Skip to main content

3D Object Reconstruction from Uncalibrated Images Using an Off-the-Shelf Camera

  • Chapter
Book cover Advances in Computational Vision and Medical Image Processing

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 13))

Abstract

Three-dimensional (3D) objects reconstruction using just bi-dimensional (2D) images has been a major research topic in Computer Vision. However, it is still a hard problem to address, when automation, speed and precision are required and/or the objects have complex shapes or image properties. In this paper, we compare two Active Computer Vision methods frequently used for the 3D reconstruction of objects from image sequences, acquired with a single off-the-shelf CCD camera: Structure From Motion (SFM) and Generalized Voxel Coloring (GVC). SFM recovers the 3D shape of an object based on the relative motion involved, while VC is a volumetric method that uses photo-consistency measures to build the required 3D model. Both methods considered do not impose any kind of restrictions on the relative motion involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. I. Vassilev (2000). Dressing Virtual People, Systemics, Cybernetics and Informatics, Orlando, FL.

    Google Scholar 

  2. P. Volino, F. Cordier and N. Magnenat-Thalmann (2005). From early virtual garment simulation to interactive fashion design, Computer-Aided Design, 37(6): 593–608.

    Article  Google Scholar 

  3. S. M. Bhandarkar, T. D. Faust and M. Tang (1999). CATALOG: a system for detection and rendering of internal log defects using computer tomography, Machine Vision and Applications, 11: 171–190.

    Article  Google Scholar 

  4. L. Song, X. Qu and S. Ye (2007). Improved SFS 3D measurement based on BP neural network, Image and Vision Computing, 25(5): 614–622.

    Article  Google Scholar 

  5. D. Cobzas, H. Zhang and M. Jagersand (2003). Image-based localization with depth-enhanced image map, IEEE International Conference on Robotics and Automation, Taipeh, Taiwan, 2: 1570–1575.

    Google Scholar 

  6. K. O. Arras, N. Tomatis, B. T. Jensen, et al. (2001). Multisensor on-the-fly localization: precision and reliability for applications, Robotics and Autonomous Systems, 34(2–3): 131–143.

    Article  MATH  Google Scholar 

  7. A. J. Davison, A. G. Cid and N. Kita (2004). Real-Time 3D SLAM with Wide-Angle Vision, 5th IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal.

    Google Scholar 

  8. T. Lemaire, C. Berger, I. -K. Jung, et al. (2007). Vision-based SLAM: stereo and monocular approaches, International Journal of Computer Vision, 74(3): 343–364.

    Article  Google Scholar 

  9. J. -C. Nebel, A. Sibiryakov and X. Ju (2003). V-Man Generation for 3-D Real Time Animation, a Symposium on Intelligent Motion and Interaction Within Virtual Environments, London.

    Google Scholar 

  10. A. Koutsoudis, F. Arnaoutoglou and C. Chamzas (2007). On 3D reconstruction of the old city of Xanthi. A minimum budget approach to virtual touring based on photogrammetry, Journal of Cultural Heritage, 8(1): 26–31.

    Article  Google Scholar 

  11. H. Aans and F. Kahl (2002). Estimation of Deformable Structure and Motion, Vision and Modelling of Dynamic Scenes Workshop, Copenhagen, Denmark.

    Google Scholar 

  12. B. Vagvolgyi, C. Reiley, G. Hager, et al. (2008). Augmented reality using registration of 3D computed tomography to stereoscopic video of laparoscopic renal surgery, The Journal of Urology, 179(4): 241–242.

    Article  Google Scholar 

  13. P. Tukuisis, P. Meunier and C. E. Jubenville (2001). Human body surface area: measurement and prediction using three dimensional body scans, European Journal of Applied Physiology and Occupational Physiology, 85(3–4): 264–271.

    Google Scholar 

  14. L. Benton and J. -C. Nebel (2002). Study of the breathing pattern based on 4D data collected by a dynamic 3D body scanner, 7th Numérisation 3D/Scanning, Paris, France.

    Google Scholar 

  15. C. Beneder, F. G. Fuechsel, T. Krause, et al. (2008). The role of 3D fusion imaging in sentinel lymphadenectomy for vulvar cancer, Gynecologic Oncology, 109(1): 76–80.

    Article  Google Scholar 

  16. G. D. Giammarco, M. L. Storto, R. Marano, et al. (2006). Superior vena cava syndrome: a 3D CT-scan reconstruction, European Journal of Cardio-Thoracic Surgery, 30(2): 384–385.

    Article  Google Scholar 

  17. N. H. Mahmood and T. Tjahjadi (2006). 3D Reconstruction From Multiple Views for Orthotic and Prosthetic Design: An Overview, SCOReD - Student Conference on Research and Development, Shah Alam, Selangor, Malaysia, 27–28.

    Google Scholar 

  18. S. I. Buchaillard, S. H. Ong, Y. Payan, et al. (2007). 3D statistical models for tooth surface reconstruction, Computers in Biology and Medicine, 37(10): 1461–1471.

    Article  Google Scholar 

  19. A. Pednekar and I. A. Kakadiaris (2000). Applications of Virtual Reality in Surgery, Indian Conference on Computer Vision, Graphics and Image Processing, Graphics and Applications session, Bangalore, India.

    Google Scholar 

  20. J. P. Helferty, A. J. Sherbondy, A. P. Kiraly, et al. (2007). Computer-based system for the virtual-endoscopic guidance of bronchoscopy, Computer Vision and Image Understanding, 108(1–2): 171–187.

    Article  Google Scholar 

  21. D. P. Robertson and R. Cipolla (2002). Building Architectural Models from Many Views Using Map Constraints, 7th European Conference on Computer Vision-Part II, Copenhagen, Denmark, 155–169.

    Google Scholar 

  22. S. Lee, D. Feng and B. Gooch (2008). Automatic Construction of 3D Models from Architectural Line Drawings, Symposium on Interactive 3D Graphics and Games, Redwood City, California, 123–130.

    Google Scholar 

  23. R. Sablatnig, S. Tosovic and M. Kampel (2002). Combining Shape from Silhouette and Shape from Structured Light for Volume Estimation of Archaeological Vessels, International Conference on Pattern Recognition, Quebec City, Canada 1: 364–367.

    Google Scholar 

  24. M. Kampel and R. Sablatnig (2007). Rule based system for archaeological pottery classification, Pattern Recognition Letters, 28(6): 740–747.

    Article  Google Scholar 

  25. A. Calbi, C. S. Regazzoni and L. Marcenaro (2006). Dynamic Scene Reconstruction for Efficient Remote Surveillance, IEEE International Conference on Video and Signal Based Surveillance, Sydney, Australia, 99.

    Google Scholar 

  26. S. Fleck, F. Busch, P. Biber, et al. (2006). 3D Surveillance a Distributed Network of Smart Cameras for Real–Time Tracking and its Visualization in 3D, IEEE Computer Vision and Pattern Recognition, Workshop on Embedded Computer Vision, New York, 118.

    Google Scholar 

  27. N. Lynnerup, M. Andersen and H. P. Lauritsen (2003). Facial image identification using Photomodeler®, Legal Medicine, 5(3): 156–160.

    Article  Google Scholar 

  28. J. Lee, E.-D. Lee, H.-O. Tark, et al. (2008). Efficient height measurement method of surveillance camera image, Forensic Science International, 177(1): 17–23.

    Article  Google Scholar 

  29. R. Gershon and M. Benady (2001). Noncontact 3-D measurement technology enters a new era, http://www.qualitydigest.com/sept01/html/3d.html (retrieved in June 2007).

  30. S. M. Seitz (1999). An Overview of Passive Vision Techniques, SIGGRAPH 2000 Course on 3D Photography, Course Notes, New Orleans, Louisiana, LA.

    Google Scholar 

  31. S. M. Youssef and R. M. Salem (2007). Automated barcode recognition for smart identification and inspection automation, Expert Systems with Applications, 33(4): 968–977.

    Article  Google Scholar 

  32. Y Yu and J. Malik (1998). Recovering photometric properties of architectural scenes from photographs, Computer Graphics, 32: 207–217.

    Google Scholar 

  33. G Zhang, J. He and X. Li (2005). 3D vision inspection for internal surface based on circle structured light, Sensors and Actuators A: Physical, 122(1): 68–75.

    Article  Google Scholar 

  34. C. P. Witana, S. Xiong, J. Zhao, et al. (2006). Foot measurements from three-dimensional scans: a comparison and evaluation of different methods, International Journal of Industrial Ergonomics, 36(9): 789–807.

    Article  Google Scholar 

  35. C. Früh and A. Zakhor (2004). An automated method for large-scale, ground–based city model acquisition, International Journal of Computer Vision, 60(1): 5–24.

    Article  Google Scholar 

  36. J. Chen and B. Chen (2008). Architectural modeling from sparsely scanned range data, International Journal of Computer Vision, 78(2–3): 223–236.

    Article  Google Scholar 

  37. M. Levoy, K. Pulli, B. Curless, et al. (2000). The Digital Michelangelo Project: 3D Scanning of Large Statues, ACM SIGGRAPH 2000 — International Conference on Computer Graphics and Interactive Techniques, New Orleans, Louisiana, 131–144, ACM Press, Addison Wesley, New York.

    Google Scholar 

  38. G Guidi, B. Frischer, M. Russo, et al. (2006). Three-dimensional acquisition of large and detailed cultural heritage objects, Machine Vision and Applications, 17(6): 349–360.

    Article  Google Scholar 

  39. F. Remondino and S. El–Hakim (2006). Image–based 3D modelling: a review, The Photogram metric Record, 21(115): 269–291.

    Article  Google Scholar 

  40. F. Remondino, A. Guarnieri and A. Vettore (2005). 3D modeling of close-range objects: photogrammetry or laser scanning?, SPIE–IS&T Electronic Imaging, 5665: 216–225.

    Google Scholar 

  41. S. Ullman (1979). The Interpretation of Visual Motion, MIT Press, Cambridge, MA.

    Google Scholar 

  42. T. Broida and R. Chellappa (1991). Estimating the kinematics and structure of a rigid object from a sequence of monocular images, Pattern Analysis and Machine Intelligence, 13: 497–513.

    Article  Google Scholar 

  43. C. Tomasi and T. Kanade (1992). Shape and motion from image streams under orthography: a factorization method, International Journal of Computer Vision, 9: 137–154.

    Article  Google Scholar 

  44. J. Oliensis (1999). A multi–frame structure-from-motion algorithm under perspective projection, International Journal of Computer Vision, 34: 1–30.

    Article  Google Scholar 

  45. F. Dellaert, S. Seitz, C. Thorpe, et al. (2000). Structure from motion without correspondence, IEEE Computer Vision and Pattern Recognition, Hilton Head, SC, 2: 557–564.

    Google Scholar 

  46. J. Hui (2006). A holistic approach to structure from motion, PhD on Computer Science, University of Maryland, MD.

    Google Scholar 

  47. R. Hartley and A. Zisserman (2004). Multiple View Geometry in Computer Vision, 2nd ed., Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  48. S. Seitz and C. R. Dyer (1997). Photorealistic Scene Reconstruction by Voxel Coloring, Computer Vision and Pattern Recognition Conference, San Juan, Puerto Rico, 1067–1073.

    Google Scholar 

  49. A. Laurentini (1994). The visual hull concept for silhouette—based image understanding, IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(2): 150–162.

    Article  Google Scholar 

  50. M. Pollefeys, L. V Gool, M. Vergauwen, et al. (2004). Visual modeling with a hand-held camera, International Journal of Computer Vision, 59(3): 207–232.

    Article  Google Scholar 

  51. C. G. Harris and M. J. Stephens (1988). A Combined Corner and Edge Detector, Fourth Alvey Vision Conference, University of Manchester, UK, 15: 147–151.

    Google Scholar 

  52. R. C. Gonzalez and P. Wintz (1987). Digital Image Processing, 2nd ed., Addison Wesley, Reading, MA.

    Google Scholar 

  53. P. J. Burt, C. Yen and X. Xu (1982). Local Correlation Measures for Motion Analysis: A Comparative Study, Pattern Recognition and Image Processing, Las Vegas, NV, 269–274.

    Google Scholar 

  54. J. P. Lewis (1995). Fast Normalized Cross Correlation, Proceedings Vision Interface (VI '95), Quebec, 120–123.

    Google Scholar 

  55. A. Moore (2006). Stereo, Computer Vision Lectures, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  56. O. Faugeras, Q. -T. Luong and S. J. Maybank (1992). Camera Self-Calibration: Theory and Experiments, 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, Lecture Notes in Computer Vision, Springer, 588: 321–334.

    Google Scholar 

  57. M. A. Fischler and R. Bolles (1981). RANdom SAmpling Consensus: a paradigm for model fitting with application to image analysis and automated cartography, Communications of the ACM, New York, 24(6): 381–395.

    MathSciNet  Google Scholar 

  58. T. C. S. Azevedo, J. M. R. S. Tavares and M. A. P. Vaz (2007). 3D Volumetric Reconstruction and Characterization of Objects from Uncalibrated Images, 7th IASTED International Conference on Visualization, Imaging, and Image Processing, Palma de Mallorca, Spain, 141–146.

    Google Scholar 

  59. Z. Zhang (2000). A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11): 1330–1334.

    Article  Google Scholar 

  60. K. Sande (2004). A Practical Setup for Voxel Coloring using off-the-shelf Components, Bachelor Project, Universiteit van Amsterdam, The Netherlands.

    Google Scholar 

  61. M. Loper (2002). Archimedes: Shape Reconstruction from Pictures — A Generalized Voxel Coloring Implementation, http://matt.loper.org/Archimedes/(retrieved in August 2006).

  62. W. E. Lorensen and H. E. Cline (1987). Marching cubes: a high resolution 3D surface construction algorithm, ACM SIGGRAPH Computer Graphics, New York, NY, 21(4): 163–169.

    Article  Google Scholar 

  63. F. Isgrò and E. Trucco (1999). Projective rectification without epipolar geometry, IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, CO, 1: 94–99.

    Google Scholar 

  64. S. Birchfield (1999). Depth discontinuities by pixel–to–pixel stereo, International Journal of Computer Vision, 35(3): 269–293, http://vision.stanford.edu/~birch/p2p/(retrieved in November 2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science +Business Media B.V.

About this chapter

Cite this chapter

Azevedo, T.C.S., Tavares, J.M.R.S., Vaz, M.A.P. (2009). 3D Object Reconstruction from Uncalibrated Images Using an Off-the-Shelf Camera. In: Tavares, J.M.R.S., Jorge, R.M.N. (eds) Advances in Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9086-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9086-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9085-1

  • Online ISBN: 978-1-4020-9086-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics