscillation and an electrical model of the heart”, Phil. Mag. 6, 763–775 (1928).

    Google Scholar 

  9. R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane”, Biophys. J. 1, 445–466 (1961).

    Article  PubMed  CAS  Google Scholar 

  10. C.R. Katholi, F. Urthaler, J. Macy Jr., T.N. James, “A mathematical model of automaticity in the sinus node and the AV junction based on weakly coupled relaxation oscillators”, Comp. Biomed. Res. 10, 529–543 (1977).

    Article  CAS  Google Scholar 

  11. J. Honerkamp, “The heart as a system of coupled nonlinear oscillators”, J. Math. Biol. 18, 69–88 (1983).

    PubMed  CAS  Google Scholar 

  12. B.J. West, A.L. Goldberger, G. Rovner, V. Bhargava, “Nonlinear dynamics of the heartbeat. The AV junction: Passive conduict or active oscillator?”, Physica D, 17, 198–206 (1985).

    Article  Google Scholar 

  13. H. Zhang, A.V. Holden, I. Kodama, H. Honjo, M. Lei, T. Varghese, M.R. Boyett, “Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node”, Am. J. Physiol. Heart Circ. Physiol. 279, H397–H421 (2000).

    PubMed  CAS  Google Scholar 

  14. D. Postnov, Kee H. Seung, K. Hyungtae, “Synchronization of diffusively coupled oscillators near the homoclinic bifurcation”, Phys. Rev. E 60, 2799–2807 (1999).

    Google Scholar 

  15. B.F. Hoffman, P.F. Cranefield, Electrophysiology of the Heart (Mc Graw Hill, New York, 1960).

    Google Scholar 

  16. J. Jalife, V.A. Slenter, J.J. Salata, D.C. Michaels, Circ. Res. 52, 642–656 (1983).

    PubMed  CAS  Google Scholar 

  17. S.S. Demir, J.W. Clark, W.R. Giles, Am. J. Physiol. Heart. Circ. Physiol. 276, H2221–H2244 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Grudziński, K., Żebrowski, J.J., Baranowski, R. (2009). Nonlinear Oscillations in the Conduction System of the Heart – A Model. In: Dana, S.K., Roy, P.K., Kurths, J. (eds) Complex Dynamics in Physiological Systems: From Heart to Brain. Understanding Complex Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9143-8_8

Download citation

Publish with us

Policies and ethics