Skip to main content

Multifractal Analysis of Physiological Data: A Non-Subjective Approach

  • Conference paper
Complex Dynamics in Physiological Systems: From Heart to Brain

Part of the book series: Understanding Complex Systems ((UCS))

  • 1353 Accesses

Abstract

We have recently proposed an algorithmic scheme [22] for the non-subjective computation of correlation dimension from time series data. Here it is extended for the computation of generalized dimensions and the multifractal spectrum and applied to a number of EEG and ECG data sets from normal as well as certain pathological states of the brain and the cardiac system. Comparisons are drawn using a standard low dimensional chaotic system. Our method has the advantage that the analysis is done under identical prescriptions built into the algorithm and hence the comparison of resulting indices becomes non-subjective. This also enables a quantitative characterization of the relative complexity between practical time series such as, those corresponding to the changes in the physiological states of the same system, from the view point of underlying dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spotlight issue on chaos in the cardiovascular system, Cardiovasc. Res., 31 (1996).

    Google Scholar 

  2. Special issue on the application of nonlinear dynamics to physiology, CHAOS, 8 (1998).

    Google Scholar 

  3. Focal issue on mapping and control of complex cardiac arrhythmias, CHAOS, 12 (2002).

    Google Scholar 

  4. N. Pradhan and D. Narayana Dutt, A nonlinear perspective in understanding the neurodynamics of EEG, Comput. Biol. Med., 23, 425 (1993).

    Google Scholar 

  5. W. Latzenberger, H. Preissl and F. Pulvermiller, Fractal dimension of electroencephalographic time series and underlying brain processes, Biol. Cybernet., 73, 477 (1995).

    Article  Google Scholar 

  6. M.A.F. Harrison, I. Osorio, M.G. Frei, S. Asuri and Y.-C. Lai, Correlation dimension and integral do not predict epileptic seizures, CHAOS, 15, 033106 (2005).

    Article  Google Scholar 

  7. L. Glass, A.L. Goldberger, M. Courtemanche and A. Shrier, Nonlinear dynamics, chaos and complex cardiac arrhythmias, Proc. R. Soc. Lond. Ser. A, 413, 9 (1987).

    Article  Google Scholar 

  8. F.X. Witkowski, K.M. Karnagh, P.A. Penkoske, R. Plonsey, M.L. Spano, W.L. Ditto and D.T. Kaplan, Evidence for determinism in ventricular fibrillation, Phys. Rev. Lett. 75, 1230 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. C.S. Poon and C.K. Merril, Decrease of cardiac chaos in congestive heart failure, Nature, 389, 492 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. F. Ravelli and R. Antolini, Complex dynamics underlying the human electrocardiogram, Biol. Cybernet., 67, 57 (1992).

    Article  CAS  Google Scholar 

  11. R.B. Govindan, K. Narayanan and M.S. Gopinathan, On the evidence of deterministic chaos in ECG: Surrogate and predictability analysis, CHAOS, 8, 495 (1998).

    Google Scholar 

  12. L. Glass and P. Hunter, There is a theory of heart, Physica D, 43, 1 (1990).

    Google Scholar 

  13. A.L. Goldberger, Is the normal heart beat chaotic or homeostatic?, News. Physiol. Sci., 6, 87 (1991).

    Google Scholar 

  14. F. Mitschke and M. Dimming, Chaos versus noise in experimental data, Int. J. Bif. Chaos, 3, 693 (1993).

    Article  Google Scholar 

  15. N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan and J. Kurths, Recurrence plot based measures of complexity and their application to heart rate variability data, Phys. Rev. E, 66, 026702 (2002).

    Article  CAS  Google Scholar 

  16. N. Wessel, C. Ziehmann, J. Kurths, U. Meyerfeldt, A. Schirdewan and A. Voss, Short term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics and finite time growth rates, Phys. Rev. E, 61, 733 (2000).

    Article  CAS  Google Scholar 

  17. R. Brown and P. Bryant, Computing Lyapunov spectrum of a dynamical system from an observed time series, Phys. Rev. A, 43, 2787 (1991).

    Article  PubMed  Google Scholar 

  18. M. Costa, A.L. Goldberger and C.K. Peng, Multiscale entropy analysis of complex physiological time series, Phys. Rev. Lett., 89, 068102 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. R.A. Thuraisingham and G.A. Gottwald, On multiscale entropy analysis for physiological data, Physica A, 366, 323 (2006).

    Article  Google Scholar 

  20. M.B. Kennel and S. Isabelle, Method to distinguish possible chaos from colored noise and to determine embedding parameters, Phys. Rev. A, 46, 3111 (1992).

    Article  PubMed  Google Scholar 

  21. M. Small and K. Judd, Detecting nonlinearity in experimental data, Int. J. Bif. Chaos, 8, 1231 (1998).

    Article  Google Scholar 

  22. K.P. Harikrishnan, R. Misra, G. Ambika and A.K. Kembhavi, A nonsubjective approach to the GP algorithm for analysing noisy time series, Physica D, 215, 137 (2006).

    Article  Google Scholar 

  23. P. Grassberger and I. Procaccia, Characterisation of strange attractors, Phys. Rev. Lett., 50, 346 (1983).

    Article  Google Scholar 

  24. P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Physica D, 9, 189 (1983).

    Article  Google Scholar 

  25. T. Schreiber and A. Schmitz, Improved surrogate data for nonlinearity tests, Phys. Rev. Lett., 77, 635 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. R. Hegger, H. Kantz and T. Schreiber, Practical implementation of Nonlinear time series methods: The TISEAN package, CHAOS, 9, 413 (1999).

    Article  PubMed  Google Scholar 

  27. T.C. Halsey, M.H. Jensen, L.P. Kadanof, I. Proccacia and B.I. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A, 33, 1141 (1986).

    Article  PubMed  Google Scholar 

  28. H. Atmanspacher, H. Scheingraber and N. Voges, Global scaling properties of a chaotic attractor reconstructed from experimental data, Phys. Rev. A, 37, 1314 (1988).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Ambika, G., Harikrishnan, K., Misra, R. (2009). Multifractal Analysis of Physiological Data: A Non-Subjective Approach. In: Dana, S.K., Roy, P.K., Kurths, J. (eds) Complex Dynamics in Physiological Systems: From Heart to Brain. Understanding Complex Systems. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9143-8_2

Download citation

Publish with us

Policies and ethics