Skip to main content

Gastric Cancer: Antitumor Activity of RUNX3

  • Chapter
  • 645 Accesses

Part of the book series: Methods of Cancer Diagnosis, Therapy, and Prognosis ((HAYAT,volume 3))

Although the incidence of gastric cancer declined in the West from the 1940s to the 1980s, it remains a major public health problem throughout the world (Parkin et al., 2005). In Asia and parts of South America in particular, gastric cancer is the most common epithelial malignancy and leading cause of cancer-related deaths. Moreover, gastric cancer remains the second most frequently diagnosed malignancy worldwide and the cause of 12% of all cancer-related deaths each year (Parkin et al., 2005; Zheng et al., 2004). Advances in the treatment of this disease are likely to come from a fuller understanding of its biology and behavior. The aggressive nature of human metastatic gastric carcinoma is related to mutations of various oncogenes and tumor suppressor genes and abnormalities of several growth factors and their receptors (Ushijima and Sasako, 2004). These mutations and abnormalities affect the downstream signal transduction pathways involved in the control of cell growth and differentiation. Specifically, they confer a tremendous survival and growth advantage to gastric cancer cells. Studies have indicated the role of several tumor suppressor genes in gastric cancer development and progression, including the E-cadherin/CDH1 gene, TP53, p16 (Ushijima and Sasako, 2004), and, recently, runt-related (RUNX) genes (Li et al., 2002).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carvalho, R., Milne, A.N., Polak, M., Corver, W.E., Offerhaus, G.J., and Weterman, M.A. 2005. Exclusion of RUNX3 as a tumour-suppressor gene in early-onset gastric carcinomas. Oncogene 24: 8252–8258.

    Article  PubMed  CAS  Google Scholar 

  • Chi, X.Z., Yang, J.O., Lee, K.Y., Ito, K., Sakakura, C., Li, Q.L., Kim, H.R., Cha, E.J., Lee, Y.H., Kaneda, A., Ushijima, T., Kim, W.J., Ito, Y., and Bae, S.C. 2005. RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation with transforming growth factor {beta}-activated SMAD. Mol. Cell. Biol. 25: 8097–8107.

    Article  PubMed  CAS  Google Scholar 

  • Coffman, J.A. 2003. Runx transcription factors and the developmental balance between cell proliferation and differentiation. Cell Biol. Int. 27: 315–324.

    Article  PubMed  CAS  Google Scholar 

  • Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., and Karsenty, G. 1997. Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell 89: 747–754.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, M.J., Rad, R., Langer, R., Voland, P., Hoefler, H., Schmid, R.M., Prinz, C., and Gerhard, M. 2006. Lack of RUNX3 regulation in human gastric cancer. J. Pathol. 210: 141–146.

    Article  PubMed  CAS  Google Scholar 

  • Fukamachi, H. 2006. Runx3 controls growth and differentiation of gastric epithelial cells in mammals. Dev. Growth Differ. 48: 1–13.

    Article  PubMed  Google Scholar 

  • Fukamachi, H., and Ito, K. 2004. Growth regulation of gastric epithelial cells by Runx3. Oncogene 23: 4330–4335.

    Article  PubMed  CAS  Google Scholar 

  • Fukamachi, H., Ito, K., and Ito, Y. 2004. Runx3-/-gastric epithelial cells differentiate into intestinal type cells. Biochem. Biophys. Res. Commun. 321: 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Guo, W.H., Weng, L.Q., Ito, K., Chen, L.F., Nakanishi, H., Tatematsu, M., and Ito, Y. 2002. Inhibition of growth of mouse gastric cancer cells by Runx3, a novel tumor suppressor. Oncogene 21: 8351–8355.

    Article  PubMed  CAS  Google Scholar 

  • Guo, C., Ding, Y.L., Sun, L., Lin, T., Song, Y., Sun, L., and Fan, D. 2005. Tumor suppressor gene Runx3 sensitizes gastric cancer cells to chemotherapeutic drugs by downregulating Bc1–2, MDR-1 and MRP-1. Int. J. Cancer 116:155–160.

    Article  PubMed  CAS  Google Scholar 

  • Homma, N., Tamura, G., Honda, T., Matsumoto, Y., Nishizuka, S., Kawata, S., and Motoyama, T. 2006. Spreading of methylation within RUNX3 CpG island in gastric cancer. Cancer Sci. 97: 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C., Ida, H., Ito, K., Zhang, H., and Ito, Y. 2007. Contribution of reactivated RUNX3 to inhibition of gastric cancer cell growth following suberoylanilide hydroxamic acid (vorinostat) treatment. Biochem. Pharmacol. 73: 990–1000.

    Article  PubMed  CAS  Google Scholar 

  • Ito, K., Liu, Q., Salto-Tellez, M., Yano, T., Tada, K., Ida, H., Huang, C., Shah, N., Inoue, M., Rajnakova, A., Hiong, K.C., Peh, B.K., Han, H.C., Ito, T., Teh, M., Yeoh, K.G., and Ito, Y. 2005. RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res. 65: 7743–7750.

    Article  PubMed  CAS  Google Scholar 

  • Jin, Y.H., Jeon, E.J., Li, Q.L., Lee, Y.H., Choi, J.K., Kim, W.J., Lee, K.Y., and Bae, S.C. 2004. Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J. Biol. Chem. 279: 29409–29417.

    Article  PubMed  CAS  Google Scholar 

  • Lee, B., Thirunavukkarasu, K., Zhou, L., Pastore, L., Baldini, A., Hecht, J., Geoffroy, V., Ducy, P., and Karsenty, G. 1997. Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat. Genet. 16: 307–310.

    Article  PubMed  CAS  Google Scholar 

  • Levanon, D., Bettoun, D., Harris-Cerruti, C., Woolf, E., Negreanu, V., Eilam, R., Bernstein, Y., Goldenberg, D., Xiao, C., Fliegauf, M., Kremer, E., Otto, F., Brenner, O., Lev-Tov, A., and Groner, Y. 2002. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J. 21: 3454–3463.

    Article  PubMed  CAS  Google Scholar 

  • Levanon, D., Brenner, O., Otto, F., and Groner, Y. 2003. Runx3 knockouts and stomach cancer. EMBO Rep. 4:560–564.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q.L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X.Z., Lee, K.Y., Nomura, S., Lee, C.W., Han, S.B., Kim, H.M., Kim, W.J., Yamamoto, H., Yamashita, N., Yano, T., Ikeda, T., Itohara, S., Inazawa, J., Abe, T., Hagiwara, A., Yamagishi, H., Ooe, A., Kaneda, A., Sugimura, T., Ushijima, T., Bae, S.C., and Ito, Y. 2002. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109: 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Look, A.T. 1997. Oncogenic transcription factors in the human acute leukemias. Science 278: 1059–1064.

    Article  PubMed  CAS  Google Scholar 

  • Lund, A.H., and van Lohuizen, M. 2002. RUNX: a trilogy of cancer genes. Cancer Cell 1: 213–215.

    Article  PubMed  CAS  Google Scholar 

  • Mundlos, S., Otto, F., Mundlos, C., Mulliken, J.B., Aylsworth, A.S., Albright, S., Lindhout, D., Cole, W.G., Henn, W., Knoll, J.H., Owen, M.J., Mertelsmann, R., Zabel, B.U., and Olsen, B.R. 1997. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89: 773–779.

    Article  PubMed  CAS  Google Scholar 

  • Nakase, Y., Sakakura, C., Miyagawa, K., Kin, S., Fukuda, K., Yanagisawa, A., Koide, K., Morofuji, N., Hosokawa, Y., Shimomura, K., Katsura, K., Hagiwara, A., Yamagishi, H., Ito, K., and Ito, Y. 2005. Frequent loss of RUNX3 gene expression in remnant stomach cancer and adjacent mucosa with special reference to topography. Br. J. Cancer 92: 562–569.

    PubMed  CAS  Google Scholar 

  • Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. 2005. Global cancer statistics, 2002. CA. Cancer J. Clin. 55:74–108.

    Article  Google Scholar 

  • Peng, Z., Wei, D., Wang, L., Tang, H., Zhang, J., Le, X., Jia, Z., Li, Q., and Xie, K. 2006. RUNX3 inhibits the expression of vascular endothelial growth factor and reduced the angiogenesis, growth and metastasis of human gastric cancer. Clin. Cancer Res. 12: 6386–6394.

    Article  PubMed  CAS  Google Scholar 

  • Sakakura, C., Hasegawa, K., Miyagawa, K., Nakashima, S., Yoshikawa, T., Kin, S., Nakase, Y., Yazumi, S., Yamagishi, H., Okanoue, T., Chiba, T., and Hagiwara, A. 2005. Possible involvement of RUNX3 silencing in the peritoneal metastases of gastric cancers. Clin. Cancer Res. 11: 6479–6488.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, N., and Krieglstein, K. 2002. Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res. 307: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Yanoshita, R., Konishi, M., Oshimura, M., Maeda, Y., Mori, T., and Miyaki, M. 1993. Suppression of tumourigenicity in human colon carcinoma cells by introduction of normal chromosome 1p36 region. Oncogene 8: 2253–2258.

    PubMed  CAS  Google Scholar 

  • Ushijima, T., and Sasako, M. 2004. Focus on gastric cancer. Cancer Cell 5:121–125.

    Article  PubMed  CAS  Google Scholar 

  • Vogiatzi, P., DeFalco, G., Claudio, P.P., and Giordano, A. 2006. How does the human RUNX3 gene induce apoptosis in gastric cancer? Latest data, reflections and reactions. Cancer Biol. Ther. 5: 37157–37164.

    Google Scholar 

  • Waki, T., Tamura, G., Sato, M., Terashima, M., Nishizuka, S., and Motoyama, T. 2003. Promoter methylation status of DAP-kinase and RUNX3 genes in neoplastic and non-neoplastic gastric epithelia. Cancer Sci. 94: 360–364.

    Article  PubMed  CAS  Google Scholar 

  • Wei, D., Gong, W., Oh, S.C., Li, Q., Kim, W.D., Wang, L., Le, X., Yao, J., Wu, T.T., Huang, S., and Xie, K. 2005. Loss of RUNX3 expression significantly impacts the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis. Cancer Res. 65: 4809–4816.

    Article  PubMed  CAS  Google Scholar 

  • Weith, A., Brodeur, G.M., Bruns, G.A., Matise, T.C., Mischke, D., Nizetic, D., Seidin, M.F., van Roy, N., and Vance, J. 1996. Report of the second international workshop on human chromosome 1 mapping 1995. Cytogenet. Cell Genet. 72: 114–144.

    CAS  Google Scholar 

  • Woolf, E., Xiao, C., Fainaru, O., Lotem, J., Rosen, D., Negreanu, V., Bernstein, Y., Goldenberg, D., Brenner, O., Berke, G., Levanon, D., and Groner, Y. 2003. Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc. Natl. Acad. Sci. U. S. A. 100: 7731–7736.

    Article  PubMed  CAS  Google Scholar 

  • Yamamura, Y., Lee, W.L., Inoue, K., Ida, H., and Ito, Y. 2006. RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J. Biol. Chem. 281: 5267–5276.

    Article  PubMed  CAS  Google Scholar 

  • Yanada, M., Yaoi, T., Shimada, J., Sakakura, C., Nishimura, M., Ito, K., Terauchi, K., Nishiyama, K., Itoh, K., and Fushiki, S. 2005. Frequent hemizygous deletion at 1p36 and hypermethylation downregulate RUNX3 expression in human lung cancer cell lines. Oncol. Rep. 14: 817–822.

    PubMed  CAS  Google Scholar 

  • Yano, T., Ito, K., Fukamachi, H., Chi, X.Z., Wee, HJ., Inoue, K., Ida, H., Bouillet, P., Strasser, A., Bae, S.C., and Ito, Y. 2006. The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol. Cell. Biol. 26: 4474–4488.

    Article  PubMed  CAS  Google Scholar 

  • Yokomizo, T., Ogawa, M., Osato, M., Kanno, T., Yoshida, H., Fujimoto, T., Fraser, S., Nishikawa, S., Okada, H., Satake, M., Noda, T., Nishikawa, S., and Ito, Y. 2001. Requirement of Runx1/AML1/PEBP2alphaB for the generation of haematopoietic cells from endothelial cells. Genes Cells 6: 13–23.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, L., Wang, L., Ajani, J., and Xie, K. 2004. Molecular basis of gastric cancer development and progression. Gastric Cancer 7: 61–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Peng, Z., Xie, K. (2008). Gastric Cancer: Antitumor Activity of RUNX3. In: Hayat, M.A. (eds) Gastrointestinal Carcinoma. Methods of Cancer Diagnosis, Therapy, and Prognosis, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8900-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8900-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8899-5

  • Online ISBN: 978-1-4020-8900-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics