Skip to main content

Evolutionary Consequences of Eel Migration

  • Chapter
  • 1660 Accesses

Part of the book series: Fish & Fisheries Series ((FIFI,volume 30))

Fish migration is a regularly occurring habitat transition between the spawning area and growth habitat of a species. A conceptual model that superimposes the life cycle of migratory fishes onto a closed route of migration connecting the spawning area and growth habitat has been defined as a “ migration loop” (McDowall 1992; Tsukamoto et al. 2002). In principle, each fish species has a migration loop specific to its life history and geographic distribution. Therefore, the differentiation of a new migration loop has the potential to cause reproductive isolation and hence speciation. This concept helps for an understanding of the evolutionary processes of fish migration as well as the migratory behavior and life cycle of fishes.

Diadromy is a migratory strategy in fishes that involves a regular migration pattern between fresh and salt water (McDowall 1992). It is a relatively rare behavioral trait, occurring in perhaps 250 out of the some 25,000 known fish species (McDowall 1993). Diadromous migrations have been observed in several taxa of fishes, suggesting that diadromy originated independently throughout fish evolution (McDowall 1992, 1993). Therefore, each migratory fish species might have experienced different selection pressures that resulted in variations in its life history. Diadromous fishes undertake two major habitat shifts in every generation: a migration from fresh water to the ocean, and another migration in the opposite direction. Some diadromous fish are semelparous (one single reproductive migration per generation), others are iteroparous (two to several reproductive events per generation). Anadromy, catadromy and amphidromy are all variants of diadromy. Anadromy refers to the migration patterns of fish, such as salmonids, that live in the ocean but return to fresh water to spawn. In amphidromy, such as observed in gobiids, the migrations are not directly tied to spawning, but to some other activity, such as feeding. Catadromy refers to the migration patterns of fishes, such as the European eel, that live in fresh water but return to the ocean to spawn. The evolution of these life-strategies is triggered by several abiotic and biotic factors, such as glaciation, continental drift, habitat suitability, food availability and selection. For example, the ancestor of the Anguillidae might have been a tropical marine species with a migration loop extending to coastal waters. From there they incidentally visited estuaries and eventually obtained a reproductive advantage because of the greater amount of food available in estuaries and by extension in fresh water (Tsukamoto et al. 2002). Thus the ancestor probably developed an adaptive behavior of regularly migrating upstream as a result of a gradient in food abundance between the ocean and fresh water in the tropics. In order for this process to occur, first there must have been a euryhaline marine species and then an oceanic amphid-romous adaptation before the appearance of catadromous eels (Tsukamoto et al. 2002) (Fig. 17.1). A similar scenario applies to anadromous fishes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refarences

  • Albert V, Jonsson B, Bernatchez L (2006) Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time. Molecular Ecology 15:1903– 1916

    Article  PubMed  CAS  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217– 1229

    PubMed  CAS  Google Scholar 

  • Aoyama J, Tsukamoto K (1997) Evolution of the freshwater eels. Naturwissenschaften 84:17– 21

    Article  PubMed  CAS  Google Scholar 

  • Aoyama J, Nishida M, Tsukamoto K (2001) Molecular phylogeny and evolution of the freshwater eel, genus Anguilla. Molecular Phylogenetics and Evolution 20:450– 459

    Article  PubMed  CAS  Google Scholar 

  • Avise JC (2004) Molecular Markers, Natural History and Evolution. Sinauer, Sunderland, MA

    Google Scholar 

  • Avise JC, Helfman GS, Saunders NC, Hales LS (1986) Mitochondrial DNA differentiation in North-Atlantic eels: Population genetic consequences of an unusual life-history pattern. Proceedings of the National Academy of Sciences of the USA 83:4350– 4354

    Article  PubMed  CAS  Google Scholar 

  • Avise JC, Nelson WS, Arnold J, Koehn RK, Williams GC, Thorsteinsson V (1990) The evolutionary genetic status of Icelandic eels. Evolution 44:1254– 1262

    Article  Google Scholar 

  • Bastrop R, Strehlow B, Jürss K, Sturmbauer C (2000) A new molecular phylogenetic hypothesis for the evolution of freshwater eels. Molecular Phylogenetics and Evolution 14:250– 258

    Article  PubMed  CAS  Google Scholar 

  • Beacham TD, Brattey J, Miller KM, Le KD, Withler RE (2002) Multiple stock structure of Atlantic cod (Gadus morhua) off Newfoundland and Labrador determined from genetic variation. ICES Journal of Marine Science 59:650– 665

    Article  Google Scholar 

  • Boëtius J (1980) Atlantic Anguilla. A presentation of old and new data of total numbers of vertebrae with special reference to the occurrence of Anguilla rostrata in Europe. Dana 1:93– 112

    Google Scholar 

  • Bossart JL, Prowell DP (1998) Genetic estimates of population structure and gene flow: Limitations, lessons and new directions. Trends in Ecology & Evolution 13:202– 206

    Article  Google Scholar 

  • CEC (2005) Proposal for a council regulation: establishing measures for the recovery of the stock of European eel. European Commission COM (2005) 472 final, 2005/0201 (CNS), 11 pp

    Google Scholar 

  • Chapman RW, Ball AO, Mash LR (2002) Spatial homogeneity and temporal heterogeneity of red drum (Sciaenops ocellatus) microsatellites: Effective population sizes and management implications. Marine Biotechnology 4:589– 603

    Article  PubMed  CAS  Google Scholar 

  • Cheng PW, Tzeng WN (1996) Timing of metamorphosis and estuarine arrival across the dispersal range of the Japanese eel Anguilla japonica. Marine Ecology-Progress Series 131: 87– 96

    Article  Google Scholar 

  • Chenoweth SF, Hughes JM, Keenan CP, Lavery S (1998) Concordance between dispersal and mitochondrial gene flow: Isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi). Heredity 80:187– 197

    Article  Google Scholar 

  • Chistiakov DA, Hellemans B, Volckaert FAM (2006) Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics.Aquaculture 255:1– 29

    Article  CAS  Google Scholar 

  • Comparini A, Rizzotti M, Rodinò E (1977) Genetic control and variability of phosphoglucose isomerase (PGI) in eels from the Atlantic ocean and the Mediterranean Sea. Marine Biology 43:109– 116

    Article  CAS  Google Scholar 

  • Comparini A, Rodinò E (1980) Electrophoretic evidence for 2 species of Anguilla leptocephali in the Sargasso Sea. Nature 287:435– 437

    Article  Google Scholar 

  • Comparini A, Schoth M (1982) Comparison of electrophoretic and meristic characters of 0-group eel larvae from the Sargasso Sea. Helgoländer Meeresuntersuchungen 35:289– 299

    Article  Google Scholar 

  • Conover DO, Clarke LM, Munch SB, Wagner GN (2006) Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. Journal of Fish Biology 69 (Suppl C):21– 47

    Article  Google Scholar 

  • Cousyn C, De Meester L, Colbourne JK, Brendonck L, Verschuren D, Volckaert F (2001) Rapid,local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proceedings of the National Academy of Sciences of the USA 98:6256– 6260

    Article  PubMed  CAS  Google Scholar 

  • Cushing DH (1990) Plankton production and year-class strength in fish populations — An update of the match mismatch hypothesis. Advances in Marine Biology 26:249– 293

    Article  Google Scholar 

  • Daemen E, Cross T, Ollevier F, Volckaert FAM (2001) Analysis of the genetic structure of European eel (Anguilla anguilla) using microsatellite DNA and MtDNA markers. Marine Biology 139:755– 764

    Article  CAS  Google Scholar 

  • Dannewitz J, Maes GE, Johansson L, Wickstr ö m H, Volckaert FAM, Jarvi T (2005) Panmixia in the European eel: a matter of time. Proceedings of the Royal Society of London Series B 272:1129– 1137

    Article  PubMed  Google Scholar 

  • David P, Delay B, Berthou P, Jarne P (1995) Alternative models for allozyme-associated heterosis in the marine bivalve Spisula ovalis. Genetics 139:1719– 1726

    PubMed  CAS  Google Scholar 

  • David P (1998) Heterozygosity-fitness correlations: New perspectives on old problems. Heredity 80:531– 537

    Article  PubMed  Google Scholar 

  • de Ligny W, Pantelouris EM (1973) Origin of European eel. Nature 246:518– 519

    Article  Google Scholar 

  • de Roos AM, Boukal DS, Persson L (2006) Evolutionary regime shifts in age and size at maturation of exploited fish stocks. Proceedings of the Royal Society of London Series B 273:1873– 1880

    Article  PubMed  Google Scholar 

  • Dekker W (2003) Did lack of spawners cause the collapse of the European eel, Anguilla anguilla? Fisheries Management and Ecology 10:365– 376

    Article  Google Scholar 

  • Dekker W (2004) Slipping through our hands: population dynamics of the European eel. Ph.D.thesis, University of Amsterdam, The Netherlands

    Google Scholar 

  • Drilhon A, Fine JM, Boffa GA, Amouch P, Drouhet J (1966) Les groupes de transferrines chez l'anguille. Diff é rences ph é notypiques entre l'anguille de l'Atlantique et les anguilles de medi-terrann é e. Comptes Rendus de l'Academie de Sciences de France 262:1315– 1318

    CAS  Google Scholar 

  • Drilhon A, Fine JM, Amouch P, Boffa GA (1967) Les groupes de transferrines chez Anguilla anguilla. Etude de deux populations d'origine g é ographique diff é rente. Comptes Rendus de l'Academie de Sciences de France 265:1096– 1098

    CAS  Google Scholar 

  • Drilhon A, Fine JM (1968) Importance de l' é tude des transferines s é riques dans la diff é renciation des esp é ces: resultats acquis dans genre Anguilla. Experientia 24:555– 557

    Article  PubMed  CAS  Google Scholar 

  • Dulvy NK, Sadovy Y, Reynolds, JD (2003) Extinction vulnerability in marine populations. Fish and Fisheries 4(1):25– 64

    Article  Google Scholar 

  • Ege W (1939) A revision of the genus Anguilla Shaw, a systematic, phylogenetic and geographical study. Dana Report 16:1– 256

    Google Scholar 

  • Feder M, Mitchell-Olds T (2003) Evolutionary and ecological functional genomics. Nature Reviews Genetics 4:651– 657

    Article  PubMed  CAS  Google Scholar 

  • Fillatre EK, Etherton P, Heath DD (2003) Bimodal run distribution in a northern population of sockeye salmon (Oncorhynchus nerka): life history and genetic analysis on a temporal scale. Molecular Ecology 12:1793– 1805

    Article  PubMed  CAS  Google Scholar 

  • Fine JM, Drilhon A, Ridgeway GJ, Amouch PABG (1967) Les groupes de transferrines dans le genre Anguilla. diff é rences dans les frequences ph é notypiques de transferrines chez Anguilla anguilla et Anguilla rostrata. Comptes Rendus de l'Academie de Sciences de France 265:58– 60

    CAS  Google Scholar 

  • Flowers JM, Schroeter SC, Burton RS (2002) The recruitment sweepstakes has many winners:genetic evidence from the sea urchin Strongylocentrotus purpuratus. Evolution 56:1445– 1453

    PubMed  CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Friedland KD, Miller MJ, Knights B (2007) Oceanic changes in the Sargasso Sea and declines in recruitment of the European eel. ICES Journal of Marine Science 64:519– 530

    Article  Google Scholar 

  • Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: A coupled oceanographic-genetic model predicts population structure of Caribbean corals. Current Biology 16:1622– 1626

    Article  PubMed  CAS  Google Scholar 

  • Giger T, Excoffier L, Day P, Champigneulle A, Hansen M, Powell R, Largiadèr C (2006) Life history shapes gene expression in salmonids. Current Biology 16:281– 282

    Article  CAS  Google Scholar 

  • Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Molecular Ecology 11:2467– 2474

    Article  PubMed  Google Scholar 

  • Hauser L, Adcock GJ, Smith PJ, Ramirez JHB, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proceedings of the National Academy of Sciences of the USA 99:11742– 11747

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock D (1994) Temporal and spatial genetic structure of marine animal populations in the California Current. CalCOFI Report 35:73– 81

    Google Scholar 

  • Hendry AP, Morbey YE, Berg OK, Wenburg JK (2004) Adaptive variation in senescence: reproductive lifespan in a wild salmon population. Proceedings of the Royal Society of London Series B 271:259– 266

    Article  PubMed  Google Scholar 

  • Hendry AP, Day T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Molecular Ecology 14:901– 916

    Article  PubMed  CAS  Google Scholar 

  • Hoarau G, Rijnsdorp AD, Van der Veer HW, Stam WT, Olsen JL (2002) Population structure of plaice (Pleuronectes platessa L.) in northern Europe: microsatellites revealed large-scale spatial and temporal homogeneity. Molecular Ecology 11:1165– 1176

    Article  PubMed  CAS  Google Scholar 

  • Hutchings JA, Myers RA (1993) Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the northwest Atlantic. Canadian Journal of Fisheries and Aquatic Sciences 50:2468– 2474

    Article  Google Scholar 

  • Hutchings JA, Swain DP, Rowe S, Eddington JD, Puvanendran V, Brown JA (2007) Genetic variation in life-history reaction norms in a marine fish. Proceedings of the Royal Society of London Series B, 274:1693– 1699

    Article  PubMed  Google Scholar 

  • ICES (2006) Report of the Working Group on the Application of Genetics in Fisheries and Mariculture (WGAGFM), 24– 27 March 2006, Newport, Ireland. ICES Document CM 2006/ MCC: 04. 59 pp

    Google Scholar 

  • Ishikawa S, Tsukamoto K, Nishida M (2004) Genetic evidence for multiple geographic populations of the giant mottled eel Anguilla marmorata in the Pacific and Indian oceans.Ichthyological Research 51:343– 353

    Article  Google Scholar 

  • Jerry DR, Baverstock PR (1998) Consequences of a catadromous life-strategy for levels of mito-chondrial DNA differentiation among populations of the Australian bass, Macquaria novemaculeata. Molecular Ecology 7:1003– 1013

    Article  PubMed  CAS  Google Scholar 

  • J ø rgensen HBH, Hansen MM, Loeschcke V (2005) Spring-spawning herring (Clupea harengus L.)in the southwestern Baltic Sea: do they form genetically distinct spawning waves? ICES Journal of Marine Sciences 62:1065– 1075

    Google Scholar 

  • Kalujnaia S, McWilliam I, Feilen A, Nicholson J, Hazon N, Cramb G (2007) Novel genes discovered by transcriptomic approach to the salinity study in European eel Anguilla anguilla.Comparative Biochemistry and Physiology A – Molecular and Integrative Physiology 146 (Suppl. S):S94– S94

    Article  Google Scholar 

  • Kettle AJ, Haines K (2006) How does the European eel (Anguilla anguilla) retain its population structure during its larval migration across the North Atlantic Ocean? Canadian Journal of Fisheries and Aquatic Sciences 63:90– 106

    Article  Google Scholar 

  • Kleckner RC, McCleave JD (1985) Spatial and temporal distribution of American eel larvae in relation to North Atlantic current systems. Dana 4:67– 92

    Google Scholar 

  • Knights B (2003) A review of the possible impacts of long-term oceanic and climate changes and fishing mortality on recruitment of anguillid eels of the northern hemisphere. Science of the Total Environment 310:237– 244

    Article  PubMed  CAS  Google Scholar 

  • Koehn RK (1972) Genetic variation in the eel: a critique. Marine Biology 14:179– 181

    Article  Google Scholar 

  • Koehn RK, Diehl WJ, Scott TM (1988) The differential contribution by individual enzymes of glycolysis and protein catabolism to the relationship between heterozygosity and growth-rate in the coot clam, Mulinia lateralis. Genetics 118:121– 130

    PubMed  CAS  Google Scholar 

  • Law R (2000) Fishing, selection, and phenotypic evolution. ICES Journal of Marine Science 57:659– 668

    Article  Google Scholar 

  • Li G, Hedgecock D (1998) Genetic heterogeneity, detected by PCR-SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Canadian Journal of Fisheries and Aquatic Sciences 55:1025– 1033

    Article  CAS  Google Scholar 

  • Lin YS, Poh YP, Tzeng CS (2001) A phylogeny of freshwater eels inferred from mitochondrial genes. Molecular Phylogenetics and Evolution 20:252– 261

    Article  PubMed  CAS  Google Scholar 

  • Lintas C, Hirano J, Archer S (1998) Genetic variation of the European eel (Anguilla anguilla). Molecular Marine Biology and Biotechnology 7:263– 269

    PubMed  CAS  Google Scholar 

  • Maes GE (2005) Evolutionary consequences of a catadromous life-strategy on the genetic structure of European eel (Anguilla AnguillaL.). Ph.D. thesis, Catholic University of Leuven, Belgium

    Google Scholar 

  • Maes GE, Volckaert FAM (2002) Clinal genetic variation and isolation by distance in the European eel Anguilla anguilla(L.). Biological Journal of the Linnaean Society 77:509– 521

    Article  Google Scholar 

  • Maes GE, Raeymaekers JAM, Pampoulie C, Seynaeve A, Goemans G, Belpaire C, Volckaert, FAM (2005) The catadromous European eel Anguilla anguilla(L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability. Aquatic Toxicology 73:99– 114

    Article  PubMed  CAS  Google Scholar 

  • Maes GE, Pujolar JM, Hellemans B, Volckaert FAM (2006a) Evidence for Isolation-by-Time in the European eel (Anguilla anguillaL.). Molecular Ecology 15:2095– 2107

    Article  CAS  Google Scholar 

  • Maes GE, Pujolar JM, Raeymaekers JAM, Dannewitz K, Volckaert FAM (2006b) Microsatellite conservation and Bayesian individual assignment in four Anguillaspecies. Marine Ecology-Progress Series 319:251– 261

    Article  CAS  Google Scholar 

  • Maes GE, Volckaert FAM (2007) Challenges for genetic research in European eel management. ICES Journal of Marine Science 64:1463– 1471

    Article  Google Scholar 

  • Manel S, Berthier P, Luikart G (2002). Detecting wildlife poaching: identifying the origin of individuals with bayesian assignment tests and multilocus genotypes. Conservation Biology 16:650– 659

    Article  Google Scholar 

  • Mank JE, Avise JC (2003) Microsatellite variation and differentiation in North Atlantic eels. Journal of Heredity 94:310– 314

    Article  PubMed  CAS  Google Scholar 

  • Mank JE, Avise JC (2004) Individual organisms as units of analysis: Bayesian-clustering alternatives in population genetics. Genetical Research84(3):135– 143

    Article  PubMed  CAS  Google Scholar 

  • Marcogliese DJ, Cone DK (1993) What metazoan parasites tell us about the evolution of American and European eels. Evolution 47:1632– 1635

    Article  Google Scholar 

  • McCleave JD (1993) Physical and behavioural control on the oceanic distribution and migration of leptocephali. Journal of Fish Biology 43 (Suppl. A):243– 273

    Article  Google Scholar 

  • McCleave JD, Kleckner RC (1987) Distribution of leptocephali of the catadromous Anguillaspecies in the western Sargasso Sea in relation to water circulation and migration. Bulletin of Marine Science 41:789– 806

    Google Scholar 

  • McDowall RM (1992) Particular problems for the conservation of diadromous fish. Aquatic Conservation — Marine and Freshwater Ecosystems 2:351– 355

    Article  Google Scholar 

  • McDowall RM (1993) Implications of diadromy for the structuring and modeling of riverine fish communities in New-Zealand. New Zealand Journal of Marine and Freshwater Research 27:453– 462

    Article  Google Scholar 

  • McGoldrick D, Hedgecock D (1997) Fixation, segregation and linkage of allozyme loci in inbred families of the Pacific oyster Crassostrea gigas(Thunberg): implications for the causes of inbreeding depression. Genetics 146:321– 334

    PubMed  CAS  Google Scholar 

  • McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends in Ecology and Evolution 17:285– 291

    Article  Google Scholar 

  • McPherson AA, Stephenson RL, Taggart CT (2003) Genetically different Atlantic herring Clupea harengusspawning waves. Marine Ecology-Progress Series 247:303– 309

    Article  CAS  Google Scholar 

  • Minegishi Y, Aoyama J, Inoue JG, Miya M, Nishida M, Tsukamoto K (2005) Molecular phylog-eny and evolution of the freshwater eels genus Anguillabased on the whole mitochondrial genome sequences. Molecular Phylogenetics and Evolution 34:134– 146

    Article  PubMed  CAS  Google Scholar 

  • Mitton JB (1997) Selection in Natural Populations. Oxford University Press, Oxford

    Google Scholar 

  • Miyahara T, Hirono I, Aoki T (2000) Analysis of expressed sequence tags from a Japanese eel Anguilla japonicaspleen cDNA library. Fisheries Science 66:257– 260

    Article  CAS  Google Scholar 

  • Mullon C, Fr é on P, Cury P (2005) The dynamics of collapse in world fisheries. Fish and Fisheries 6:111– 120

    Article  Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280– 283

    Article  PubMed  CAS  Google Scholar 

  • Nevo E (2001) Evolution of genome-phenome diversity under environmental stress. Proceedings of the National Academy of Sciences of the USA 98:6233– 6240

    Article  PubMed  CAS  Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V (1997) Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years.Molecular Ecology 6:487– 492

    Article  CAS  Google Scholar 

  • Kenchington E, Heino M, Nielsen EE (2003) Managing marine genetic diversity: time for action? ICES Journal of Marine Science 60:1172– 1176

    Article  Google Scholar 

  • Nielsen EE, Hansen MM, Meldrup D (2006) Evidence of microsatellite hitch-hiking selection in Atlantic cod (Gadus morhuaL.): implications for inferring population structure in nonmodel organisms. Molecular Ecology 15:3219– 3229

    Article  PubMed  CAS  Google Scholar 

  • Nomura K, Morishima K, Tanaka H, Unuma T, Okuzawa K, Ohta H, Arai K (2006) Microsatellite-centromere mapping in the Japanese eel (Anguilla japonica) by half-tetrad analysis using induced triploid families. Aquaculture 257:53– 67

    Article  CAS  Google Scholar 

  • O'Connell M, Wright JO (1997) Microsatellite DNA in fishes. Reviews in Fish Biology and Fisheries 7:331– 363

    Article  Google Scholar 

  • Ohno S, Christian L, Romero M, Dofuku R, Ivey C (1973) On the question of American eels,Anguilla rostrataversus European eels, Anguilla anguilla. Experientia 29:891

    Article  Google Scholar 

  • Ohta H, Kagawa H, Tanaka H, Okuzawa K, Iinuma N, Hirose K (1997) Artificial induction of maturation and fertilization in the Japanese eel, Anguilla japonica. Fish Physiology and Biochemistry 17:163– 169

    Article  CAS  Google Scholar 

  • O'Reilly PT, Canino MF, Bailey KM, Bentzen P (2004) Inverse relationship between FST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma):implications for resolving weak population structure. Molecular Ecology 13:1799– 1814

    Article  PubMed  CAS  Google Scholar 

  • Palstra AP, Cohen EGH, Niemantsverdriet PRW, van Ginneken VJT, van den Thillart GEEJM (2005) Artificial maturation and reproduction of European silver eel: Development of oocytes during final maturation. Aquaculture 249:533– 547

    Article  Google Scholar 

  • Palumbi SR (1994) Genetic-divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics 25:547– 572

    Article  Google Scholar 

  • Pantelouris EM, Arnason A and Tesch FW (1970) Genetic variation in the eel. 11. Transferrins,haemoglobins, and esterases in the Eastern Atlantic. Possible interpretations of phenotypic frequency differences. Genetical Research 16:277– 284

    Article  PubMed  CAS  Google Scholar 

  • Pantelouris EM, Arnason A, Tesch FW (1971) Genetic variation in the eel. 111, Comparisons of Rhode Island and Icelandic populations. Implications for the Atlantic eel problem. Marine.Biology 9:242– 249

    Article  Google Scholar 

  • Park LK, Moran P (1994) Developments in molecular techniques in fisheries. Reviews in Fish Biology and Fisheries 4:272– 299

    Article  Google Scholar 

  • Patarnello T, Volckaert FAM, Castilho R (2007) Pillars of Hercules: Is the Atlantic-Mediterranean transition a phylogeographic break? Molecular Ecology 16(21):4426– 4444

    Article  PubMed  Google Scholar 

  • Pauly D (2007) Coral: a pessimist in paradise. Nature 447:33– 34

    Article  CAS  Google Scholar 

  • Planes S, Lenfant P (2002) Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success.Molecular Ecology 11:1515– 1524

    Article  PubMed  CAS  Google Scholar 

  • Pogson GH, Taggart CT, Mesa KA, Boutilier RG (2001) Isolation by distance in the Atlantic cod,Gadus morhua, at large and small geographic scales. Evolution 55:131– 146

    PubMed  CAS  Google Scholar 

  • Pujolar JM, Maes GE, Volckaert FAM (2006) Genetic patchiness among recruits in the European eel, Anguilla anguilla. Marine Ecology-Progress Series 307:209– 217

    Article  Google Scholar 

  • Pujolar JM, Maes GE, Vancoillie C, Volckaert FAM (2005) Growth rate correlates to individual heterozygosity in European eel, Anguilla anguillaL. Evolution 59:189– 199

    CAS  Google Scholar 

  • Richardson BJ, Baverstock PR, Adams M (1986) Allozyme Electrophoresis. A Handbook for Animal Systematics and Population Studies. Sydney: Academic Press

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219– 1228

    PubMed  CAS  Google Scholar 

  • Ruzzante DE, Taggart CT, Cook D (1996) Spatial and temporal variation in the genetic composition of a larval cod (Gadus morhua) aggregation: Cohort contribution and genetic stability. Canadian Journal of Fisheries and Aquatic Sciences 53:2695– 2705

    Article  Google Scholar 

  • Ruzzante DE, Taggart CT, Cook D (1999) A review of the evidence for genetic structure of cod (Gadus morhua) populations in the NW Atlantic and population affinities of larval cod off Newfoundland and the Gulf of St. Lawrence. Fisheries Research 43:79– 97

    Article  Google Scholar 

  • Schmidt J (1923) Breeding places and migration of the eel. Nature 111:51– 54

    Article  Google Scholar 

  • Schmidt J (1935) Danish eel investigations during 25 years (1905– 1930). The Carlsberg Foundation's oceanographical expedition round the world 1928– 1930 and previous Danish oceanographical expeditions under the leadership of late Professor Johannes Schmidt.Copenhagen. The Carlsberg Foundation

    Google Scholar 

  • Sinclair M (1988) Marine Populations. An Essay on Population Regulation and Speciation.University of Washington Press, Seattle

    Google Scholar 

  • Tagliavini J, Gandolfi G, Cau A, Salvadori S, Deiana AM (1995) Mitochondrial-DNA variability in Anguilla anguillaand phylogenetic relationships with congeneric species. Bollettino Di Zoologia 62:147– 151

    Google Scholar 

  • Tesch FW (2003) The Eel. Blackwell Science, Oxford, UK

    Google Scholar 

  • Tesch FW, Wegner G (1990) The distribution of small larvae of Anguillasp. related to hydro-graphic conditions 1981 between Bermuda and Puerto Rico. International Revue der Gesamten Hydrobiologie 75:845– 858

    Article  Google Scholar 

  • Tsukamoto K, Aoyama J, Miller MJ (2002) Migration, speciation, and the evolution of diadromy in anguillid eels. Canadian Journal of Fisheries and Aquatic Sciences 59:1989– 1998

    Article  Google Scholar 

  • Tsukamoto, K (2006) Spawning of eels near a seamount, Nature, 439(7079):926

    Article  CAS  Google Scholar 

  • Tucker DW (1959) A new solution to the Atlantic eel problem. Nature 183:495– 501

    Article  Google Scholar 

  • Turner TF, Wares JP, Gold JR (2002) Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus).Genetics 162:1329– 1339

    PubMed  Google Scholar 

  • Ryman N, Utter F (1987) Population Genetics and Fisheries Management. University of Washington Press

    Google Scholar 

  • Seattle Van Ginneken V, Maes GE (2005) The European eel (Anguilla anguilla, Linnaeus), its lifecycle,evolution and reproduction: a literature review. Reviews in Fish Biology and Fisheries 15:367– 398

    Article  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. Journal of Heredity 89:438– 450

    Article  Google Scholar 

  • Ward RD (2000) Genetics in fisheries management. Hydrobiologia 420:191– 201

    Article  CAS  Google Scholar 

  • Watanabe S, Aoyama J, Tsukamoto K (2004) Reexamination of Ege's (1939) use of taxonomic characters of the genus Anguilla. Bulletin of Marine Science 74:337– 351

    Google Scholar 

  • Williams GC, Koehn RK (1984) Population genetics of the North Atlantic catadromous eels (Anguilla). In: Turner BJ (ed) Evolutionary Genetics of Fishes. Plenum Press, New York, pp 529– 560

    Google Scholar 

  • Wirth T, Bernatchez L (2001) Genetic evidence against panmixia in the European eel. Nature, 409:1037– 1040

    Article  PubMed  CAS  Google Scholar 

  • Wirth T, Bernatchez L (2003) Decline of North Atlantic eels: a fatal synergy? Proceedings of the Royal Society of London Series B — Biological Sciences 270:681– 688

    Article  Google Scholar 

  • Yahyaoui A, Brusl é J, Pasteur N (1983) Etude du polymorphisme biochimique de deux populations naturelles (Maroc Atlantique et Rousillon) de civelles et anguillettes d'Anguilla anguillaL. et de deux é chantillons d' é levages. IFREMER Actes de Colloques 1:373– 390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Maes, G., Pujolar, M., Volckaert, F. (2009). Evolutionary Consequences of Eel Migration. In: van den Thillart, G., Dufour, S., Rankin, J.C. (eds) Spawning Migration of the European Eel. Fish & Fisheries Series, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9095-0_17

Download citation

Publish with us

Policies and ethics