Skip to main content

Part of the book series: Methodos Series ((METH,volume 5))

  • 1701 Accesses

Abstract This chapter argues that objective Bayesianism is the interpretation of probability that best fits causal modelling in the social sciences. An overview of the leading interpretation is offered. The argument for objective Bayesianism is structured in three steps: first, I maintain that we need an interpretation that can account for single-case and generic probabilistic causal claims; second, I show that the empirically-based and objective Bayesian interpretations are apt to do this; third, I claim that the objective Bayesian version is preferable on the grounds that it leaves no room to arbitrariness, enlightens the design and interpretation of tests, and is a better guide for action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Abbott, A. (1998). The causal devolution. Sociological Methods and Research, 27(2), 148–181.

    Google Scholar 

  • Adams, P., Hurd, M., McFadden, D., Merrill, A., Ribeiro, T. (2003). Healthy, wealthy, and wise? Tests for direct causal paths between health and socioeconomic status. Journal of Econometrics, 112, 3–56. With discussion.

    Google Scholar 

  • Agresti, A. (1996). An introduction to categorical data analysis. New York: Wiley.

    Google Scholar 

  • Aish-Van Vaerenbergh, A. -M. (1994). Modèles statistiques et inférences causales: analyse des structures de covariances avec LISREL. In R. Franck (Ed.), Faut-il chercher aux causes uneraison? (pp. 106–130). Paris: Vrin.

    Google Scholar 

  • Aish-Van Vaerenbergh, A. -M. (2002). Explanatory models in suicide research: explaining relationships. In R. Franck (Ed.), The explanatory power of models (pp. 51–66). Dordrecht: Kluwer.

    Google Scholar 

  • Aristotle (1928). Metaphysics. Translated by W. D. Ross, The works of Aristotle translated into English, vol. 8, Second edition. Oxford: Clarendon.

    Google Scholar 

  • Atmanspacher, H., Bishop, R. (2002) (Ed.). Between chance and choice: interdisciplinary perspectives on determinism. Thoverton: Imprint Academic.

    Google Scholar 

  • Bayarri, S., Berger, J. O. (2000). P-values for composite null models. Journal of the American Statistical Association, 95(452), 1127–1142. With discussion.

    Google Scholar 

  • Beck, W., van der Maeson, L., Walker, A. (2001). Introduction: who and what is the European Union for? In W. Beck, L. van der Maeson, G. Thomése, A. Walker (Ed.), Social quality: a vision for Europe (pp. 1–18). The Hague: Kluwer Law International.

    Google Scholar 

  • Berger, J. O., Boukai, B., Wang, Y. (1997). Unified frequentist and Bayesian testing of a precise hypothesis. Statistical Science, 12(3), 133–160.

    Google Scholar 

  • Berger, J. O., Delampady, M. (1987). Testing precise hypotheses. Statistical Science, 3(2), 317–335.

    Google Scholar 

  • Berger, J. O.,Guglielmi, A. (2001). Bayesian and conditional frequentist testing of a parametric model versus nonparametric alternatives. Journal of the American Statistical Association, 96(453), 174–184.

    Google Scholar 

  • Berger, J. O., Guglielmi, A. (2001). Bayesian and conditional frequentist testing of a parametric model versus nonparametric alternatives. Journal of the American Statistical Association, 96(453), 174–184.

    Google Scholar 

  • Berkovitz, J. (2002). On causal inference in determinism and indeterminism. In H. Atmanspacher, R. Bishop (Ed.), Between chance and choice: interdisciplinary perspectives on determinism (pp. 237–278). Thoverton: Imprint Academic.

    Google Scholar 

  • Bernardo, J. M. (1980). A Bayesian analysis of classical hypothesis testing. In J. Bernardo, M. H. DeGroot, D. V. Lindley, A. F. M. Smith (Ed.), Bayesian statistics (pp. 605–647). Valencia: Valencia University Press. With discussion.

    Google Scholar 

  • Bessie, J. D. (1993). On the strength of a causal chain. Pacific Philosophical Quarterly, 74(1), 11–36.

    Google Scholar 

  • Blalock, H. M. (1964). Causal inferences in nonexperimental research. Chapel Hill: University of North Carolina Press.

    Google Scholar 

  • Blalock, H. M. (1968a). The measurement problem: a gap between the languages of theory and research. In H. M. Jr. Blalock, A. Blalock (Ed.), Methodology in social research (pp. 5–27). New York: McGraw Hill.

    Google Scholar 

  • Blalock, H. M. (1968b). Theory building and causal inferences. In H. M. Jr. Blalock, A. Blalock (Ed.), Methodology in social research (pp. 155–198). New York: McGraw Hill.

    Google Scholar 

  • Boudon, R. (1967). L'analyse mathe‘matique des faits sociaux. Paris: Plon.

    Google Scholar 

  • Boudon, R., Lazarfeld, P. (1966) (Ed.). L'analyse empirique de la causalite’;. Paris: Mouton & Co.

    Google Scholar 

  • Bovens, L., Hartmann, S. (2003). Bayesian epistemology. Oxford: Clarendon Press.

    Google Scholar 

  • Bunge, M. A. (1979a). Causality and modern science. New York: Dover. Third revised edtion.

    Google Scholar 

  • Bunge, M. A. (1979b). A world of systems. Dordrecht: Reidel Publishing Company.

    Google Scholar 

  • Bunge, M. A. (1996). Finding philosophy in social science. New Haven, CT: Yale University Press.

    Google Scholar 

  • Bunge, M. A. (1998). Social science under debate: a philosophical perspective. Toronto: University of Toronto Press.

    Google Scholar 

  • Bunge, M. A. (2004). How does it work? The search for explanatory mechanisms. Philosophy of the Social Sciences, 34(2), 182–210.

    Google Scholar 

  • Caldwell, J. C. (1979). Education as a factor in mortality decline: an examination of Nigerian data. Population Studies, 33(3), 395–413.

    Google Scholar 

  • Campbell, D. T., Stanley, J. C. (1963). Experimental and quasi-experimental designs for research. Chicago: Rand McNally.

    Google Scholar 

  • Carnap, R. (1951). The logical foundations of probability. Chicago: University of Chicago Press. Second edition.

    Google Scholar 

  • Carroll, J. W. (2003). Laws of nature. In E. N. Zalta (Ed.), The Stanford encyclopaedia of philosophy. (Fall 2003 edition). http://plato.stanford.edu/archives/fall2003/entries/laws-of-nature/. Accessed 12 March 2008.

  • Cartwright, N. (1979). Causal laws and effective strategies. Noûs, 13(4), 419–437.

    Google Scholar 

  • Cartwright, N. (1989). Nature's capacities and their measurements. Oxford: Clarendon Press.

    Google Scholar 

  • Cartwright, N. (1995). Précis of ‘Nature's capacities and their measurement’. Philosophy and Phenomenological Research, 55(1), 153–156.

    Google Scholar 

  • Cartwright, N. (1997). What is a causal structure? In V. McKim, S. P. Turner (Ed.), Causality in crisis? Statistical methods and the search for causal knowledge in the social sciences (pp. 343–357). Indiana: University of Notre Dame Press.

    Google Scholar 

  • Cartwright, N. (1999). Causal diversity and Markov condition. Synthese, 121, 3–27.

    Google Scholar 

  • Cartwright, N. (2000). Measuring causes: invariance, modularity and the causal Markov condition. Measurement in physics and economics discussion paper series. Centre for Philosophy of Natural and Social Science, 10/00.

    Google Scholar 

  • Cartwright, N. (2002). Against modularity, the causal Markov condition, and any link between the two: comments on Hausman and Woodward. British Journal for the Philosophy of Science, 53(3), 411–453.

    Google Scholar 

  • Cartwright, N. (2007a). Hunting causes and using them: approaches in philosophy and economics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cartwright, N. (2007b). Are RCTs the gold standard? Bio Societies, 2, 11–20.

    Google Scholar 

  • Chakravartty, A. (2005). Causal realism: events and processes. Erkenntnis, 63, 7–31.

    Google Scholar 

  • Cohen, J. L. (1989). An introduction to the philosophy of induction and probability. Oxford: Clarendon Press.

    Google Scholar 

  • Collingwood, R. (1940/1998). An essay on metaphysics. Oxford: Clarendon Press.

    Google Scholar 

  • Cook, T. D., Campbell D. T. (1979). Quasi-experimentation. Design and analysis issues for field settings. Chicago: Rand MacNally.

    Google Scholar 

  • Cook, T. D., Campbell D. T. (1986). The causal assumptions of quasi-experimental practice. Synthese, 68, 141–180.

    Google Scholar 

  • Corfield, D., Williamson J. (2001) (Ed.). Foundations of Bayesianism. Dordrecht: Kluwer.

    Google Scholar 

  • Courgeau, D. (1994). Du groupe à l'individu: l'exemple des comportements migratoires. Population, 1, 7–26.

    Google Scholar 

  • Courgeau, D. (2002). Vers une analyse biographique multiniveaux. In M. Christine (Ed.), Actes des journeés de méthodologie statistique (pp. 375–394), INSEE méthodes 101.

    Google Scholar 

  • Courgeau, D. (2003) (Ed.). Methodology and epistemology of multilevel analysis. Approaches from different social sciences. Dordrecht: Kluwer.

    Google Scholar 

  • Courgeau, D. (2004a). Du groupe àl'individu: synthése multiniveau. Paris: Editions de l'INED.

    Google Scholar 

  • Courgeau, D. (2004b). Probabilité, démographie et sciences sociales. Mathématiques et sciences humaines/Mathematics and Social Sciences, 167(3), 27–50.

    Google Scholar 

  • Courgeau, D. (2007a). Multilevel synthesis: from the group to the individual. Dordrecht: Springer.

    Google Scholar 

  • Courgeau, D. (2007b). Inférence statistique, échangeabilité et approche multiniveau. Mathématique et sciences humaines/Mathematics and Social Sciences, 179(3), 5é19.

    Google Scholar 

  • Cox, D. R. (1992). Causality: some statistical aspects. Journal of the Royal Statistical Society, 155(2), 291é301.

    Google Scholar 

  • Cox, R. T. (1946). Probability, frequency, and reasonable expectation. American Journal of Physics, 14(1), 1–13.

    Google Scholar 

  • Cox, D. T. (2000). Causal inference without counterfactuals: commentary. Journal of the American Statistical Association, 95, 424–425.

    Google Scholar 

  • Dawid, A. P. (1982). The well-calibrated Bayesian. Journal of the American Statistical Association, 77(379), 605–610.

    Google Scholar 

  • Dawid, A. P. (2000). Causal inference without counterfactuals. Journal of the American Statistical Association, 95, 407–427.

    Google Scholar 

  • Dawid, A. P. (2002a). Influence diagrams for causal modelling and inference. International Statistical Review, 70, 161–189. Corrigenda, ibidem, 437.

    Google Scholar 

  • Dawid, A. P. (2002b). Commentary: counterfactuals: help or hindrance? International Journal of Epidemiology, 31, 429–430.

    Google Scholar 

  • Dawid, A. P. (2007). Counterfactuals, hypotheticals and potential responses: a philosophical examination of statistical causality. In F. Russo, J. Williamson (Ed.), Causality and probability in the sciences (pp. 503–532). London: College Publications.

    Google Scholar 

  • de Finetti, B. (1937). Foresight. Its logical laws, its subjective sources. In H. E. Kyburg, H. E. Smokler (Ed.), Studies in subjective probability (pp. 194–207). Huntington, New York: Wiley.

    Google Scholar 

  • de Finetti, B. (1993). Probabilitàe induzione. Induction and probability. Edited by D. Montanari, D. Cocchi. Bologna: CLUEB.

    Google Scholar 

  • Dowe, P. (1992). Wesley Salmon's process theory of causality and the conserved quantity theory. Philosophy of Science, 59, 195–216.

    Google Scholar 

  • Drèze, J. H., Mouchart, M. (1990). Tales of testing Bayesians. In R. A. L. Carter, J. Dutta, A. Ullah (Ed.), Contributions to econometric theory and applications - Essays in honour of A. L. Nagar (pp. 345–366). New York: Springer.

    Google Scholar 

  • Droesbeke, J.-J., Fine, J., Saporta, G. (2002). M èthodes bayèsiennes en statistique. Paris: Technip.

    Google Scholar 

  • Ducasse, J. C. (1926). On the nature and observability of the causal relation. Journal of Philosophy, 23, 57–68.

    Google Scholar 

  • Duchêne, J., Wunsch, G. (1985). From theory to statistical model. In IUSSP, International Population Conference (pp. 209–224), Volume 2. Liège: Ordina.

    Google Scholar 

  • Duchêne, J., Wunsch, G. (1989). Conceptual frameworks and causal modelling. In L. Ruzicka, G. Wunsch, P. Kane (Ed.), Differential mortality. Methodological issues and biosocial factors (pp. 21–35). Oxford: Clarendon.

    Google Scholar 

  • Duchêne, J., Wunsch, G. (1989) (Ed.). L'explication en sciences sociales: la recherche des causesen dèmographie. Chaire Quetelet 1987. Louvain-la-Neuve: CIACO.

    Google Scholar 

  • Duchêne, J., Wunsch, G. (2006). Causalitè et modèles causaux. In G. Caselli, J. Vallin, G. Wunsch (Ed.), D èmographie: analyse et synthèse (pp. 315–334), Volume VIII, Observation, mèthodes auxiliaires, enseignement et recherche. Paris: Editions de l'Institut National d'Etudes Dèmographiques.

    Google Scholar 

  • Duncan, O. D. (1975). Introduction to structural equation models. New York: Academic Press.

    Google Scholar 

  • Dupré, J., Cartwright, N. (1988). Probability and causality: why Hume and indeterminism don't mix. Noûs, 22(4), 521–536.

    Google Scholar 

  • Durkheim, E. (1895/1912). Les règles de la méthode sociologique. Paris: Libraire Félix Arcan. Sixth edition.

    Google Scholar 

  • Durkheim, E. (1897/1960). Le suicide. Paris: Presses Universitaires de France.

    Google Scholar 

  • Edwards, A. W. F. (1972). Likelihood. An account of the statistical concept of likelihood and its application to scientific inference. Cambridge: Cambridge University Press.

    Google Scholar 

  • Edwards, A. W. F. (1997). What did Fisher mean by ‘inverse probability’ in 1912–1922? Statistical Science, 12(3), 177–184.

    Google Scholar 

  • Eells, E. (1991). Probabilistic causality. Cambridge: Cambridge University Press.

    Google Scholar 

  • Eells, E., Sober, E. (1983). Probabilistic causality and the question of transitivity. Philosophy of Science, 50, 35–57.

    Google Scholar 

  • Ehring, D. (1984). Probabilistic causality and pre-emption. British Journal for the Philosophy of Science, 35, 55–57.

    Google Scholar 

  • Ellett, F. S., Ericson, D. P. (1983). The logic of causal methods in social science. Synthese, 57, 67–82.

    Google Scholar 

  • Ellett, F. S., Ericson, D. P. (1984). Probabilistic causal systems and the conditional probability approach to causal analysis. Quality and Quantity, 18, 247–259.

    Google Scholar 

  • Ellett, F. S., Ericson, D. P. (1986a). Correlation, partial correlation, and causation. Synthese, 67, 157–173.

    Google Scholar 

  • Ellett, F. S., Ericson, D. P. (1986b). An analysis of probabilistic causation in dichotomous structures. Synthese, 67, 175–193.

    Google Scholar 

  • Ellett, F. S., Ericson, D. P. (1989). Causal modelling and theories of causation. In J. Duchêne, G. Wunsch (Ed.), L'explication en sciences sociales: la recherche des causes en dèmographie (pp. 397–424). Chaire Quetelet 1987. Louvain-la-Neuve: CIACO.

    Google Scholar 

  • Engle, R. F., Hendry, D. F., Richard, J. -F. (1983). Exogeneity. Econometrica, 51(2), 277–304.

    Google Scholar 

  • Fetzer, J. (1988) (Ed.), Probability and causality. Dordrecht: Reidel.

    Google Scholar 

  • Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London, 222, 309–368.

    Google Scholar 

  • Fisher, R. A. (1925). Statistical methods for research workers. London: Oliver and Boyd. http://psychclassics.yorku.ca/Fisher/Methods/. Accessed 14 March 2008.

  • Fisher, R. A. (1930). Inverse probability. Proceeding of the Cambridge Philosophical Society, 26, 528–535.

    Google Scholar 

  • Fisher, R. A. (1935). The logic of inductive inference. Journal of the Royal Statistical Society, 98(1), 39–82.

    Google Scholar 

  • Florens, J. -P., Mouchart, M. (1989). Bayesian specification tests. In B. Cornet, H. Tulkens (Ed.), Contributions in operations research and economics (pp. 467–490). Cambridge: MIT Press.

    Google Scholar 

  • Florens, J. -P., Mouchart, M. (1993). Bayesian testing and testing Bayesians. In G. S. Maddala, C. R. Rao (Ed.), Hand-book of statistics (pp. 303–334). Amsterdam: North Holland.

    Google Scholar 

  • Franck, R. (1994) (Ed.). Faut-il chercher aux causes une raison? Paris: Vrin.

    Google Scholar 

  • Franck, R. (1995). MosaÏques, machines, organismes et sociètès. Revue Philosophique de Louvain, 93(1–2), 67–81.

    Google Scholar 

  • Franck, R. (2002) (Ed.). The explanatory power of models. Dordrecht: Kluwer.

    Google Scholar 

  • Franck, R. (2003). Causal analysis, systems analysis, and multilevel analysis: philosophy and epistemology. In D. Courgeau (Ed.), Methodology and epistemology of multilevel analysis. Approaches from different social sciences (pp. 175–198). Dordrecht: Kluwer.

    Google Scholar 

  • Freedman, D. A. (1999). From association to causation: some remarks on the history of statistics. Statistical Science, 14(3), 243–258.

    Google Scholar 

  • Freedman, D. A. (2004a). Statistical models for causation. Technical Report 651. http://www.stat.berkeley.edu/census/651.pdf. Accessed 14 March 2008.

  • Freedman, D. A. (2004b). On specifying graphical models for causation, and the identification problem. Evaluation Review, 26, 267–93.

    Google Scholar 

  • Freedman, D. A. (2005). Statistical models. Theory and practice. Cambridge: Cambridge University Press.

    Google Scholar 

  • Freedman, D., Pisani, R., Purves, R. (1998). Statistics. New York: W.W. Norton. First edition.

    Google Scholar 

  • Fried, H. O, Schmidt, S. S., Lovell, K. (1993) (Ed.). The measurement of productive efficiency. New York: Oxford University Press.

    Google Scholar 

  • Galavotti, M. C., Suppes, P., Costantini, D. (2001) (Ed.), Stochastic causality. Stanford: CSLI.

    Google Scholar 

  • Gasking, D. (1955). Causation and recipes. Mind, 64, 479–487.

    Google Scholar 

  • Gérard, H. (1989). Théories et théorisation. In J. Duchêne, G. Wunsch (Ed.), L'explication en sciences sociales. La recherche des causes en démographie (pp. 267–281). Chaire Quetelet 1987. Louvain-la-Neuve: CIACO.

    Google Scholar 

  • Gérard, H. (2006). De la théorisation en démographie. In G. Caselli, J. Vallin, G. Wun-sch (Ed.), D émographie: analyse et synthèse (pp. 291–314). Volume VIII, Observation, méthodes auxiliaires, enseignement et recherche, Paris: Editions de l'Institut National d'Etudes Démographiques.

    Google Scholar 

  • Giere, R. (1984). Causal models with frequency dependence. Journal of Philosophy, 81, 384–391.

    Google Scholar 

  • Giere, R. (1999), Science without laws. Chicago: University of Chicago Press.

    Google Scholar 

  • Gillies, D. (2000). Philosophical theories of probability. London: Routledge.

    Google Scholar 

  • Glymour, C., Scheines, R. (1986). Causal modeling with the TETRAD program. Synthese, 68, 37–64.

    Google Scholar 

  • Glymour, C., Scheines, R., Spirtes, P., Kelly K. (1987). Discovering causal structure: artificial intelligence, philosophy of science, and statistical modelling. San Diego: Academic.

    Google Scholar 

  • Goldberger, A. S. (1972). Structural equation methods in the social sciences. Econometrica, 40, 979–1001.

    Google Scholar 

  • Goldstein, H. (1987). Multilevel models in educational and social research. London: Griffin.

    Google Scholar 

  • Goldstein, H. (2003). Multilevel statistical models. Kendall's Library of Statistics, 3. London: Arnold.

    Google Scholar 

  • Good, I. J. (1959). A theory of causality. British Journal for the Philosophy of Science, 9, 307– 310.

    Google Scholar 

  • Good, I. J. (1961). A causal calculus I. British Journal for the Philosophy of Science, 11, 305– 18. Reprinted in I. J. Good, Good thinking. The foundations of probability and its applications (pp. 197–217). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Good, I. J. (1962), “A causal calculus II”, British Journal for the Philosophy of Science, 12, pp. 43– 51. Reprinted in I. J. Good, Good thinking. The foundations of probability and its applications (pp. 197–217). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Good, I. J. (1972). Review of Patrick Suppes ‘A Probabilistic Theory of Causality’. Journal of American Statistical Association, 67(337), 245–246.

    Google Scholar 

  • Good, I. J. (1977). Explicativity: a mathematical theory of explanation with statistical applications. Proceedings of Royal Society, A 354, 303–330. Reprinted in I. J. Good, Good thinking. The foundations of probability and its applications (pp. 219–236). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Good, I. J. (1980). Some comments on probabilistic causality. Pacific Philosophical Quarterly, 61, 301–304.

    Google Scholar 

  • Good, I. J. (1983a). Good thinking. The foundations of probability and its applications. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Good, I. J. (1983b). The philosophy of exploratory data analysis. Philosophy of Science, 50, 283– 295.

    Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438.

    Google Scholar 

  • Grawitz, M. (1996). M éthodes des sciences sociales. Paris: Dalloz. Tenth edition.

    Google Scholar 

  • Greenland, S. (2000). An introduction to instrumental variables for epidemiologists. International Journal of Epidemiology, 29, 722–729.

    Google Scholar 

  • Grünbaum, A. (1963). Philosophical problems of space and time. New York: Alfred A. Knopf.

    Google Scholar 

  • Gutiérrez-Fisac, J. L., Regidor, E., Banegas Banegas, J. R., Rodriguez Artalejo, F. (2002). The size of obesity differences associated with educational level in Spain, 1987, and 1995/97. Journal of Epidemiology and Community Health, 56, 457–460.

    Google Scholar 

  • Haavelmo, T. (1944). The probability approach in econometrics. Econometrica, 12, iii–vi + 1–115.

    Google Scholar 

  • Hacking, I. (1965). Logic of statistical inference. London: Cambridge University Press.

    Google Scholar 

  • Hacking, I. (1978). The emergence of probability: a philosophical study of early ideas about probability, induction and statistical inference. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hage, J., Meeker, B. F. (1988). Social causality. Boston: Unwin Hyman.

    Google Scholar 

  • Hájek, A. (2003). Interpretations of probability. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2003 edition). http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/. Accessed 14 March 2008.

  • Halpern, J., Pearl, J. (2005a). Causes and explanations: a structural-model approach. Part I: Causes. British Journal for the Philosophy of Science, 56, 843–887.

    Google Scholar 

  • Halpern, J., Pearl, J. (2005b). Causes and explanations: a structural-model approach. Part II: Explanations. British Journal for the Philosophy of Science, 56, 889–911.

    Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery: an inquiry into the conceptual foundations of science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hausman, D. (1983). Are there causal relations among dependent variables? Philosophy of Science, 50, 58–81.

    Google Scholar 

  • Hausman, D. (1993). Linking causal and explanatory asymmetry. Philosophy of Science, 60, 435– 451.

    Google Scholar 

  • Hausman, D. (1998). Causal asymmetries. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hausman, D., Woodward, J. (1999). Independence, invariance, and the causal Markov condition. British Journal for the Philosophy of Science, 50, 521–583.

    Google Scholar 

  • Hausman, D., Woodward, J. (2004). Modularity and the causal Markov condition: a restatement. British Journal for the Philosophy of Science, 55, 147–161.

    Google Scholar 

  • Heckman, J. (2005). The scientific model of causality. Sociological Methodology, 35(1), 1–97.

    Google Scholar 

  • Hedström, P., Swedberg, R. (1999a) (Ed.). Social mechanisms: an analytical approach to social theory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hedström, P., Swedberg, R. (1999b). Social mechanisms: an introductory essay. In P. Hedström, R. Swedberg (Ed.), Social mechanisms: an analytical approach to social theory (pp. 1–31). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hellevik, O. (1984). Introduction to causal analysis. London: Allen & Unwin.

    Google Scholar 

  • Hempel, C. G. (1965). Aspects of scientific explanation and other essays. New York: Free Press.

    Google Scholar 

  • Hempel, C. G., Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, 15(2), 135–175. Reprinted in C. G. Hempel, Aspects of scientific explanation and other essays (pp. 245–282). New York: Free Press.

    Google Scholar 

  • Hesslow, G. (1976). Discussion: two notes on the probabilistic approach to causality. Philosophy of Science, 43, 290–292.

    Google Scholar 

  • Hitchcock, C. (2001). The intransitivity of causation revealed in equations and graphs. Journal of Philosophy, 98(6), 273–299.

    Google Scholar 

  • Hitchcock, C. (2004) (Ed.). Contemporary debates in philosophy of science. Oxford: Blackwell.

    Google Scholar 

  • Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81, 945–970.

    Google Scholar 

  • Holland, P. W. (1988). Comment: causal mechanism or causal effect? Which is best for statistical science? Statistical Science, 3(2), 186–188.

    Google Scholar 

  • Holland, P. W., Rubin, D. B. (1988). Causal inference in retrospective studies. Evaluation Review, 12(3), 203–231.

    Google Scholar 

  • Hoover, K. D. (2001). Causality in macroeconomics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Howson, C. (1983). Statistical explanation and statistical support. Erkenntnis, 20, 61–78.

    Google Scholar 

  • Howson, C. (1988). On a recent argument for the impossibility of a statistical explanation of single events. Erkenntnis, 29, 113–124.

    Google Scholar 

  • Howson, C. (2001). The logic of Bayesian probability. In D. Corfield, J. Williamson (Ed.), Foundations of Bayesianism (pp. 137–159). Dordrecht: Kluwer.

    Google Scholar 

  • Howson, C., Urbach, P. (1993). Scientific reasoning: the Bayesian approach. Chicago: Open Court. Second edition.

    Google Scholar 

  • Hume, D. (1739–1740). A treatise of human nature. Edited by D. F. Norton, M. J. Norton. Oxford/New York: Oxford University Press, 2000.

    Google Scholar 

  • Hume, D. (1748). An enquiry concerning human understanding. Edited by T. L. Beauchamp. Oxford/New York: Oxford University Press, 1999.

    Google Scholar 

  • Humphreys, P. (1984). Aleatory explanation expanded. PSA: Proceedings of the Biannual Meeting of the Philosophy of Science Association, 1982, vol. 2, 208–223.

    Google Scholar 

  • Humphreys, P. (1986a). Causality in the social sciences: an overview. Synthese, 68, 1–12.

    Google Scholar 

  • Humphreys, P. (1986b). Quantitative probabilistic causality and structural scientific realism. PSA:Proceedings of the Biannual Meeting of the Philosophy of Science Association, 1984, vol. 2, 329–342.

    Google Scholar 

  • Humphreys, P. (1989). The chances of explanation. Princeton: Princeton University Press.

    Google Scholar 

  • Irzik, G. (1986). Causal modelling and the statistical analysis of causation. PSA: Proceedings of the Biannual Meeting of the Philosophy of Science Association, 1984, vol. 1: Contributed Papers, 12–23.

    Google Scholar 

  • Irzik, G. (1996). Can causes be reduced to correlations? British Journal for the Philosophy of Science, 47, 249–270.

    Google Scholar 

  • Irzik, G., Meyer, E. (1987). Causal modeling: new directions for statistical explanation. Philosophy of Science, 54, 495–514.

    Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. The Physical Review, 106(4), 620–630. Reprinted in E. T. Jaynes, E. T. Jaynes: papers on probability, statistics and statistical physics (pp. 4–16). Edited by R. G. Rosenkrantz. Dordrecht: Kluwer.

    Google Scholar 

  • Jaynes, E. T. (1989). E. T. Jaynes: papers on probability, statistics and statistical physics. Edited by R. G. Rosenkrantz. Dordrecht: Kluwer.

    Google Scholar 

  • Jaynes, E. T. (2003). Probability theory: the logic of science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jeffrey, R. (1966). The logic of decision. Chicago: University of Chicago Press. Second edition 1983.

    Google Scholar 

  • Jeffreys, H. (1939). Theory of probability. Reprinted, Oxford: Oxford University Press. Oxford Classics in the Physical Sciences Series. 1998.

    Google Scholar 

  • Kalleberg, A. L. (1977). Work values and job rewards: a theory of job satisfaction. American Sociological Review, 42, 124–143.

    Google Scholar 

  • Kant, I. (1781). Critique of pure reason. Second edition 1787. Translated by N. K. Smith. London: McMillan. 1929.

    Google Scholar 

  • Kant, I. (1783). Prolegomena to any future metaphysics. Translated by P. Gray Lucas. Manchester: Manchester University Press. 1953.

    Google Scholar 

  • Keynes, J. M. (1921). A treatise on probability. London: Macmillan.

    Google Scholar 

  • Kincaid, H. (1990). Defending laws in the social sciences. Philosophy of the Social Sciences, 20, 56–83.

    Google Scholar 

  • Kincaid, H. (2004). There are laws in the social sciences. In C. Hitchcock (Ed.), Contemporary debates in philosophy of science (pp. 168–186). Oxford: Blackwell.

    Google Scholar 

  • Klein, L. R. (1974). A textbook of econometrics. Englewood Cliffs (N.J): Prentice-Hall. Second edition.

    Google Scholar 

  • Kolmogorov, A. N. (1933). Foundations of the theory of probability. New York: Chelsea Publishing. 1950.

    Google Scholar 

  • Koopman, B. O. (1940). The axioms and algebra of intuitive probability. Annals of Mathematics, 41, 269–292.

    Google Scholar 

  • Korb, K., Wallace, C. (1997). In search of the philosopher's stone: remarks on Humphreys and Freedman's critique of causal discovery. British Journal for the Philosophy of Science, 48(4), 543–553.

    Google Scholar 

  • Kundi, M. (2006). Causality and the interpretation of epidemiological evidence. Environmental Health Perspectives, 114, 969–974.

    Google Scholar 

  • Kyburg, H. E., Smokler, H. E., (1964) (Ed.). Studies in subjective probability. New York: Wiley.

    Google Scholar 

  • Lagiou, P., Adami, H. -O., Trichopoulos, D. (2005). Causality in cancer epidemiology. European Journal of Epidemiology, 20, 565–574.

    Google Scholar 

  • Land, K. C. (1983). Social indicators. Annual Review of Sociology, 9, 1–26.

    Google Scholar 

  • Laplace, P. (1814). Essai philosophique sur les probabilité s. Paris: Bourgois. 1986.

    Google Scholar 

  • Larson, J. (1991). The measurement of health: concepts and indicators. New York: Greenwood Press.

    Google Scholar 

  • Laudisa, F. (1999). Causalità. Storia di un modello di conoscenza. Roma: Carocci Editore.

    Google Scholar 

  • Lehnmann, E.L. (1966). Some concepts of dependence. Annals of Mathematical Statistics, 37, 1137–1153.

    Google Scholar 

  • Lewis, D. (1971). A subjectivist guide to objective chance. Reprinted in D. Lewis, Philosophical papers Vol. II (pp. 159–213). Oxford: Oxford University Press. 1986.

    Google Scholar 

  • Lewis, D. (1973). Causation. Reprinted with postscripts in D. Lewis, Philosophical Papers Vol. II (pp. 159–213). Oxford: Oxford University Press.

    Google Scholar 

  • Lilienfeld, D. E., Stolley, P. D. (1994). Foundations of epidemiology. New York: Oxford University Press. Third edition.

    Google Scholar 

  • Little, D. (1990). Varieties of social explanations: an introduction to the philosophy of social science. Boulder: Westview Press.

    Google Scholar 

  • Little, D. (1993). On the scope and limits of generalizations in the social sciences. Synthese, 97, 183–208.

    Google Scholar 

  • Little, D. (1995a). Causal explanation in the social sciences. Southern Journal of Philosophy, 34 (Supplement), 31–56.

    Google Scholar 

  • Little, D. (1995b) (Ed.). On the reliability of economic models: essays in the philosophy of economics. Boston: Kluwer.

    Google Scholar 

  • Little, D. (1998). Microfoundations, method and causation. On the philosophy of the social sciences. New Brunswick, NJ: Transaction Publishers.

    Google Scholar 

  • Little, D. (2004). Causal mechanisms. In M. S. Lewis-Beck, A. Bryman, T. F. Liao (Ed.), The Sage Encyclopedia of social science research methods, Vol. 1. Thousand Oaks, CA: Sage.

    Google Scholar 

  • Long, J. S. (1983a). Confirmatory factor analysis. Beverly Hills: Sage.

    Google Scholar 

  • Long, J. S. (1983b). Covariance structure models. Beverly Hills: Sage.

    Google Scholar 

  • López-Ríos, O., Mompart, A., Wunsch, G. (1992). Système de soins et mortalité régionale: une analyse causale. European Journal of Population, 8(4), 363–379.

    Google Scholar 

  • Mach, E. (1905). Knowledge and error. Dordrecht: Reidel. 1976.

    Google Scholar 

  • Mackie, J. L. (1974). The cement of the universe: a study on causation. Oxford: Clarendon.

    Google Scholar 

  • Masuy-Stroobant, G. (2002). The determinants of infant mortality: how far are conceptual frameworks really modelled? In R. Franck (Ed.), The explanatory power of models (pp. 15–30). Dordrecht: Kluwer.

    Google Scholar 

  • Masuy-Stroobant, G., Gourbin, C. (1995). Infant health and mortality indicators: their accuracy for monitoring the socio-economic development in the Europe of 1994. European Journal of Population, 11(1), 63–84.

    Google Scholar 

  • Maudlin, T. (2007). The metaphysics within physics. Oxford: Clarendon.

    Google Scholar 

  • McCullag, P. (1989) (Ed.). Generalized linear models. London: Chapaman & Hall.

    Google Scholar 

  • McKim, V., Turner, S. P. (1997) (Ed.). Causality in crisis? Statistical methods and the search for causal knowledge in the social sciences. Indiana: University of Notre Dame Press.

    Google Scholar 

  • Meek, C. (1995). Causal inference and causal explanation with background knowledge. In P. Besnard, S. Hanks (Ed.), Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 403–410). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Mellor, D. H. (1971). The matter of chance. London: Cambridge University Press.

    Google Scholar 

  • Menzies, P., Price, H. (1993). Causation as a secondary quality. British Journal for the Philosophy of Science, 44, 187–203.

    Google Scholar 

  • Mill, J. S. (1843). A system of logic, ratiocinative and inductive: being a connected view of the principles of evidence and the methods of scientific investigation. New York: Harper & Brothers. Eighth edition.

    Google Scholar 

  • Montuschi, E. (2003). The objects of social science. London: Continuum.

    Google Scholar 

  • Montuschi, E. (2006). Oggettività e scienze umane. Introduzione alla filosofia della ricerca sociale. Roma: Carocci editore.

    Google Scholar 

  • Mooney Marini, M., Singer, B. (1988). Causality in the social sciences. Sociological Methodology, 18, 347–409.

    Google Scholar 

  • Morgan, M. (1997). Searching for causal relations in economic statistics. In V. McKim, S. P. Turner (Ed.), Causality in crisis? Statistical methods and the search for causal knowledge in the social sciences (pp. 47–80). Indiana: University of Notre Dame Press.

    Google Scholar 

  • Mosley, W. H., Chen, L. C. (1984). An analytical framework for the study of child survival in developing countries. Population and Development Review, 10 (Supplement), 25–45.

    Google Scholar 

  • Mouchart, M., Russo, F., Wunsch, G. (2008). Structural modelling, exogeneity and causality. In H. Engelhardt, H. -P. Kohler, A. Prskwetz (Ed.), Causal analysis in population studies: concepts, methods, applications (Chapter 4). Dordrecht: Springer.

    Google Scholar 

  • Mulaik, S. A. (1972). The foundations of factor analysis. New York: McGraw Hill.

    Google Scholar 

  • Mulaik, S. A. (1985). Exploratory statistics and empiricism. Philosophy of Science, 52, 410–430.

    Google Scholar 

  • Neter, J., Kutner, M. H., Nachtsheim C. J., Wasserman, W. (1996). Applied linear statistical models. Chicago: Richard D. Irwin. Fourth edition.

    Google Scholar 

  • Niiniluoto, I. (1981). Statistical explanation reconsidered. Synthese, 48, 437–472.

    Google Scholar 

  • Norris, P., Inglehart, R. (2003). Islam and the West: testing the ‘clash of civilization‘ thesis. Comparative Sociology, 1(3–4), 235–265. http://ksghome.harvard.edu/˜pnorris/Acrobat/ Clash%20of%20Civilization.pdf. Accessed 14 March 2008.

    Google Scholar 

  • Otte, R. (1981). A critique of Suppes‘ theory of probabilistic causality. Synthese, 48, 167–189.

    Google Scholar 

  • Papineau, D. (1985). Causal asymmetry. British Journal for Philosophy of Science, 36(3), 273– 289.

    Google Scholar 

  • Papineau, D. (1991). Correlation and causes. British Journal for Philosophy of Science, 42(3), 397–412.

    Google Scholar 

  • Parascandola, M., Weed, D. (2001). Causation in epidemiology. Journal of Epidemiology and Community Health, 55, 905–912.

    Google Scholar 

  • Pearl, J. (1988a). Probabilistic reasoning in intelligent systems. San Mateo, CA: Morgan Kaufman.

    Google Scholar 

  • Pearl, J. (1988b). Graphs, causality, and structural equation models. Sociological Methods and Research, 27(2), 226–284.

    Google Scholar 

  • Pearl, J. (1990). Jeffrey‘s rule, passage of experience, and neo-Bayesianism. In H. E. Kyburg et al. (Ed.), Knowledge representation and defeasible reasoning (pp. 245–265). Amsterdam: Kluwer.

    Google Scholar 

  • Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669–688.

    Google Scholar 

  • Pearl, J. (2000). Causality. Models, reasoning, and inference. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pearl, J. (2001). Causal inference in statistics: a gentle introduction. Technical Report R-289, Computer Science Department, University of California, Los Angeles.

    Google Scholar 

  • Pearl, J., Verna, T. S. (1991). A statistical semantics for causation. In Proceeding, 3rd International Workshop on AI & Statistics, Fort Lauderdale, FL, 2–5 January 1991. http://bayes.cs.ucla.edu/cslpapers.html. Accessed 14 March 2008.

  • Pearson, K. (1911). The grammar of science. London: A. and C. Black.

    Google Scholar 

  • Peto, R., Darby, S., Deo, H., Silcocks, P., Whitley, E., Doll, R. (2000). Smoking, smoking cessation, and lung cancer in UK since 1950. British Medical Journal, 321, 323–329.

    Google Scholar 

  • Philips, D., Berman, Y. (2003). Social quality and ethnos communities: concepts and indicators. Community Development Journal, 38, 344–357.

    Google Scholar 

  • Pickett, K., Pearl, M. (2001). Multilevel analysis of neighbourhood socioeconomic context and health outcomes: a critical review. Journal of Epidemiology and Community Health, 55, 111– 122.

    Google Scholar 

  • Popper, K. R. (1957). The propensity interpretation of the calculus of probability and the quantum theory. In S. Körner (Ed.), The Colston Papers (pp. 65–70), vol. 9.

    Google Scholar 

  • Popper, K. R. (1959). The propensity interpretation of probability. British Journal for the Philosophy of Science, 10, 25–42.

    Google Scholar 

  • Pratt, J. W., Schlaifer, R. (1984). On the nature and discovery of structure. Journal of the American Statistical Association, 79(385), 9–21.

    Google Scholar 

  • Price, H. (1991). Agency and probabilistic causality. British Journal for the Philosophy of Science, 42, 157–176.

    Google Scholar 

  • Price, H. (1992). Agency and causal asymmetry. Mind, 101, 501–520.

    Google Scholar 

  • Price, H. (2004). Models and modals. In D. Gillies (Ed.), Laws and models in science (pp. 49–69). London: King‘s College Publications.

    Google Scholar 

  • Psillos, S. (2002). Causation and explanation. Chesham: Acumen Publishing.

    Google Scholar 

  • Psillos, S. (2004). A glimpse of the secret connexion: harmonizing mechanisms with counterfac-tuals. Perspectives on Science, 12(3), 288–319.

    Google Scholar 

  • Psillos, S. (2005). Undetermination. Encyclopedia of Philosophy. Gale MacMillan Reference. Second edition. http://www.phs.uoa.gr/˜psillos/Publicationsfiles/Underdetermination.doc. Accessed 14 March 2008.

  • Quetelet, A. (1869). Physique sociale. Ou essai sur le développement des facultés de l‘homme. Bruxelles: Muquardt.

    Google Scholar 

  • Ramsey, F. P. (1931). Truth and probability. In F. P. Ramsey, The foundations of mathematics and other logical essays (Chapter VII, pp. 156–198). Edited by R. B. Braithwaite. London/London: Kegan Paul/Harcourt, Brace & Co. 1999 electronic edition. http://socserv.mcmaster.ca/econ/ugcm/3ll3/ramseyfp/ramsess.pdf. Accessed 14 March 2008.

  • Reichenbach, H. (1949). The theory of probability. Berkeley: University of California Press.

    Google Scholar 

  • Reichenbach, H. (1956). The direction of time. Berkeley: University of California Press.

    Google Scholar 

  • Reiss, J. (2001). Natural economic quantities and their measurement. Measurement in Physics and Economics — Discussion Papers. Technical Report 14/01, Centre for Philosophy of Natural and Social Science, London School of Economics.

    Google Scholar 

  • Reiss, J. (2007). Do we need mechanisms in the social sciences? Philosophy of the Social Sciences, 37(2), 163–184.

    Google Scholar 

  • Reiss, J. (2008). Error in economics: towards a more evidence-based methodology. London: Rout-ledge.

    Google Scholar 

  • Roberts, J. T. (2004). There are no laws in the social sciences. In C. Hitchcock (Ed.), Contemporary debates in the social sciences (pp. 151–167). Oxford: Balckwell.

    Google Scholar 

  • Robinson, W. (1950). Ecological correlations and the behaviour of individuals. American Sociological Review, 15, 351–357.

    Google Scholar 

  • Rosen, D. (1978). In defence of a probabilistic theory of causality. Philosophy of Science, 45, 604–613.

    Google Scholar 

  • Rosenbaum, P. R. (1984). From association to causation in observational studies. The role of tests of strongly ignorable treatment assignment. Journal of the American Statistical Association, 385, 41–48.

    Google Scholar 

  • Rosenbaum, P. R., Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41–55.

    Google Scholar 

  • Rubin, D. (1974). Estimating causal effects of treatments in randomized and non randomized studies. Journal of Educational Psychology, 66(5), 688–701.

    Google Scholar 

  • Rubin, D. (1978). Bayesian inference for causal effects: the role of randomization. The Annals of Statistics, 6, 34–58.

    Google Scholar 

  • Russell, B. (1912–1913). On the notion of cause. Proceedings of the Aristotelian Society, 13, 1–26.

    Google Scholar 

  • Russo, F. (2006a). Salmon and van Fraassen on the existence of unobservable entities: a matter of interpretation of probability. Foundations of Science, 11(3), 221–247.

    Google Scholar 

  • Russo, F. (2006b). The rationale of variation in methodological and evidential pluralism. Philo-sophica, 77, 97–124.

    Google Scholar 

  • Russo, F. (2007). Frequency-driven probabilities in quantitative causal analysis. Philosophical Writings, 32, 32–56.

    Google Scholar 

  • Russo, F., Mouchart, M., Ghins, M., Wunsch, G. (2006). Causality, structural modelling and exogeneity. Discussion Paper 0601, Institut de Statistique, Université catholique de Louvain, Belgium.

    Google Scholar 

  • Russo, F., Williamson J. (2007a) (Ed.). Causality and probability in the sciences. Texts in Philosophy Series. London: College Publications.

    Google Scholar 

  • Russo, F., Williamson, J. (2007b). Interpreting probability in causal models for cancer. In F. Russo, J. Williamson (Ed.), Causality and probability in the sciences (pp. 217–242). Texts in Philosophy Series. London: College Publications.

    Google Scholar 

  • Russo, F., Williamson, J. (2007c). Interpreting causality in the health sciences. International Studies in Philosophy of Science, 21(2), 157–170.

    Google Scholar 

  • Salmon, W. C. (1967). Foundations of scientific inference. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Salmon, W. C. (1971). Statistical explanation. In W. C. Salmon et al. (Ed.), Statistical explanation and statistical relevance (pp. 29–87). Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Salmon, W. C. (1977). Objectively homogeneous references classes. Synthese, 36, 399–414.

    Google Scholar 

  • Salmon, W. C. (1980). Probabilistic causality. Pacific Philosophical Quarterly, 61, 50–74.

    Google Scholar 

  • Salmon, W. C. (1984). Scientific explanation and the causal structure of the world. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Salmon, W. C. (1988). Dynamic rationality. In J. Fetzer J. (Ed.), Probability and causality (pp. 3–42). Dordrecht: Reidel.

    Google Scholar 

  • Salmon, W. C. (1990). Causal propensities: statistical causality vs. aleatory causality. Topoi, 9, 95–100.

    Google Scholar 

  • Salmon, W. C. (1998). Causality and explanation. New York: Oxford University Press.

    Google Scholar 

  • Salmon, W. C. et al. (1971). Statistical explanation and statistical relevance. Pittsburgh: University of Pittsburgh Press.

    Google Scholar 

  • Savage, L. J. (1954). The foundations of statistics. New York: Wiley.

    Google Scholar 

  • Simon, H. (1952). On the definition of the causal relation. Journal of Philosophy, 49(16), 517– 528.

    Google Scholar 

  • Simon, H. (1953). Causal ordering and identifiability. In W. C. Hood, T. C. Koopmans (Ed.), Studies in econometric method (pp. 49–74). New York: Wiley.

    Google Scholar 

  • Simon, H. (1954). Spurious correlation: a causal interpretation. Journal of the American Statistical Association, 49(267), 467–479.

    Google Scholar 

  • Simon, H. (1979). The meaning of causal ordering. In K. R. Merto, J. J. Coleman, P. H. Rossi (Ed.), Qualitative and quantitative social research (pp. 65–81). New York: Free Press.

    Google Scholar 

  • Skyrms, B. (1988). Probability and causation. Journal of Econometrics, 39, 53–68.

    Google Scholar 

  • Snijders, T. A. B., Bosker, R. J. (2004). Multilevel analysis. An introduction to basic and advanced multilevel modeling. London: Sage. Fourth edition.

    Google Scholar 

  • Sober, E. (1984). Two concepts of cause. PSA: Proceedings of the Biannual Meeting of the Philosophy of Science Association, 1982, vol. 2, 405–424.

    Google Scholar 

  • Sober, E. (1986). Causal factors, causal influence, causal explanation. Proceedings of Aristotelian Society, 60, 97–136.

    Google Scholar 

  • Spirtes, P., Glymour, C., Scheines, R. (1991). From probability to causality. Philosophical Studies, 91, 1–36.

    Google Scholar 

  • Spirtes, P., Glymour, C., Scheines, R. (1993). Causation, prediction, and search. New York: Springer.

    Google Scholar 

  • Spirtes, P., Richardson, T., Meek, C., Scheines, R., Glymour, C. (1998). Using path diagrams as a structural equation modeling tool. Sociological Method and Research, 27(2), 182–225.

    Google Scholar 

  • Steuer, M. (2003). The scientific study of society. Boston: Kluwer.

    Google Scholar 

  • Stone, R. (1993). The assumptions on which causal inferences rest. Journal of the American Statistical Association, 55(2), 455–466.

    Google Scholar 

  • Suppes, P. (1970). A probabilistic theory of causality. Amsterdam: North Holland.

    Google Scholar 

  • Suppes, P. (1982). Problems of causal analysis in the social sciences. Epistemologia, Special Issue 1982, 239–250.

    Google Scholar 

  • Suppes, P. (2002). Representation and invariance of scientific structures. Stanford: CSLI Publications.

    Google Scholar 

  • Susser, M. (2001). Glossary: causality in public health sciences. Journal of Epidemiology and Community Health, 55, 376–378.

    Google Scholar 

  • Susser, M. W. (1973). Causal thinking in the health sciences. New York: Oxford University Press.

    Google Scholar 

  • Susser, M., Susser, E. (1996). Choosing a future for epidemiology ii: from black box to Chinese box and ecoepidemiology. American Journal of Public Health, 86, 674–677.

    Google Scholar 

  • Thompson, P. (2006). Bayes p-values. In S. Kotz, C. B. Read, N. Balakrishnan, B. Vidakovic (Ed.), Encyclopedia of Statistical Sciences. Hoboken, NJ: Wiley-Interscience. Second edition.

    Google Scholar 

  • Toulemon, L. (2006). Les modèles de régression. In G. Caselli, J. Vallin, G. Wunsch (Ed.), D émographie: analyse et synthèse (pp. 359–374). Volume VIII Observation, méthodes auxiliaires, enseignement et recherche. Paris: Editions de l‘Institut National d‘Etudes Démographiques.

    Google Scholar 

  • Urbach, P. (1989). Random sampling and the principles of estimation. Proceedings of the Aristotelian Society, 89, 143–164.

    Google Scholar 

  • Vandresse, M. (2005). Characteristics of the newborn at birth and health status: a congested two-frontiers approach. Unpublished manuscript.

    Google Scholar 

  • Vandresse, M. (2008). Late fertility: its causal effects on health of the newborn and its implications in fertility decision process. PhD Thesis. Université catholique de Louvain.

    Google Scholar 

  • van Bouwel, J. (2004). Individualism and holism, reduction and pluralism: a comment on Keith Sawyer and Julie Zahle. Philosophy of the Social Sciences, 34(4), 527–535.

    Google Scholar 

  • van Fraassen, B. C. (1980). The scientific image. Oxford: Clarendon Press.

    Google Scholar 

  • van Fraassen, B. C. (1983). Calibration: a frequency justification for personal probabilities. In R. S. Cohen, L. Laudan (Ed.), Physics, philosophy and psychoanalysis: essays in honour of Adolph Grümbaum (pp. 295–319). Dordrecht: Reidel.

    Google Scholar 

  • van Fraassen, B. C. (1989). Laws and symmetry. Oxford: Clarendon.

    Google Scholar 

  • Venn, J. (1876). The logic of chance: an essay on the foundations and province of the theory of probability. London: Macmillan. Second edition.

    Google Scholar 

  • Vineis, P. (2003). Causality in epidemiology. Sozial und Praventiv Medizin, 48, 80–87.

    Google Scholar 

  • von Bertalanffy, L. (1969). General system theory: foundations, development, applications. New York: Braziller.

    Google Scholar 

  • von Mises, R. (1957). Probability, statistics and truth. New York: Macmillan. Second edition.

    Google Scholar 

  • von Wright, G. (1971). Explanation and understanding. Ithaca: Cornell University Press.

    Google Scholar 

  • Wackerly, D. D., Mendenhall W., Scheaffer R. L. (2002). Mathematical statistics with applications. Pacific Grove: Duxbury. Sixth edition.

    Google Scholar 

  • Williams, M., Williamson, J. (2006). Combining argumentation and Bayesian nets for breast cancer prognosis. Journal of Logic, Language and Information, 15, 155–178.

    Google Scholar 

  • Williamson, J. (2005a). Bayesian nets and causality. Philosophical and computational foundations. Oxford: Oxford University Press.

    Google Scholar 

  • Williamson, J. (2005b). Causality. In D. Gabbay, F. Guenthner (Ed.), Handbook of philosophical logic (pp. 131–162). volume 13. Springer.

    Google Scholar 

  • Williamson, J. (2005c). Philosophies of probability: objective Bayesianism and its challenges. In A. Irvine (Ed.), Handbook of the philosophy of mathematics. Volume four of Handbook of Philosophy of Science. Elsevier. http://www.kent.ac.uk/secl/philosophy/jw/2004/philprob.pdf. Accessed 17 March 2008.

  • Williamson, J. (2007). Motivating objective Bayesianism: from empirical constraints to objective probabilities. In W. L. Harper, G. R. Wheeler (Ed.), Probability and inference: essays in honour of Henry E. Kyburg Jr (pp. 155–183). London: College Publications.

    Google Scholar 

  • Woodward, J. (1993). Book review: Humphreys, P., ‘The chances of explanation: causal explanation in social, medical and physical sciences‘. Philosophy of Science, 60(4), 671–673.

    Google Scholar 

  • Woodward, J. (1999). Causal interpretation in systems of equations. Synthese, 121, 199–247.

    Google Scholar 

  • Woodward, J. (2003). Making things happen: a theory of causal explanation. Oxford: Oxford University Press.

    Google Scholar 

  • Wonnacott, T. H., Wonnacott, R. J. (1990). Introductory Statistics. New York: Wiley. Fifth edition.

    Google Scholar 

  • Worrall, J. (2002). What evidence in evidence-based medicine? Philosophy of Science, 69, 316– 330.

    Google Scholar 

  • Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20, 557–585.

    Google Scholar 

  • Wright, S. (1934). The method of path coefficient. Annals of Mathematical Statistics, 5(3), 161– 215.

    Google Scholar 

  • Wunsch, G. (1984). Theories, models and knowledge: the logic of demographic discovery. Genus, 40(1–2), 1–18.

    Google Scholar 

  • Wunsch, G. (1986). Causal connections in causal modelling. Genus, 42(3–4), 1–12.

    Google Scholar 

  • Wunsch, G. (1988). Causal theory and causal modelling. Leuven: Leuven University Press.

    Google Scholar 

  • Wunsch, G. (1995). God has chosen to give the easy case to the physicists. In Evolution or revolution in European population. European Population Conference. 1 Plenary Session (pp. 201– 224). Milano: Franco Angeli.

    Google Scholar 

  • Wunsch, G. (2007). Confounding and control. Demographic research, 6(4), 95–120.

    Google Scholar 

  • Yule, G. U. (1897). On the theory of correlation. Journal of Royal Statistical Society, 60, 812–854.

    Google Scholar 

  • Zellner, A. (1988). Causality and causal laws in economics. Journal of Econometrics, 39, 7–21.

    Google Scholar 

  • Zeller, R. A., Carmines, E. G. (1980). Measurement in the social science. The link between theory and data. Cambridge: Cambridge University Press.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

(2009). Methodological Consequences: Objective Bayesianism. In: Causality and Causal Modelling in the Social Sciences. Methodos Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8817-9_5

Download citation

Publish with us

Policies and ethics