Skip to main content

Modeling Stakeholder Preferences with Probabilistic Inversion

Application to Prioritizing Marine Ecosystem Vulnerabilities

  • Conference paper

Abstract

A panel of 64 experts ranked 30 scenarios of human activities according to their impacts on coastal ecosystems. Experts were asked to rank the five scenarios posing the greatest threats and the five scenarios posing the least threats. The goal of this study was to find weights for criteria that adequately model these stakeholders’ preferences and can be used to predict the scores of other scenarios. Probabilistic inversion (PI) techniques were used to quantify a model of ecosystem vulnerability based on five criteria. Distinctive features of this approach are:

  1. 1.

    A model of the stakeholder population as a joint distribution over the criteria weights is obtained. This distribution is found by minimizing relative information with respect to a noninformative starting distribution, but makes no further assumptions about the interactions between the weights for different criteria. Criteria distributions with dependence emerge from the fitting procedure.

  2. 2.

    The multicriteria preference model can be empirically validated with expert preferences not used in fitting the model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, S.P., de Palma, A., and Thissen, J-F., 1996. Discrete Choice Theory of Product Differentiation. MIT Press, Cambridge.

    Google Scholar 

  2. Bradley, R., 1953. Some statistical methods in taste testing and quality evaluation. Biometrika 9:22–38.

    Google Scholar 

  3. Bradley, R., and Terry, M., 1952. Rank analysis of incomplete block designs. Biometrika 39:324–345.

    Google Scholar 

  4. Cooke, R. M., and Misiewicz, J., 2007. Discrete choice with probabilistic inversion: application to energy policy choice and wiring failure. Presented at Mathematical Methods in Reliability, July.

    Google Scholar 

  5. Covich, A. P., Austen, M. C., Barlocher, F., Chauvet, E., Cardinale, B. J., Biles, C. L., Inchausti, P., Dangles, O., Solan, M., Gessner, M. O., Statzner, B., and Moss, B., 2004. The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bioscience 54:767–775.

    Article  Google Scholar 

  6. Csiszar, I., 1975. I-divergence geometry of probability distributions and minimization problems. Annals of Probability 3:146–158.

    Article  Google Scholar 

  7. Deming, W. E., and Stephan, F. F., 1944. On a least squares adjustment to sample frequency tables when the expected marginal totals are known. Annals of Mathematical Statistics 40(11):427–444.

    Google Scholar 

  8. Du, C., Kurowicka, D., and Cooke, R. M., 2006. Techniques for generic probabilistic inversion. Computational Statistics & Data Analysis 50:1164–1187.

    Article  Google Scholar 

  9. Linkov, I., Kiker, G. A., and Wenning, R. J. (Eds.) 2007. Environmental Security in Harbors and Coastal Areas. Springer, Dordrecht.

    Google Scholar 

  10. French, S., 1988. Decision Theory; An Introduction to the Mathematics of Rationality. Ellis Horwood, Chichester.

    Google Scholar 

  11. Halpern, B. S., Selkoe, K. A., Micheli, F., and Cappel, C. V. 2007. Evaluating and ranking global and regional threats to marine ecosystems. Conservation Biology 21:1301–1315.

    Article  Google Scholar 

  12. Ireland, C. T., and Kullback, S., 1968. Contingency tables with given marginals. Biometrika 55:179–188.

    Article  CAS  Google Scholar 

  13. Kraan, B. C. P. and Cooke, R. M. 2000. Processing expert judgments in accident consequence modeling. Radiation Protection Dosimetry 90(3):311–315.

    Google Scholar 

  14. Kraan, B.C.P and Cooke, R. M., 2000. Uncertainty in compartmental models for hazardous materials — a case study. Journal of Hazardous Materials 71:253–268.

    Article  CAS  Google Scholar 

  15. Kraan, B.C.P., and Bedford. T. J. 2005. Probabilistic inversion of expert judgments in the quantification of model uncertainty. Management Science 51(6):995–1006.

    Article  Google Scholar 

  16. Kraan, B. C. P., 2002. Probabilistic Inversion in Uncertainty Analysis and Related Topics. Ph.D. dissertation, TU Delft, Dept. Mathematics.

    Google Scholar 

  17. Kruithof, J., 1937. Telefoonverkeersrekening. De Ingenieur 52(8):E15–E25.

    Google Scholar 

  18. Kullback, S., 1959. Information Theory and Statistics. Wiley, New York.

    Google Scholar 

  19. Kullback, S., 1968. Probability densities with given marginals. The Annals of Mathematical Statistics 39(4): 1236–1243.

    Article  Google Scholar 

  20. Kullback, S., 1971. Marginal homogeneity of multidimensional contingency tables. The Annals of Mathematical Statistics 42(2):594–606.

    Article  Google Scholar 

  21. Kurowicka, D., and Cooke, R. M., 2006. Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, New York.

    Google Scholar 

  22. Linkov, I., Sahay, S., Kiker, G., Bridges, T., Belluck, D., and Meyer, A., 2006. Multicriteria decision analysis; comprehensive decision analysis tool for risk management of contaminated sediments. Risk Analysis 26(l):61–78.

    Article  CAS  Google Scholar 

  23. Luce, R. D., and Suppes, P., 1965. Preference, utility, and subjective probability. In Handbook of Mathematical Psychology, vol. 3, eds. Luce, R. D., Bush, R., and Calanter, E. Wiley, New York.

    Google Scholar 

  24. Luce, R. D., 1959. Individual Choice Behavior; A Theoretical Analysis. Wiley, New York.

    Google Scholar 

  25. M.E.A. (Millennium Ecosystem Assessment), 2005. Ecosystems and Human Well-Being: Synthesis Report. Island Press, Washington, DC.

    Google Scholar 

  26. Matus, F., 2007. On iterated averages of I-projections, Statistiek und Informatik, Universität Bielefeld, Bielefeld, Germany.

    Google Scholar 

  27. McFadden, D., 1974. Conditional logic analysis of qualitative choice behavior. In Frontiers in Econometrics, ed. Zarembka, P., 105–142. New York Academic Press, New York.

    Google Scholar 

  28. Siikamäki, J., and Layton, D. F., 2007. Discrete choice survey experiments: a comparison using flexible methods. Journal of Environmental Economics and Management 53:127–139.

    Article  Google Scholar 

  29. Stringer, L. C., Dougill, A. J., Fraser, E., Hubacek, K., Prell, C., and Reed, M. S., 2006. Unpacking “participation” in the adaptive management of social ecological systems: a critical review. Ecology and Society 11(2):39.

    Google Scholar 

  30. Thurstone, L., 1927. A law of comparative judgment. Psychological Review 34:273–286.

    Article  Google Scholar 

  31. Torgerson, W., 1958. Theory and Methods of Scaling. Wiley, New York.

    Google Scholar 

  32. Train, K. E., 2003. Discrete Choice Methods with Simulation. Cambridge University Press, New York.

    Google Scholar 

  33. Train, K. E., 1998. Recreation demand models with taste differences over people. Land Economics 74: 230–239.

    Article  Google Scholar 

  34. Vomlel, J., 1999. Methods of Probabilistic Knowledge Integration. Ph.D. thesis, Czech Technical University, Faculty of Electrical Engineering.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this paper

Cite this paper

Neslo, R., Micheli, F., Kappel, C.V., Selkoe, K.A., Halpern, B.S., Cooke, R.M. (2008). Modeling Stakeholder Preferences with Probabilistic Inversion. In: Linkov, I., Ferguson, E., Magar, V.S. (eds) Real-Time and Deliberative Decision Making. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9026-4_17

Download citation

Publish with us

Policies and ethics