Skip to main content

Laboratory Hydraulic Testing in Unsaturated Soils

  • Chapter

Abstract

This paper synthesizes the state-of-the art of the various laboratory testing techniques presently available for measuring the water hydraulic constitutive functions of unsaturated soils. Emphasis is on the laboratory testing techniques for measuring the soil–water retention curves and the water hydraulic conductivity functions of unsaturated soils. The significant recent advances in the investigation of the hydraulic behaviour of unsaturated swelling soils, are also presented. Comprehensive recent references on each measurement method are listed and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdallah A (1999) Modélisation de l’infiltration dans les sols fins compactés: intégration des écoulements préférentiels dans les macropores. Thèse de Doctorat, INPL, Nancy, France

    Google Scholar 

  • Abu-Hejleh AN, Znidarcic D, Illangasekare TH (1993) Permeability determination for unsaturated soils. Unsaturated soils. Geotechnical Special Publication No. 39, pp 163–174

    Google Scholar 

  • Acar YB, D’halosy E (1987) Assessment of pore fluid effects using flexible wall and consolidation permeameters. In: Woods RD (ed) Geotechnical practice for waste disposal’ 87, specialty conference papers, Ann Arbor, Michigan. ASCE, Geotechnical Engineering Division. ASCE STP 13:231–245

    Google Scholar 

  • Agus SS, Leong EC, Schanz T (2003) Assessment of statistical models for indirect determination of permeability functions from soil–water characteristics curves. Géotechnique 53(2):279–282

    Article  Google Scholar 

  • Aiban SA, Znidarcic D (1989) Evaluation of the flow pump and constant head techniques for permeability measurements. Géotechnique 39(4):655–666

    Google Scholar 

  • Angulo R (1989) Caractérisation hydrodynamique des sols déformables partiellement saturés. Etude expérimentale à l’aide de la spectrométrie gamma double-source. Thèse de Doctorat. INPG, Grenoble

    Google Scholar 

  • Araya LM, Paris JF (1981) A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci Soc Am J 45:1023–1030

    Google Scholar 

  • Askar A, Jin Y-C (2000) Macroporous drainage of unstaurated swelling soil. Water Resour Res 36(5):1189–1197

    Article  Google Scholar 

  • ASTM D5298–94 (1995) Standard test method for measurement of soil potential (suction) using filter paper. Annual book of American Society for Testing Materials Standards, Designation D3152–72, vol 4.08, Sep 1994, pp 1–6

    Google Scholar 

  • Averjanov SF (1950) About permeability of subsurface soils in case of incomplete saturation. Engl Collect 7:19–21

    Google Scholar 

  • Barbour SL (1998) The soil–water characteristic curve: a historical perspective. Can Geotech J 35:873–894

    Article  Google Scholar 

  • Benson CH, Gribb MM (1997) Measuring unsaturated hydraulic conductivity in the laboratory and field. unsaturated soil engineering practice. Geotechnical Special Publication No. 68, Logan, Utah, pp 113–168

    Google Scholar 

  • Bicalho KV (1999) Modeling water flow in an unsaturated compacted soil. Ph.D. dissertation, University of Colorado, Boulder, Co, USA

    Google Scholar 

  • Bicalho KV, Znidarcic D, Ko H-Y (2000) Air entrapment effects on hydraulic properties. Geotechnical Special Publication, ASCE 99:517–528

    Google Scholar 

  • Bicalho KV, Znidarcic D, Ko H-Y (2003) Influence of air entrapment on the unsaturated hydraulic conductivity functions. 12 Panamerican Conf. on Soil Mech, Geotech. Engrg, vol 2. Culligan PJ, Einstein HH, Whittle AJ (eds) Cambridge, MA, USA, pp 1597–1602

    Google Scholar 

  • Bicalho KV, Znidarcic D, Ko H-Y (2005) An experimental evaluation of unsaturated hydraulic conductivity functions for a quasi-saturated compacted soil. In: Proceedings of international symposium on advanced experimental unsaturated soil mechanics. Balkema, pp 325–329

    Google Scholar 

  • Bjerrum L, Huder J (1957) Measurement of the permeability of compacted clays. Proceedings of fourth international conference on soil mechanics and foundation engineering. London, pp 6–8

    Google Scholar 

  • Blatz J, Cui YJ, Oldecop LA (2008) Vapour equilibrium and osmotic technique for suction control. Geotech Geol Eng. doi:10.1007/s10706-008-9196-1

  • Bocking KA, Fredlund DG (1980) Limitations of the axis translation technique. IV Int Conf on Expansive Soils, Denver 1:117–135

    Google Scholar 

  • Boynton SS, Daniel DE (1985) Hydraulic conductivity tests on compacted clay. J Geotech Eng 111(4):465–478

    Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Colorado State University Hydrology Papers No. 3, pp 1–27

    Google Scholar 

  • Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. J Irrig Drain Div ASCE 92(2):61–88

    Google Scholar 

  • Bruce R, Klute A (1956) The measurement of soil moisture diffusivity. Soil Sci Soc Am Proc 20:458–462

    Google Scholar 

  • Bulut R, Leong EC (2008) Indirect measurement of suction. Geotech Geol Eng. doi:10.1007/s10706-008-9197-0

  • Bulut R, Aubeny CP, Lytton RL (2005) Unsaturated soil diffusivity measurements. In: Proceedings of international symposium on advanced experimental unsaturated soil mechanics. Balkema, pp 281–286

    Google Scholar 

  • Burdine NT (1953) Relative permeability calculation size distribution data. Trans Am Inst Min, Metal Petroleum Eng 198:71–78

    Google Scholar 

  • Caputo MC, Nimmo JR (2005) Quasi-steady centrifuge method for unsaturated hydraulic characterization. Proceedings of international symposium on advanced experimental unsaturated soil mechanics. Balkema, pp 287–290

    Google Scholar 

  • Chandler RJ, Gutierrez CI (1986) The filter paper method of suction measurement. Géotechnique 36, No. 2265–268

    Google Scholar 

  • Chandler RJ, Crilley MS, Montgomery-Smith G (1992) A low-cost method of assessing clay desiccation for low-rise buildings. Proc Instn Civ Engrs Civ Engng 1992, May, pp 82–89

    Google Scholar 

  • Childs EC, Collis-George N (1950) The permeability of porous materials. Proc Roy Soc 201A:392–405

    Google Scholar 

  • Chiu T-F, Shackelford CD (1998) Unsaturated hydraulic conductivity of compacted sand-kaolin mixtures. J Geotech Geoenviron Eng 124(2):160–170

    Article  Google Scholar 

  • Conca JL, Wright JV (1992) The UFA method for rapid, direct measurements of unsaturated transport properties in soil, sediment, and rock. Aust J Soil Res 36:291–315

    Article  Google Scholar 

  • Corey AT (1957) Measurement of water and air permeability in unsaturated soil. Soil Sci Soc Am Proc 21(1):7–10

    Google Scholar 

  • Croney D, Coleman JD (1954) Soil structure in relation to soil suction. Soil Sci 5:75–84

    Article  Google Scholar 

  • Cui YJ (1993) Étude du comportement d’un limon compacté non saturé et de sa modélisation dans un cadre élastoplastique. Thèse de doctorat, Ecole Nationale des Ponts et Chaussées, 280 p.

    Google Scholar 

  • Cuisinier O (2002) Comportement hydromécanique des sols gonflants compactés. Thèse de doctorat, Institut National Polytechnique de Lorraine, Nancy, France, 165 p

    Google Scholar 

  • Cuisinier O, Masrouri F (2005) Hydromechanical behaviour of a compacted swelling soil over a wide suction range. Int J Eng Geol 81:204–212

    Article  Google Scholar 

  • Dane JH, Hruska S (1983) In-situ determination of soil hydraulic properties during drainage. Soil Sci Soc Am J 47:619–624

    Google Scholar 

  • Daniel DE (1983) Permeability test for unsaturated soil. Geotech Test J 6(2):81–86

    Google Scholar 

  • Delage P (2004) Experimental unsaturated soil mechanics. In: de Campos J, Marinho FAM (eds) Unsaturated soils, vol 3. Sweets and Zeitlinger, Lisse, pp 973–996

    Google Scholar 

  • Delage P, Cui YJ, Yahia-Aïssa M, De Laure E (1998) On the unsaturated hydraulic conductivity of a dense compacted bentonite. In: Proceedings of the second international conference on unsaturated soils. Beijing, China, pp 27–30

    Google Scholar 

  • Dirksen C (1991) Unsaturated hydraulic conductivity. In: Smith KA, Mullins CE (eds) Soil analysis. Physical methods. Marcel Dekker, New York, pp 209–270

    Google Scholar 

  • Fleureau J-M, Kheirbek-Saoud S, Soemitro R, Taibi S (1993) Behavior of clayey soils on drying-wetting paths. Can Geotech J 30:287–296

    Google Scholar 

  • Fredlund DG (1998) Bringing unsaturated soil mechanics int engineering practice. Proceedings of the 2nd international conference on unsaturated soils, pp 1–35

    Google Scholar 

  • Fredlund DG (2004) Use of soil–water characteristic curves in the implementation of unsaturated soil mechanics. In: de Campos J, Marinho FAM (eds) Unsaturated soils, vol 3. Sweets and Zeitlinger, Lisse, pp 887–902

    Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York

    Google Scholar 

  • Fredlund DG, Wong DKH (1989) Calibration of thermal conductivity sensors for measuring soil suction. Geotech Test J 12(3):188–194

    Google Scholar 

  • Fredlund DG, Xing A, Huang S (1994) Predicting of the permeability function for unsaturated soil using the soil–water characteristic curve. Can Geotech J 31:533–546

    Article  Google Scholar 

  • Fujita T, Suzuki H, Sugita Y, Sugino H, Nakano M (2001) Hydraulic properties in compacted bentonite under unsaturated condition. In: Adachi K, Fukue M (eds) Clay science for engineering. Rotterdam, Balkema, pp 229–238

    Google Scholar 

  • Gachet P, Klubertanz G, Vulliet L, Laloui L (2003) Interfacial behavior of unsaturated soil with small-scale models and use of image processing techniques. ASTM Geotech Test J, GTJ200310127_261, 26(1), p 10

    Google Scholar 

  • Gallipoli D,Wheeler SJ, Karstunen M (2003) Modelling the variation of degree of saturation in a deformable unsaturated soil. Géotechnique 53(1):105–112

    Article  Google Scholar 

  • Gardner R (1937) A method of measuring the capillary tension of soil moisture over a wide moisture range. Soil Sci 43:227–283

    Article  Google Scholar 

  • Gardner W (1956) Mathematics of isothermal water conduction in unsaturated soils. Highway Research Board Special Report 40, International symposium on physico-chemical phenomenon in soils, pp 78–87

    Google Scholar 

  • Gardner WR (1958) Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water-table. Soil Sci 85:228–232

    Article  Google Scholar 

  • Garnier P, Rieu M, Boivin P, Baveye P (1997) Determinig the hydraulic Properties of a swelling soil from a transient evaporation experiment. Soil Sci Soc Am J 61:1555–1563

    Google Scholar 

  • Gee G, Campbell M, Campbell G (1992) Rapid measurement of low soil potentials using a water activity meter. Soil Sci Soc Am J 56:1068–1070

    Google Scholar 

  • Green RE, Corey JC (1971) Calculation of hydraulic conductivity: a further evaluation of some predictive methods. Proc Soil Sci Soc Am 35:3–8

    Google Scholar 

  • Hamilton JM, Daniel DE, Olson RE (1981) Measurement of hydraulic conductivity of partially saturated soils. Permeability and groundwater contaminant transport. ASTM STP 746:182–196

    Google Scholar 

  • Hansbo S (1960) Consolidation of clay, with special reference to influence of vertical sand drains. Swedish Geotech Inst Proc No 18, Stockholm 18:41–159

    Google Scholar 

  • Harverkamp R, Parlange JY (1986) Predicting the water-retention curve from particle-size distribution: 1. Sandy soils without organic matter. Soil Science 142:325–339

    Google Scholar 

  • Hilf JW (1956) An investigation of pore water pressure in compacted cohesive soils. Ph.D. dissertation, U.S. Dept. Interior Bur. Reclamation Tech. Memorandum 654, Denver, Co, USA

    Google Scholar 

  • Houston SL, Houston W, Wagner AM (1994) Laboratory filter paper suction measurements. Geotech Test J 17:185–194

    Google Scholar 

  • Hwang C (2002) Determination of material functions for unsaturated flow. Ph.D. dissertation, University of Colorado, Boulder, Co, USA

    Google Scholar 

  • Imbert C, Villar MV (2006) Hydro-mechanical response of a bentonite pellets/powder mixture upon infiltration. Appl Clay Sci 32:197–209

    Article  Google Scholar 

  • Irmay S (1954) On the hydraulic conductivity of unsaturated soils. Trans Am Geophys Union 35:463–468

    Google Scholar 

  • Kamiya K, Uno T (2000) Grain size and diameter distribution of sands. Proceedings of Asian conference on unsaturated soils, pp 399–404

    Google Scholar 

  • Kamon M, Katsumi T (2001) Clay liners for waste landfill. In: Adachi K, Fukue M (eds) Clay science for engineering. Rotterdam, Balkema, pp 29–45

    Google Scholar 

  • Kawai K, Kato S, Karube D (2000) The model of water retention curve considering effects of void ratio. Proceedings of Asian conference on unsaturated soils, pp 329–334

    Google Scholar 

  • Kenney TC, van Veen WA, Swallow MA, Sungaila MA (1992) Hydraulic conductivity of compacted bentonite-sand mixtures. Can Geotech J 29:364–374

    Article  Google Scholar 

  • Kim DJ, Feyen J, Vereecken H (1993) Prediction of dynamic hydraulic properties in a ripening soil. Geoderma 57:231–246

    Article  Google Scholar 

  • Kim DJ, Angulo-Jaramillo R, Vauclin M, Feyen J, Choi SI (1999) Modeling of soil deformation and water flow in a swelling soil. Geoderma (Amst.) 92(3–4):217–238

    Article  Google Scholar 

  • Kirby JM, Ringrose-Voase AJ (2000) Drying of some Philippine and Indonesian puddled rice soils following surface drainage: numerical analysis using a swelling soil flow model. Soil Tillage Res 57(1–2):13–30

    Article  Google Scholar 

  • Klute A (1972) The determination of the hydraulic conductivity and diffusivity of unsaturated soils. Soil Sci 113(4):264–276

    Article  Google Scholar 

  • Klute A, Dirksen C (1986) Hydraulic conductivity and diffusivity: laboratory methods. In: Klute A (ed) Methods of soil analysis. 1, Physical and mineralogical methods, Madison: American Society of Agronomy; Soil Science Society of America, 1982. 2nd edn., pp 687–734

    Google Scholar 

  • Kool JB, Parker JC, van Genuchten MTh (1985) Determining soil hydraulic properties from one-step outflow experiments by parameter estimation; I. Theory and numerical studies. Soil Sci Soc Am J 49:1348–1354

    Google Scholar 

  • Kozeny J (1927) Über Kapillare des Wassers im Boden. Zitzungsber Akad Wiss Wien 136:760–765

    Google Scholar 

  • Kunze RJ, Kirkham D (1962) Simplified accounting for membrane impedance in capillary conductivity measurements. Soil Sci Soc Am Proc 26:421–426

    Google Scholar 

  • Kunze RJ, Uehara G, Graham K (1968) Factors important in the calculation of hydraulic conductivity. Proc Soil Sci Soc Am 32:760–765

    Google Scholar 

  • Leong EC, Rahardjo H (1997) Permeability functions for unsaturated soils. J Geotech Geoenviron Eng 123:1118–1126

    Article  Google Scholar 

  • Likos WJ, Wayllace A, Lu N (2005) Numerical modeling of constant flow method for measuring unsaturated hydrologic properties. Proceedings of international symposium on advanced experimental unsaturated soil mechanics. Balkema, pp 291–297

    Google Scholar 

  • Lu N, Likos WJ (2004) Unsaturated soil mechanics. Wiley, 556 p

    Google Scholar 

  • Marinho FAM, Oliveira OM (2006) The filter paper method revised. ASTM Geotech Test J, USA 29(3):250–258

    Google Scholar 

  • Marinho FAM, Take WA, Tarantino A (2008) Measurement of matric suction using tensiometric and axis translation techniques. Geotech Geol Eng. doi:10.1007/s10706-008-9201-8

  • McCartney JS, Zorenberg JG (2005) The centrifuge permeameter for unsaturated soils. Proceedings of international symposium on advanced experimental unsaturated soil mechanics. Balkema, pp 299–304

    Google Scholar 

  • McLaughlin D, Townley LR (1996) A reassessment of the ground-water inverse problem. Water Resour Res 32(5):1133–1161

    Article  Google Scholar 

  • Matyas EL (1966) Air and water permeability of compacted soils. Permeability and capillary of soils. ASTM STP 417:160–175

    Google Scholar 

  • Meerdink J, Benson C, Khire M (1996) Unsaturated hydraulic conductivity of two compacted barrier soils. J Geotechn Eng ASCE 122(7):565–576

    Article  Google Scholar 

  • Miller E, Elrick D (1958) Dynamic determination of capillary conductivity extended for non-negligible membrane impedance. Soil Sci Soc Am Proc 22:483–486

    Google Scholar 

  • Mitchell PW (1979) The structural analysis of footings on expansive soils. Research Report No. 1, K.W.G. Smith and Assoc. Pty. Ltd., Newton, South Australia

    Google Scholar 

  • Mitchell JK, Madsen FT (1987) Chemical effects on clay hydraulic conductivity. In: Proceedings of ASCE specialty conference, geotechnical practice for waste disposal. ASCE STP 13:87–116, Ann Arbor, Michigan

    Google Scholar 

  • Mitchell JK, Younger JS (1966) Abnormalities in hydraulic flow through fine-grained soils. Permeability and Capillary of Soils. ASTM STP 417:106–141

    Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522

    Article  Google Scholar 

  • Mualem Y (1978) Hydraulic conductivity of unsaturated porous media: generalized macroscopic approach. Water Resour Res 14(2):325–334

    Article  Google Scholar 

  • Nakano M, Amemiya Y, et Fujii K (1986) Saturated and unsaturated hydraulic conductivity of swelling clays. Soil Sci 141(1):1–6

    Article  Google Scholar 

  • Nimmo JR, Rubin J, Hammermeister DP (1987) Unsaturated flow in a centrifugal field: measurement of hydraulic conductivity and testing of Darcy’s law. Water Resour Res 23(1):124–134

    Article  Google Scholar 

  • Nimmo JR, Akstin KC, Mello KA (1992) Improved apparatus for measuring hydraulic conductivity at low water content. Soil Sci Soc Am J 56(6):1758–1761

    Google Scholar 

  • Olsen HW (1966) Darcy’s Law in saturated kaolinite. Wat Resour Res 2(6):287–295

    Article  Google Scholar 

  • Olsen HW, Nichols RW, Rice TL (1985) Low gradient permeability methods in a triaxial system. Géotechnique 35(2):145–157

    Google Scholar 

  • Parent SE, Cabral A, Dell’Avanzi E, Zornberg JG (2004) Determination of the hydraulic conductivity function of a highly compressible material based on tests with saturated samples. Geotech Test J 27(6):1–5

    Article  Google Scholar 

  • Phene CJ, Hoffman GJ, Rawlins SL (1971) Measuring soil matric potential in-situ by sensing heat dissipation within a porous body – Part I and II, Soil Sci Soc Am Proc 53:27–33, 225–229

    Google Scholar 

  • Philip JR (1968) Kinetics of sorption and volume change in clay-colloid pastes. Aust J Soil Res 6:249–267

    Article  Google Scholar 

  • Prager S (1953) Diffusion in binary systems. J Chem Phys 21:1344–1347

    Article  Google Scholar 

  • Rhattas, A., (1994) Transfert de masse dans les argiles à faible porosité. Analyse Théorique et résultats expérimentaux. Thèse Sciences. Université d’Orléans

    Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous medium. J Phys 1:318–333

    Article  Google Scholar 

  • Richards LA (1941) A pressure—membrane extraction apparatus for soil solution. Soil Sci 51:377–386

    Article  Google Scholar 

  • Richards LA, Gardner W (1938) Tensiometers for measuring the capillary tension of soil water. J Am Soc Agron 28:352–358

    Google Scholar 

  • Richards S, Weeks L (1953) Capillary conductivity values from moisture yield and tension measurements on soil columns. Proc Soil Sci Soc Am 17:206–209

    Google Scholar 

  • Ridley AM, Burland JB (1993) A new instrument for the measurement of soil moisture suction. Géotechnique 43(2):321–324

    Google Scholar 

  • Ridley AM, Wray WK (1996) Suction measurement—a review of current theory and practices. Proceedings of 1st international conference on unsaturated soils, pp 1293–1322

    Google Scholar 

  • Rijtema P (1959) Calculation of capillary conductivity from pressure plate outflow data with non-negligible membrane impedance. Neth J Agric Sci 7:209–215

    Google Scholar 

  • Rolland S (2002) Transfert hydrique dans des sols argileux gonflants: influence du confinement. Thèse de doctorat, INPL, Nancy, France

    Google Scholar 

  • Rolland S, Stemmelen D, Moyne C, Masrouri F (2005) Experimental hydraulic measurements in an unsaturated swelling soil using the dual-energy gamma-ray technique. Proceedings of international symposium on advanced experimental unsaturated soil mechanics. Balkema, pp 305–310

    Google Scholar 

  • Romero E (1999) Characterisation and thermo-hydro-mechanical behaviour of unsaturated boom clay: an experimental study. Thèse de l’Université Polytechnique de Catalogne, Barcelone, 405 pp

    Google Scholar 

  • Romero E, Vaunat J (2000) Retention curves of deformable clays. Proceedings of international workshop on unsaturated soils, pp 91–106

    Google Scholar 

  • Simunek J, Wendroth O, van Genuchten MTh (1998) Parameter estimation analysis of the evaporation method for determining soil hydraulic properties. Soil Sci Soc Am J 62:894–905

    Google Scholar 

  • Smiles DE, Rosenthal MJ (1968) The movement of water in swelling materials. Aust J Soil Res 6:237–248

    Article  Google Scholar 

  • Spanner DC (1951) The Peltier effect and its use in the measurement of suction pressure. J Exp Bot 2:145–168

    Article  Google Scholar 

  • Tabani P (1999) Transfert hydrique dans des sols déformables. Thèse de Doctorat, INPL, Nancy, France

    Google Scholar 

  • Tabani Ph, Masrouri F, Rolland S, Stemmelen D (2001) Hydromechanical Behaviour of a compacted bentonite-silt mixture. In: Adachi K, Fukue M (eds) Clay science for engineering. Rotterdam, Balkema, pp 245–250

    Google Scholar 

  • Tamari S, Bruckler L, Halbertsmama J, Chadoeuf J (1993) A simple method for determining soil hydraulic properties in the laboratory. Soil Sci Soc Am J 57:642–651

    Google Scholar 

  • Tang AM, Cui YJ (2005) Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay. Can Geotech J 42:1–10

    Article  Google Scholar 

  • Tarantino A, Mongiovi L (2001) Experimental procedures and cavitation mechanisms in tensiometer measurements. Geotech Geol Eng 19:189–210

    Article  Google Scholar 

  • Tarantino A, Mongiovi L (2003) Calibration of tensiometer for direct measurement of matric suction. Géotechnique 53(1):137–141

    Article  Google Scholar 

  • Tariq AUR, Durnford DS (1993) Analytical volume change model for swelling clay-soils. Soil Sci Soc Am J 155(57):1183–1187

    Google Scholar 

  • Tessier D (1984) Étude expérimentale de l’organisation des matériaux argileux. Hydratation, gonflement et structuration au cours de la dessication et de la réhumectation. Thèse Sciences, Université de Paris VII

    Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16(3):574–582

    Article  Google Scholar 

  • Vachaud G (1968) Contribution à l’étude des problèmes d’écoulement en milieux poreux non saturés. Thèse de Doctorat. Faculté des Sciences de l’Université de Grenoble

    Google Scholar 

  • Vanapalli SK, Fredlund DG, Pufahl DE (1999) The influence of soil structure and stress history on the soil–water characteristics of a compacted till. Geotechnique 49(2):143–159

    Article  Google Scholar 

  • Vanapalli SK, Nicotera MV, Sharma RS (2008). Axis-translation and negative water column techniques for suction control. Geotech Geol Eng. doi:10.1007/s10706-008-9206-3

  • van Genuchten MTh (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am Proc 44:892–897

    Google Scholar 

  • Villar MV (2000) Caracterización termo-hidro-mecánica de una bentonita de Cabo de Gata. Ph.D. thesis, Universidad Complutense de Madrid, Spain

    Google Scholar 

  • Watson KK (1966) An instantaneous profile method determining the hydraulic conductivity of unsaturated porous materials. Water Resour Res 2:709–715

    Article  Google Scholar 

  • Wheeler SJ, Sharma RS, Buisson MSR (2003) Coupling of hydraulic hysteresis and stree-strain behaviorur in unsaturated soil. Géotechnique 53(1):41–54

    Article  Google Scholar 

  • Whisler FD, Klute A, Peters DB (1968) Soil water diffusivity from horizontal infiltration. Soil Sci Soc Am Proc 32:6–11

    Google Scholar 

  • Wiederhold P (1997) Water vapor measurement methods and instrumentation. Marcel Dekker, New York

    Google Scholar 

  • Wildenschild D, Jensen KH, Hollenbeck KJ, Illangasekare TH, Znidarcic D, Sonnenborg T, Butts MB (1997) A two-stage procedure for determining unsaturated hydraulic characteristics using a syringe pump and outflow observations. Soil Sci Soc Am J 61:347–359

    Google Scholar 

  • Williams J, Prebble RE, Williams WT, Hignett CT (1983) The influence of texture, structure and clay mineralogy on the soil moisture characteristic. Aust J Soil Res 21:15–32

    Article  Google Scholar 

  • Wind GP (1968) Capillary conductivity data estimated by a simple method. Water in the unsaturated zone. In: Rijtema PE, Wassink H (eds) Proceedings of the Wageningen Symposium, vol 1, pp 181–191

    Google Scholar 

  • Yeh WW-G (1986) Review of parameter identification procedures in ground-water hydrology: the inverse problem. Water Resour Res 22(2):95–108

    Article  Google Scholar 

  • Zachman DW, Duchateau PC, Klute A (1981) The calibration of the Richards flow equation for a draining column by parameter identification. Soil Sci Soc Am J 45:1012–1015

    Google Scholar 

  • Zachman DW, Duchateau PC, Klute A (1982) Simultaneous approximations of water capacity and soil hydraulic conductivity by parameter identification. Soil Sci 134:157–163

    Article  Google Scholar 

  • Zhang J, Yeh T-CJ (1997) An iterative inverse method for steady flow in the vadoze zone. Water Resour Res 33(1):63–71

    Article  Google Scholar 

  • Znidarcic D, Illangasekare T, Manna M (1991) Laboratory testing and parameter estimation for two-phase flow problems. ASCE, Geotechnical Special Publication 27:1089–1099

    Google Scholar 

  • Znidarcic D, Hwang C, Bicalho KV (2004) Experimental determination of hydraulic characteristics for unsaturated soils. In: de Campos J, Marinho FAM (eds) Unsaturated soils, vol 3. Sweets and Zeitlinger, Lisse, pp 1137–1141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farimah Masrouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Masrouri, F., Bicalho, K.V., Kawai, K. (2008). Laboratory Hydraulic Testing in Unsaturated Soils. In: Tarantino, A., Romero, E., Cui, YJ. (eds) Laboratory and Field Testing of Unsaturated Soils. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8819-3_7

Download citation

Publish with us

Policies and ethics