Skip to main content

In environmental sciences, one often encounters large datasets with many variables. For instance, one may have a dataset of the monthly sea surface temperature (SST) anomalies (“anomalies” are the departures from the mean) collected at l = 1,000 grid locations over several decades, i.e. the data are of the form x = [x 1 , …, xl ], where each variable xi (i = 1, …, l) has n samples. The samples may be collected at times tk (k = 1, …, n), so each xi is a time series containing n observations. Since the SST of neighboring grids are correlated, and a dataset with 1,000 variables is quite unwieldy, one looks for ways to condense the large dataset to only a few principal variables. The most common approach is via principal component analysis (PCA), also known as empirical orthogonal function (EOF) analysis (Jolliffe 2002).

In this chapter, we examine the use of MLP NN models for nonlinear PCA (NLPCA) in Section 8.2, the overfitting problem associated with NLPCA in Section 8.3, and the extension of NLPCA to closed curve solutions in Section 8.4. MATLAB codes for NLPCA are downloadable from http://www.ocgy. ubc.ca/projects/clim.pred/download.html.The discrete approach by self-organizing maps is presented in Sections 8.5, and the generalization of NLPCA to complex variables in Section 8.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin, M., Gray, L., Dunkerton, T., Hamilton, K., Haynes, P., Randel, W., Holton, J., Alexander, M., Hirota, I., Horinouchi, T., Jones, D., Kinnersley, J., Marquardt, C., Sato, K., & Takahashi, M. (2001). The quasi-biennial oscillation. Reviews of Geophysics, 39, 179–229

    Article  Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. (482 pp.) Oxford: Oxford University Press

    Google Scholar 

  • Cavazos, T. (1999). Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in northeastern Mexico and southeastern Texas. Journal of Climate, 12, 1506–1523

    Article  Google Scholar 

  • Cavazos, T. (2000). Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans. Journal of Climate, 13, 1718–1732

    Article  Google Scholar 

  • Cavazos, T., Comrie, A. C., & Liverman, D. M. (2002). Intrasea-sonal variability associated with wet monsoons in southeast Arizona. Journal of Climate, 15, 2477–2490

    Article  Google Scholar 

  • Cherkassky, V., & Mulier, F. (1998). Learning from data (441 pp.). New York: Wiley

    Google Scholar 

  • Christiansen, B. (2005). The shortcomings of nonlinear principal component analysis in identifying circulation regimes. Journal of Climate, 18, 4814–4823

    Article  Google Scholar 

  • Christiansen, B. (2007). Reply to Monahan and Fyfe's comment on “The shortcomings of nonlinear principal component analysis in identifying circulation regimes”. Journal of Climate, 20, 378–379. DOI: 10.1175/JCLI4006.1

    Article  Google Scholar 

  • Clarke, T. (1990). Generalization of neural network to the complex plane. Proceedings of International Joint Conference on Neural Networks, 2, 435–440

    Article  Google Scholar 

  • Del Frate, F., & Schiavon, G. (1999). Nonlinear principal component analysis for the radiometric inversion of atmospheric profiles by using neural networks. IEEE Transactions on Geoscience and Remote Sensing, 37, 2335–2342

    Article  Google Scholar 

  • Diaz, H. F., & Markgraf, V. (Eds.) (2000) El Nino and the southern oscillation: Multiscale variability and global and regional impacts (496 pp.). Cambridge: Cambridge University Press

    Google Scholar 

  • Georgiou, G., & Koutsougeras, C. (1992). Complex domain backpropagation. IEEE Transactions on Circults and Systems II, 39, 330–334

    Article  Google Scholar 

  • Hamilton, K. (1998). Dynamics of the tropical middle atmosphere: A tutorial review. Atmosphere-Ocean, 36, 319– 354

    Google Scholar 

  • Hamilton, K., & Hsieh, W. W. (2002). Representation of the QBO in the tropical stratospheric wind by nonlinear principal component analysis. Journal of Geophysical Research, 107. DOI: 10.1029/2001JD001250

    Google Scholar 

  • Hardman-Mountford, N. J., Richardson, A. J., Boyer, D. C., Kreiner, A., & Boyer, H. J. (2003). Relating sardine recruitment in the Northern Benguela to satellite-derived sea surface height using a neural network pattern recognition approach. Progress in Oceanograply, 59, 241–255

    Article  Google Scholar 

  • Hastie, T., & Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association, 84, 502–516

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2001). Elements of statistical learning: Data mining, inference and prediction (552 pp.). New York: Springer

    Google Scholar 

  • Hirose, A. (1992). Continuous complex-valued backpropagation learning. Electronic Letters, 28, 1854–1855

    Article  Google Scholar 

  • Hoerling, M. P., Kumar, A., & Zhong, M. (1997). El Nino, La Nina and the nonlinearity of their teleconnections. Journal of Climate, 10, 1769–1786

    Article  Google Scholar 

  • Holton, J. R., & Tan, H.-C. (1980). The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. Journal of the Atmospheric Sciences, 37, 2200– 2208

    Article  Google Scholar 

  • Hsieh, W. W. (2001). Nonlinear principal component analysis by neural networks. Tellus, 53A, 599–615

    Google Scholar 

  • Hsieh, W. W. (2004). Nonlinear multivariate and time series analysis by neural network methods. Reviews of Geophysics, 42, RG1003. DOI: 10.1029/2002RG000112

    Article  Google Scholar 

  • Hsieh, W. W. (2007). Nonlinear principal component analysis of noisy data. Neural Networks, 20, 434–443. DOI 10.1016/j.neunet.2007.04.018

    Article  Google Scholar 

  • Hsieh, W. W., & Wu, A. (2002). Nonlinear multichannel singular spectrum analysis of the tropical Pacific climate variability using a neural network approach. Journal of Geophysical Research, 107. DOI: 10.1029/2001JC000957

    Google Scholar 

  • Jolliffe, I. T. (2002). Principal component analysis (502 pp.) Berlin: Springer

    Google Scholar 

  • Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200

    Article  Google Scholar 

  • Kim, T., & Adali, T. (2002). Fully complex multi-layer per-ceptron network for nonlinear signal processing. Journal of VLSI Signal Processing, 32, 29–43

    Article  Google Scholar 

  • Kirby, M. J., & Miranda, R. (1996). Circular nodes in neural networks. Neural Computation, 8, 390–402

    Article  CAS  Google Scholar 

  • Kohonen, T. (1982). Self-organzing formation of topologi-cally correct feature maps. Biological Cybernetics, 43, 59–69

    Article  Google Scholar 

  • Kohonen, T. (2001). Self-Organizing maps (3rd ed., 501 pp.) Berlin: Springer

    Google Scholar 

  • Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 37233–243

    Article  Google Scholar 

  • Liu, Y., Wieisberg, R. H., & Mooers, C. N. K. (2006). Performance evaluation of the self-organizing map for feature extraction. Journal of Geophysical Research 111. DOI: 10.1029/2005JC003117

    Google Scholar 

  • Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20130–141

    Article  Google Scholar 

  • Monahan, A. H. (2000). Nonlinear principal component analysis by neural networks: Theory and application to the Lorenz system. Journal of Climate 13821–835

    Article  Google Scholar 

  • Monahan, A. H. (2001). Nonlinear principal component analysis: Tropical Indo-Pacific sea surface temperature and sea level pressure. Journal of Climate 14219–233

    Article  Google Scholar 

  • Monahan, A. H., & Fyfe, J. C. (2007). Comment on “The shortcomings of nonlinear principal component analysis in identifying circulation regimes”. Journal of Climate 20375–377. DOI: 10.1175/JCLI4002.1

    Article  Google Scholar 

  • Monahan, A. H., Fyfe, J. C., & Flato, G. M. (2000). A regime view of northern hemisphere atmospheric variability and change under global warming. Geophysics Research Letters 271139–1142

    Article  Google Scholar 

  • Monahan, A. H., Pandolfo, L., & Fyfe, J. C. (2001). The preferred structure of variability of the northern hemisphere atmospheric circulation. Geophysical Research Letters28, 1019–1022

    Article  Google Scholar 

  • Newbigging, S. C., Mysak, L. A., & Hsieh, W. W. (2003). Improvements to the non-linear principal component analysis method, with applications to ENSO and QBO. Atmosphere-Ocean 41290–298

    Google Scholar 

  • Nitta, T. (1997). An extension of the back-propagation algo-rtihm to complex numbers. Neural Networks 101391– 1415

    Article  Google Scholar 

  • Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology 15267– 273

    Article  Google Scholar 

  • Philander, S. G. (1990). El Niño, La Niña, and the southern oscillation (293 pp.). San Diego, CA: Academic

    Google Scholar 

  • Preisendorfer, R. W. (1988). Principal component analysis in meteorology and oceanography (425 pp.). Amsterdam: Elsevier

    Google Scholar 

  • Rattan, S. S. P., & Hsieh, W. W. (2004), Nonlinear complex principal component analyis of the tropical Pacific interan-nual wind variability. Geophysical Research Letters 31 (21), L21201. DOI: 10.1029/2004GL020446

    Google Scholar 

  • Rattan, S. S. P., & Hsieh, W. W. (2005). Complex-valued neural networks for nonlinear complex principal component analysis. Neural Networks 1861–69. DOI: 10.1016/j.neunet.2004.08.002

    Article  Google Scholar 

  • Rattan, S. S. P., Ruessink, B. G., & Hsieh, W. W. (2005). Nonlinear complex principal component analysis of nearshore bathymetry. Nonlinear Processes in Geophysics12, 661– 670

    Google Scholar 

  • Richardson, A. J., Risien, C., & Shillington, F. A. (2003). Using self-organizing maps to identify patterns in satellite imagery. Progress in Oceanography 59223–239

    Article  Google Scholar 

  • Richman, M. B. (1986). Rotation of principal components. Journal of Climatology 6293–335

    Article  Google Scholar 

  • Rojas, R. (1996). Neural networks – A systematic introduction (502 pp.). Berlin: Springer

    Google Scholar 

  • Ruessink, B. G., van Enckevort, I. M. J., & Kuriyama, Y. (2004). Non-linear principal component analysis of nearshore bathymetry. Marine Geology 203185– 197

    Article  Google Scholar 

  • Saff, E. B., & Snider, A. D. (2003). Fundamentals of complex analysis with applications to engineering and science (528 pp.). Englewood Cliffs, NJ: Prentice-Hall

    Google Scholar 

  • Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 2459–473

    Article  Google Scholar 

  • Schölkopf, B., Smola, A., & Muller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 101299–1319

    Article  Google Scholar 

  • Tang, Y., & Hsieh, W. W. (2003). Nonlinear modes of decadal and interannual variability of the subsurface thermal structure in the Pacific Ocean. Journal of the Geophysical Research 108. DOI: 10.1029/2001JC001236

    Google Scholar 

  • Villmann, T., Merenyi, E., & Hammer, B. (2003). Neural maps in remote sensing image analysis. Neural Networks 16389– 403

    Article  Google Scholar 

  • von Storch, H., & Zwiers, F. W. (1999). Statistical analysis in climate research (484 pp.). Cambridge: Cambridge University Press

    Google Scholar 

  • Webb, A. R. (1999). A loss function approach to model selection in nonlinear principal components. Neural Networks 12339–345

    Article  Google Scholar 

  • Yacoub, M., Badran, F., & Thiria, S. (2001). A topological hierarchical clustering: Application to ocean color classification. Artificial Neural Networks-ICANN 2001, Proceedings. Lecture Notes in Computer Science492–499

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Hsieh, W.W. (2009). Nonlinear Principal Component Analysis. In: Haupt, S.E., Pasini, A., Marzban, C. (eds) Artificial Intelligence Methods in the Environmental Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9119-3_8

Download citation

Publish with us

Policies and ethics