Skip to main content

Fluorescence Detection Techniques

  • Chapter
Introduction to Fluorescence Sensing

Fluorescence is the phenomenon of the emission of a light quanta by a molecule or material (fluorophore) after initial electronic excitation in a light-absorption process. After excitation, a molecule resides for some time in the so-called excited state and its fluorescence emission can be observed usually with a lower energy (longer wavelength) than the excitation. The time range of fluorescence emission (fluorescence lifetime) depends on both the fluorophore and its interactions with the local environment. Thus, for organic dyes it is in the picosecond (ps) to nanosecond (ns) time range, typically 10-8–10-11 s. Fluorescence is a part of a more general phenomenon, luminescence. The latter includes the emission of species excited in the course of chemical reactions (chemiluminescence), biochemical reactions (bioluminescence) or upon oxidation/reduction at an electrode (electrochemiluminescence). Important for sensing is also emission with a long lifetime from triplet state (phosphorescence). The duration of these types of luminescence can be much longer than the fluorescence. For semiconductor nanocrystals it can be tens of nanoseconds; for organometallic compounds and lanthanide complexes — hundreds of nanoseconds, up to milliseconds (ms).

Several parameters of fluorescence emission can be recorded and all of them can be used in sensing (Fig. 3.1). Fluorescence intensity F can be measured at the given wavelengths of excitation and emission (usually, band maxima). Its dependence on emission wavelength, Fem) gives the fluorescence emission spectrum. If this intensity is measured over the excitation wavelength, one can obtain the fluorescence excitation spectrum Fex). Emission anisotropy, r (or the similar parameter, polarization, P) is a function of the fluorescence intensities obtained at two different polarizations, vertical and horizontal. Finally, emission can be characterized by the fluorescence lifetime τF, fluorescence-detected excited-state lifetime what is often called. All of these parameters can be determined as a function of excitation and emission wavelengths. They can be used for reporting on sensor-target interactions and a variety of possibilities exist for their employment in sensor constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349:694–697

    Article  PubMed  CAS  Google Scholar 

  • Altschuh D, Oncul S, Demchenko AP (2006) Fluorescence sensing of intermolecular interactions and development of direct molecular biosensors. Journal of Molecular Recognition 19:459–477

    Article  PubMed  CAS  Google Scholar 

  • Bahr JL, Kodis G, de la Garza L, Lin S, Moore AL, Moore TA, Gust D (2001) Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad. Journal of the American Chemical Society 123:7124–7133

    Article  PubMed  CAS  Google Scholar 

  • Billinton N, Knight AW (2001) Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Analytical Biochemistry 291:175–197

    Article  PubMed  CAS  Google Scholar 

  • Bourson J, Pouget J, Valeur B (1993) Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown esters. Journal of Physical Chemistry 97:4552–4557

    Article  CAS  Google Scholar 

  • Braslavsky SE (2007) Glossary of terms used in photochemistry 3(rd) edition (IUPAC Recommendations 2006). Pure and Applied Chemistry 79:293–465

    Article  CAS  Google Scholar 

  • Bright FV, Betts TA, Litwiler KS (1990) Regenerable fiber-optic-based immunosensor. Analytical Chemistry 62:1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Burke M, O'Sullivan PJ, Soini AE, Berney H, Papkovsky DB (2003) Evaluation of the phosphorescent palladium(II)-coproporphyrin labels in separation-free hybridization assays. Analytical Biochemistry 320:273–280

    Article  PubMed  CAS  Google Scholar 

  • Cejas MA, Raymo FM (2005) Fluorescent diazapyrenium films and their response to dopamine. Langmuir 21:5795–5802

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekharan N, Kelly LA (2001) A dual fluorescence temperature sensor based on perylene/ exciplex interconversion. Journal of the American Chemical Society 123:9898–9899

    Article  PubMed  CAS  Google Scholar 

  • Chang CJ, Javorski J, Nolan EM, Shaeng M, Lippard SJ (2004) A tautomeric zinc sensor for ratio-metric fluorescence imaging: application to nitric oxide-release of intracellular zinc. Proceedings of the National Academy of Sciences of the United States of America 101:1129–1134

    Article  PubMed  CAS  Google Scholar 

  • Clegg RM (1996) Fluorescence resonance energy transfer. In: Wang XF, Herman B (eds) Fluorescence imaging spectroscopy and microscopy. Wiley, New York, pp. 179–252

    Google Scholar 

  • Collado D, Perez-Inestrosa E, Suau R, Desvergne JP, Bouas-Laurent H (2002) Bis(isoquinoline N-oxide) pincers as a new type of metal cation dual channel fluorosensor. Organic Letters 4:855–858

    Article  PubMed  CAS  Google Scholar 

  • Demchenko AP (1986) Ultraviolet spectroscopy of proteins. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Demchenko AP (1991) Fluorescence and dynamics in proteins. In: Lakowicz JR (ed) Topics in Fluorescence Spectroscopy. Plenum Press, New York, pp. 61–111

    Google Scholar 

  • Demchenko AP (2005a) The future of fluorescence sensor arrays. Trends in Biotechnology 23:456–460

    CAS  Google Scholar 

  • Demchenko AP (2005b) Optimization of fluorescence response in the design of molecular biosensors. Analytical Biochemistry 343:1–22

    Article  CAS  Google Scholar 

  • Demchenko AP (2006) Visualization and sensing of intermolecular interactions with two-color fluorescent probes. FEBS Letters 580:2951–2957

    Article  PubMed  CAS  Google Scholar 

  • Demchenko AP, Sytnik AI (1991a) Site-selectivity in excited-state reactions in solutions. Journal of Physical Chemistry 95:10518–10524

    Article  CAS  Google Scholar 

  • Demchenko AP, Sytnik AI (1991b) Solvent reorganizational red-edge effect in intramolecular electron transfer. Proceedings of the National Academy of Sciences of the United States of America 88:9311–9314

    Article  CAS  Google Scholar 

  • Demchenko AP, Klymchenko AS, Pivovarenko VG, Ercelen S, Duportail G, Mely Y (2003) Multiparametric color-changing fluorescence probes. Journal of Fluorescence 13:291–295

    Article  CAS  Google Scholar 

  • de Lorimier RM, Smith JJ, Dwyer MA, Looger LL, Sali KM, Paavola CD, Rizk SS, Sadigov S, Conrad DW, Loew L, Hellinga HW (2002) Construction of a fluorescent biosensor family. Protein Science 11:2655–2675

    Article  PubMed  CAS  Google Scholar 

  • de Silva AP, Gunaratne HQN, Gunnaugsson T, Huxley AJM, McRoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chemical Reviews 97:1515–1566

    Article  PubMed  Google Scholar 

  • Di Cesare N, Lakowicz JR (2001) Wavelength-ratiometric probes for saccharides based on donor—acceptor diphenylpolyenes. Journal of Photochemistry and Photobiology A, Chemistry 143:39–47

    Article  Google Scholar 

  • Domecq A, Disalvo EA, Bernik DL, Florenzano F, Politi MJ (2001) A stability test of liposome preparations using steady-state fluorescent measurements. Drug Delivery 8:155–160

    Article  PubMed  CAS  Google Scholar 

  • Epps DE, Schostarez H, Argoudelis CV, Poorman R, Hinzmann J, Sawyer TK, Mandel F (1989) An experimental method for the determination of enzyme-competitive inhibitor dissociation constants from displacement curves: application to human renin using fluorescence energy transfer to a synthetic dansylated inhibitor peptide. Analytical Biochemistry 181:172–181

    Article  PubMed  CAS  Google Scholar 

  • Epps DE, Mitchell MA, Petzold GL, VanDrie JH, Poorman RA (1999) A fluorescence resonance energy transfer method for measuring the binding of inhibitors to stromelysin. Analytical Biochemistry 275:141–147

    Article  PubMed  CAS  Google Scholar 

  • Gershkovich AA, Kholodovych VV (1996) Fluorogenic substrates for proteases based on intramolecular fluorescence energy transfer (IFETS). Journal of Biochemical and Biophysical Methods 33:135–162

    Article  PubMed  CAS  Google Scholar 

  • Ghosh SS, Eis PS, Blumeyer K, Fearon K, Millar DP (1994) Real time kinetics of restriction endonuclease cleavage monitored by fluorescence resonance energy transfer. Nucleic Acids Research 22:3155–3159

    Article  PubMed  CAS  Google Scholar 

  • Gilardi G, Zhou LQ, Hibbert L, Cass AE (1994) Engineering the maltose binding protein for rea-gentless fluorescence sensing. Analytical Chemistry 66:3840–3847

    Article  PubMed  CAS  Google Scholar 

  • Giordano L, Jovin TM, Irie M, Jares-Erijman EA (2002) Diheteroarylethenes as thermally stable photoswitchable acceptors in photochromic fluorescence resonance energy transfer (pcFRET). Journal of the American Chemical Society 124:7481–7489

    Article  PubMed  CAS  Google Scholar 

  • Godwin HA, Berg JM (1996) A fluorescent zinc probe based on metal-induced peptide folding. Journal of the American Chemical Society 118:6514–6515

    Article  CAS  Google Scholar 

  • Gokulrangan G, Unruh JR, Holub DF, Ingram B, Johnson CK, Wilson GS (2005) DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Analytical Chemistry 77:1963–1970

    Article  PubMed  CAS  Google Scholar 

  • Gross E, Bedlack RS, Loew LM (1994) Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophysical Journal 67:208–216

    PubMed  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2 + indicators with greatly improved fluorescence properties. Journal of Biological Chemistry 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Guo XQ, Castellano FN, Li L, Lakowicz JR (1998) Use of a long lifetime Re(I) complex in fluorescence polarization immunoassays of high-molecular weight analytes. Analytical Chemistry 70:632–637

    Article  PubMed  CAS  Google Scholar 

  • Hunt CE, Ansell RJ (2006) Use of fluorescence shift and fluorescence anisotropy to evaluate the re-binding of template to (S)-propranolol imprinted polymers. Analyst 131:678–683

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Jiang P, Tsukada E, Wada T, Shimizu H, Tai A, Ishikawa M (2002) Unique dual fluorescence of sterically congested hexaalkyl benzenehexacarboxylates: mechanism and application to viscosity probing. Journal of the American Chemical Society 124:6942–6949

    Article  PubMed  CAS  Google Scholar 

  • Jameson DM, Croney JC (2003) Fluorescence polarization: past, present and future. Combinatorial Chemistry & High Throughput Screening 6:167–173

    CAS  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nature Biotechnology 21:1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman S, Biwersi J, Verkman AS (1999) Synthesis and characterization of dual-wavelength Cl-sensitive fluorescent indicators for ratio imaging. American Journal of Physiology 276: C747–757

    PubMed  CAS  Google Scholar 

  • Kapanidis AN, Weiss S (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. Journal of Chemical Physics 117:10953–10964

    Article  CAS  Google Scholar 

  • Klymchenko AS, Ozturk T, Pivovarenko VG, Demchenko AP (2001a) A 3-hydroxychromone with dramatically improved fluorescence properties. Tetrahedron Letters 42:7967–7970

    Article  CAS  Google Scholar 

  • Klymchenko AS, Ozturk T, Pivovarenko VG, Demchenko AP (2001b) Synthesis and spectro-scopic properties of benzo- and naphthofuryl-3-hydroxychromones. Canadian Journal of Chemistry-Revue Canadienne De Chimie 79:358–363

    Article  CAS  Google Scholar 

  • Klymchenko AS, Duportail G, Mely Y, Demchenko AP (2003a) Ultrasensitive two-color fluorescence probes for dipole potential in phospholipid membranes. Proceedings of the National Academy of Sciences of the United States of America 100:11219–11224

    Article  CAS  Google Scholar 

  • Klymchenko AS, Pivovarenko VG, Ozturk T, Demchenko AP (2003b) Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New Journal of Chemistry 27:1336–1343

    Article  CAS  Google Scholar 

  • Koronszi I, Reichert J, Heinzmann G, Ache HJ (1998) Development of submicron optochemical potassium sensor with enhanced stability due to internal reference. Sensors and Actuators B 51:188–195

    Article  Google Scholar 

  • Kostenko E, Dobrikov M, Komarova N, Pyshniy D, Vlassov V, Zenkova M (2001) 5′ -bis-pyrenylated oligonucleotides display enhanced excimer fluorescence upon hybridization with DNA and RNA. Nucleosides Nucleotides Nucleic Acids 20:1859–1870

    Article  PubMed  CAS  Google Scholar 

  • Kuwana E, Sevick-Muraca EM (2002) Fluorescence lifetime spectroscopy in multiply scattering media with dyes exhibiting multiexponential decay kinetics. Biophysical Journal 83:1165–1176

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (2007) Principles of fluorescence spectroscopy. Springer, New York

    Google Scholar 

  • Liebsch G, Klimant I, Krause C, Wolfbeis OS (2001) Fluorescent imaging of pH with optical sensors using time domain dual lifetime referencing. Analytical Chemistry 73:4354–4363

    Article  PubMed  CAS  Google Scholar 

  • Mahara A, Iwase R, Sakamoto T, Yamana K, Yamaoka T, Mirakami A (2002) Bispyrene-conju-gated 2’′-O-methyloligonucleotide as a highly specific RNA-recognition probe. Angewandte Chemie-International Edition 41:3648–3650

    Article  CAS  Google Scholar 

  • Maliwal BP, Gryczynski Z, Lakowicz JR (2001) Long-wavelength long-lifetime luminophores. Analytical Chemistry 73:4277–4285

    Article  PubMed  CAS  Google Scholar 

  • Malval J-P, Lapouyade R, Leger JM, Jany C (2003) Tripodal ligand incorporating dual fluorescent ionophore: a coordinative control of photochemical electron transfer. Photochemical and Photobiological Sciences 2:259–266

    Article  PubMed  CAS  Google Scholar 

  • Marras SA, Kramer FR, Tyagi S (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Research 30:e122

    Article  PubMed  Google Scholar 

  • McCauley TG, Hamaguchi N, Stanton M (2003) Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Analytical Biochemistry 319:244–250

    Article  PubMed  CAS  Google Scholar 

  • McFarland SA, Finney NS (2001) Fluorescent chemosensors based on conformational restriction of a biaryl fluorophore. Journal of the American Chemical Society 123:1260–1261

    Article  PubMed  CAS  Google Scholar 

  • Medintz IL, Goldman ER, Lassman ME, Mauro JM (2003) A fluorescence resonance energy transfer sensor based on maltose binding protein. Bioconjugate Chemistry 14:909–918

    Article  PubMed  CAS  Google Scholar 

  • Medintz IL, Trammell SA, Mattoussi H, Mauro JM (2004) Reversible modulation of quantum dot photoluminescence using a protein-bound photochromic fluorescence resonance energy transfer acceptor. Journal of the American Chemical Society 126:30–31

    Article  PubMed  CAS  Google Scholar 

  • Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodam-ine and fluorescein chromophores. Journal of Biological Chemistry 264:8171–8178

    PubMed  CAS  Google Scholar 

  • Nielsen K, Lin M, Gall D, Jolley M (2000) Fluorescence polarization immunoassay: detection of antibody to Brucella abortus. Methods 22:71–76

    Article  PubMed  CAS  Google Scholar 

  • Oheim M, Naraghi M, Muller TH, Neher E (1998) Two dye two wavelength excitation calcium imaging: results from bovine adrenal chromaffin cells. Cell Calcium 24:71–84

    Article  PubMed  CAS  Google Scholar 

  • Oncul S, Demchenko AP (2006) The effects of thermal quenching on the excited-state intramolecular proton transfer reaction in 3-hydroxyflavones. Spectrochimica Acta A. Molecular and Biomolecular Spectroscopy 65:179–183

    Article  CAS  Google Scholar 

  • Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. Journal of Biomolecular Screening 5:297–306

    Article  PubMed  CAS  Google Scholar 

  • Prendergast FG, Meyer M, Carlson GL, Iida S, Potter JD (1983) Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. Journal of Biological Chemistry 258:7541–7544

    PubMed  CAS  Google Scholar 

  • Putkey JA, Liu W, Lin X, Ahmed S, Zhang M, Potter JD, Kerrick WG (1997) Fluorescent probes attached to Cys 35 or Cys 84 in cardiac troponin C are differentially sensitive to Ca(2+)-dependent events in vitro and in situ. Biochemistry 36:970–978

    Article  PubMed  CAS  Google Scholar 

  • Raymond FR, Ho HA, Peytavi R, Bissonnette L, Boissinot M, Picard FJ, Leclerc M, Bergeron MG (2005) Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support. BMC Biotechnology 5:10

    Article  PubMed  CAS  Google Scholar 

  • Richieri GV, Ogata RT, Kleinfeld AM (1992) A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. Journal of Biological Chemistry 267:23495–23501

    PubMed  CAS  Google Scholar 

  • Rurack K (2001) Flipping the light switch ‘on’ — the design of sensor molecules that show cation-induced fluorescence enhancementwith heavy and transition metal ions. Spectrochimica Acta Part A 57:2161–2195

    Article  CAS  Google Scholar 

  • Sahoo D, Narayanaswami V, Kay CM, Ryan RO (2000) Pyrene excimer fluorescence: a spatially sensitive probe to monitor lipid-induced helical rearrangement of apolipophorin III. Biochemistry 39:6594–6601

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Barragan I, Costa-Fernandez JM, Valledor M, Campo JC, Sanz-Medel A (2006) Room-temperature phosphorescence (RTP) for optical sensing. Trac-Trends in Analytical Chemistry 25:958–967

    Article  CAS  Google Scholar 

  • Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nature Structural Biology 7:730–734

    Article  PubMed  CAS  Google Scholar 

  • Shynkar V, Mely Y, Duportail G, Piemont E, Klymchenko AS, Demchenko AP (2003) Picosecond time-resolved fluorescence studies are consistent with reversible excited-state intramolecular proton transfer in 4̃-dialkylamino-3-hydroxyflavones. Journal of Physical Chemistry A. 109: 9522–9529

    Article  CAS  Google Scholar 

  • Shynkar VV, Klymchenko AS, Piemont E, Demchenko AP, Mely Y (2004) Dynamics of intermo-lecular hydrogen bonds in the excited states of 4 ‘-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. Journal of Physical Chemistry A 108:8151–8159

    Article  CAS  Google Scholar 

  • Shynkar VV, Klymchenko AS, Duportail G, Demchenko AP, Mely Y (2005) Two-color fluorescent probes for imaging the dipole potential of cell plasma membranes. Biochimica Et Biophysica Acta 1712:128–136

    Article  PubMed  CAS  Google Scholar 

  • Smallshaw JE, Brokx S, Lee JS, Waygood EB (1998) Determination of the binding constants for three HPr-specific monoclonal antibodies and their Fab fragments. Journal of Molecular Biology 280:765–774

    Article  PubMed  CAS  Google Scholar 

  • Sportsman JR, Daijo J, Gaudet EA (2003) Fluorescence polarization assays in signal transduction discovery. Combinatorial Chemistry & High Throughput Screening 6:195–200

    CAS  Google Scholar 

  • Suppan P, Ghoneim N (1997) Solvatochromism. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Szmacinski H, Lakowicz JR (1994) Lifetime-based sensing. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Plenum Press, New York, pp. 295–334

    Google Scholar 

  • Takakusa H, Kikuchi K, Urano Y, Kojima H, Nagano T (2003) A novel design method of ratio-metric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap integral. Chemistry 9:1479–1485

    Article  PubMed  CAS  Google Scholar 

  • Thirunavukkuarasu S, Jares-Erijman EA, Jovin TM (2008) Multiparametric fluorescence detection of early stages in the amyloid protein aggregation of pyrene-labeled alpha-synuclein. Journal of Molecular Biology 378:1064–1073

    Article  PubMed  CAS  Google Scholar 

  • Thompson RB, Maliwal BP, Feliccia VL, Fierke CA, McCall K (1998) Determination of picomo-lar concentrations of metal ions using fluorescence anisotropy: biosensing with a “reagentless” enzyme transducer. Analytical Chemistry 70:4717–4723

    Article  PubMed  CAS  Google Scholar 

  • Tolosa L, Ge X, Rao G (2003) Reagentless optical sensing of glutamine using a dual-emitting glutamine-binding protein. Analytical Biochemistry 314:199–205

    Article  PubMed  CAS  Google Scholar 

  • Tomin VI, Oncul S, Smolarczyk G, Demchenko AP (2007) Dynamic quenching as a simple test for the mechanism of excited-state reaction. Chemical Physics 342:126–134

    Article  CAS  Google Scholar 

  • Torimura M, Kurata S, Yamada K, Yokomaku T, Kamagata Y, Kanagawa T, Kurane R (2001) Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Analytical Sci 17:155–160

    Article  CAS  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annual Review of Biochemistry 67:509–544

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology 14:303–308

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S, Marras SA, Kramer FR (2000) Wavelength-shifting molecular beacons. Nature Biotechnology 18:1191–1196

    Article  PubMed  CAS  Google Scholar 

  • Ueberfeld J, Walt DR (2004) Reversible ratiometric probe for quantitative DNA measurements. Analytical Chemistry 76:947–952

    Article  PubMed  CAS  Google Scholar 

  • Valeur B (2002) Molecular fluorescence. Wiley-VCH, Weinheim

    Google Scholar 

  • Vazquez ME, Blanco JB, Imperiali B (2005) Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-Dimethylamino-2,3-naphthalimide. Journal of the American Chemical Society 127:1300–1306

    Article  PubMed  CAS  Google Scholar 

  • Walkup GK, Imperiali B (1996) Design and Evaluation of a Peptidyl Fluorescent Chemosensor for Divalent Zinc. Journal of the American Chemical Society 118:3053–3054

    Article  CAS  Google Scholar 

  • Wu PG, Brand L (1994) Resonance Energy-Transfer — Methods and Applications. Analytical Biochemistry 218:1–13

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Wu HP, Huang F, Song SP, Li WX, Cao Y, Fan CH (2005a) Magnetically assisted DNA assays: high selectivity using conjugated polymers for amplified fluorescent transduction. Nucleic Acids Research 33:e83

    Article  CAS  Google Scholar 

  • Xu QH, Wang S, Korystov D, Mikhailovsky A, Bazan GC, Moses D, Heeger AJ (2005b) The fluorescence resonance energy transfer (FRET) gate: a time-resolved study. Proceedings of the National Academy of Sciences of the United States of America 102:530–535

    Article  CAS  Google Scholar 

  • Yamauchi A, Hayashita T, Nishizawa S, Watanabe M, Teramae N (1999) Benzo-15-crown-5 fluoroionophore/cyclodextrin complex with remarkably high potassium ion sensitivity in water. Journal of the American Chemical Society 121:2319–2320

    Article  CAS  Google Scholar 

  • Yang RH, Chan WH, Lee AWM, Xia PF, Zhang HK, Li KA (2003) A ratiometric fluorescent sensor for Ag-1 with high selectivity and sensitivity. Journal of the American Chemical Society 125:2884–2885

    Article  PubMed  CAS  Google Scholar 

  • Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan W (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences of the United States of America 102:17278–17283

    Article  PubMed  CAS  Google Scholar 

  • Yuasa H, Miyagawa N, Izumi T, Nakatani M, Izumi M, Hashimoto H (2004) Hinge sugar as a movable component of an excimer fluorescence sensor. Organic Letters 6:1489–1492

    Article  PubMed  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

(2009). Fluorescence Detection Techniques. In: Demchenko, A.P. (eds) Introduction to Fluorescence Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9003-5_3

Download citation

Publish with us

Policies and ethics